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1 Introduction

The generalized linear model (McCullagh and Nelder, 1989) is a popular technique for modelling
a wide variety of data and assumes that the observations (yi,x

t
i ), 1 ≤ i ≤ n, xi ∈ R

k, are
independent with the same distribution as (y,xt) ∈ R

k+1 such that the conditional distribution
of y|x belongs to the canonical exponential family

exp {[yθ(x)−B (θ(x))] /A(τ) + C(y, τ)} ,

for known functions A, B and C. In this situation, if we denote by B′ the derivative of B, the
mean µ(x) = E(y|x) = B′ (θ(x)) is modelled linearly through a known link function, g, i.e.,
g(µ (x)) = θ(x) = xtβ. Robust procedures for generalized linear models have been considered,
among others, by Stefanski et al. (1986), Künsch et al. (1989), Bianco and Yohai (1996),
Cantoni and Ronchetti (2001), Croux and Haesbroeck (2002) and Bianco et al. (2005), see
also, Maronna et al. (2006). Recently, robust tests for the regression parameter under a logistic
model were considered by Bianco and Mart́ınez (2009).

In practice, some response variables may be missing by design (as in two-stage studies)
or by happenstance. As it is well known, the methods proposed by the above mentioned
authors are designed for complete data sets and problems arise when missing observations are
present. Even if there are many situations in which both the response and the explanatory
variables are missing, we will focus our attention on those cases in which missing data occur
only in the responses. Actually, missingness of responses is very common in opinion polls,
market research surveys, mail enquiries, social-economic investigations, medical studies and
other scientific experiments, when the explanatory variables can be controlled. This pattern
appears, for example, in the scheme of double sampling proposed by Neyman (1938), where
first a complete sample is obtained and then some additional covariate values are computed
since perhaps this is less expensive than to obtain more response values. Hence, we will focus
our attention on robust inference when the response variable has missing observations but the
covariate x is totally observed.

In this paper, we consider the robust estimators for the regression parameter β introduced
by Bianco et al. (2010), under a glm model. When there are no missing data, these estimators
include the family of estimators previously studied by several authors such as Bianco and Yohai
(1996), Cantoni and Ronchetti (2001), Croux and Haesbroeck (2002) and Bianco et al. (2005).
It is shown that the robust estimates of β are asymptotically normally distributed which allows
to construct a robust procedure to test the hypothesis H0 : β = β0 versus H1 : β 6= β0.
The paper is organized as follows. The robust proposal is given in Section 2, the asymptotic
distribution of the regression estimators and a robust Wald test for the regression parameter
are provided in Section 3, while an expression for the influence function of the test is obtained
in Section 4. The results of a Monte Carlo study are summarized in Section 5. A real data
example is given in Section 6. Proofs are relegated to the Appendix.
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2 Robust inference

2.1 Preliminaries: The robust estimators

Suppose we obtain a random sample of incomplete data
(
yi,x

t
i , δi

)
, 1 ≤ i ≤ n , of a generalized

linear model where δi = 1 if yi is observed, δi = 0 if yi is missing and (yi,x
t
i ) ∈ R

k+1 are such
that yi|xi ∼ F (·, µi, τ) with µi = H(xti β) and Var(yi|xi) = A2(τ)V 2(µi) = A2(τ)B′′ (θ(xi))
with B′′ the second derivative of B. Let (β, τ) denote the true parameter values and EF the
expectation under the true model, thus EF (y|x) = H(xtβ). In a more general situation, we
will think of τ as a nuisance parameter such as the tuning constant for the score function to be
considered.

Let (y,xt, δ) be a random vector with the same distribution as
(
yi,x

t
i , δi

)
. Bianco et al.

(2010) defined robust estimators of the regression parameter when missing responses occur
under an ignorable missing mechanism. To be more precise, they assumed that y is missing at
random (MAR), that is, δ and y are conditionally independent given x, i.e.,

P (δ = 1|(y,x)) = P (δ = 1|x) = p (x) . (1)

A common assumption in the literature states that infx p (x) > 0, meaning that at any value of
the covariate response variables are observed. By introducing a weight function with compact
support, this assumption will be relaxed.

For the sake of completeness, we remind the definition of the two families of estimators
considered in Bianco et al. (2010). Let w1 : Rk → R be a weight function to control leverage
points on the carriers x and ρ : R3 → R a loss function. For any b ∈ R

k, t ∈ R and any function
q : Rk → R, let us define

Sn(b, t) =
1

n

n∑

i=1

δiρ
(
yi,x

t
i b, t

)
w1(xi) , (2)

S(b, t) = EF

[
δρ
(
y,xtb, t

)
w1(x)

]
= EF

[
p(x)ρ

(
y,xtb, t

)
w1(x)

]
, (3)

Sp,n(b, t, q) =
1

n

n∑

i=1

δi
q(xi)

ρ
(
yi,x

t
i b, t

)
w1(xi) , (4)

Sp(b, t, q) = EF

[
δ

q(x)
ρ
(
y,xtb, t

)
w1(x)

]
= EF

[
p(x)

q(x)
ρ
(
y,xtb, t

)
w1(x)

]
. (5)

For both S(b, τ) and Sp(b, τ, q), τ plays the role of a nuisance parameter. Besides, for Sp(b, τ, q)
q plays also the role of a nuisance parameter. Moreover, it is worth noticing that Sp(b, t, p) =
EF

[
ρ
(
y,xtb, t

)
w1(x)

]
, i.e., it corresponds to the objective function when the sample contains

no missing responses.
In order to define Fisher–consistent estimators, Bianco et al. (2010) assumed that w1(·) and

ρ(·) are such that, S(β, τ) = min
b

S(b, τ). Moreover, they also assumed that β is the unique

minimum of Sp(b, τ, p).
Two families of estimators were defined therein as follows.
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1. The robust simplified estimators. Let τ̂ = τ̂n be robust consistent estimators of τ ,
the robust simplified estimator β̂ of the regression parameter is defined as

β̂ = argmin
b

Sn(b, τ̂ ) . (6)

When ρ is continuously differentiable, if we denote by Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, β and

β̂ satisfy the differentiated equations S(1)(β, τ) = 0k and S
(1)
n (b, τ̂ ) = 0k, respectively,

where

S(1)(b, t) = EF

(
Ψ
(
y,xtb, t

)
w1(x)p(x)x

)
,

S(1)
n (b, t) =

1

n

n∑

i=1

δiΨ
(
yi,x

t
i b, t

)
w1(xi)xi .

2. The robust propensity score estimator. To improve the bias caused in the estimation
by the missing mechanism, robust propensity score estimators may be considered using
an estimator of the missingness probability. Denote by p̂(x) any consistent estimator of
p(x). For instance, if we assume that the missingness probability is given by the logistic
model, i.e., that p(x) = Gl(x

tλ0), where Gl(s) = (1 + e−s)−1 is the logistic distribution
function, we only need to estimate the parameter λ0 to define the estimator p̂(x). The
robust propensity score estimator β̂p is defined as

β̂p = argmin
b

Sp,n(b, τ̂p, p̂) , (7)

where τ̂p is a robust consistent estimator of τ , possible different than the one pre-
viously considered. As above, when ρ is continuously differentiable, if we denote by

Ψ (y, u, t) = ∂ρ(y, u, t)/∂u, β and β̂ satisfy the differentiated equations S
(1)
p (β, τ, p) = 0k

and S
(1)
p,n(b, τ̂ , p̂) = 0k, respectively, where

S
(1)
p (b, t, q) = EF

(
Ψ
(
y,xtb, t

)
w1(x)

p(x)

q(x)
x

)
,

S
(1)
p,n(b, t, q) =

1

n

n∑

i=1

δi
q(xi)

Ψ
(
yi,x

t
i b, t

)
w1(xi)xi .

It is worth noticing that even if the robust propensity score estimators adapt to the situation
when no missing responses arise, they may be more sensitive than the simplified estimators
to values of the covariates x leading to small values of the missingness probability, i.e., to
values where less responses arise. If for such a value of the covariate, an outlier occur in the
response, its effect will be enlarged due to the estimator p̂(x). The weight function w1 may
try to overcome this problem by controlling not only high leverage points but also values of x
leading to small values of p̂(x).
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Remark 2.1.1. Two classes of loss functions ρ have been considered in the literature. The first
one aims to bound the deviances, while the second one introduced by Cantoni and Ronchetti
(2001) bounds the Pearson residuals. For a complete description see Bianco et al. (2010). In
particular, the Poisson and log–Gamma model were considered therein. We refer to Bianco et
al. (2005) for a description on the robust estimators based on deviances for complete data sets
and to Heritier et al. (2009) for a description onM−type estimators for the log–Gamma model.
For the sake of completeness, we will remind how to adapt the estimators based on deviances to
the situation with missing responses since this will be the model used in our simulation study.

Denote by di(β, τ) the deviance component of the i-th observation, i.e., di(β, τ) = 2τ d∗(yi,xi,β)
where

d∗(y,x,β) = −1− (log(y)− xtβ) + y exp(−xtβ).

Let us now assume that we are dealing with the situation in which some of the responses yi,
and so the transformed responses zi = log(yi) may be missing. Indeed, we have that δi = 1 if
zi is observed, while δi = 0 if zi is missing and (zi,x

t
i ) ∈ R

k+1 are such that zi = xti β + ui,
where ui ∼ log(Γ(τ, 1)) and ui and xi are independent. Moreover, δ and z are conditionally
independent given x and so δ and u are independent. Besides, the density of u is g(u, τ), where

g(u, τ) =
τ τ

Γ(τ)
exp(τ(u− exp(u))) , (8)

is asymmetric and unimodal with maximum at u0 = 0. Note that d∗(y,x,b) = −1−u−xt(β−
b) + exp(u) exp(xt(β − b)) = d̃(u,x,β − b). The maximum likelihood (ml) estimator of β is,
thus, obtained as

β̂ml = argmin
b

n∑

i=1

δid
∗(yi,xi,b).

As described in Bianco et al. (2010) a three step procedure can be considered to compute a
sort of generalized MM−estimators when missing responses are present.

• Step 1. We first compute an initial S−estimate β̃n of the regression parameter and the
corresponding scale estimate σ̂n, taking b = 1

2 sup ρ with the complete data set. To be

more precise, for each value of b let σn(b) be the M−scale estimate of
√
d∗(yi,xi,b)

given by

1∑n
i=1 δi

n∑

i=1

δiφ

(√
d∗(yi,xi,b)

σn(b)

)
= b,

where φ is Tukey’s bisquare function. The S−estimate of β for the considered model is de-
fined as β̃n = argminb σn(b) and the corresponding scale estimate as σ̂n = minb σn(b).

Let u be a random variable with density (8) and write σ∗(τ) the solution of

EG

[
ρ

(√
h(u)

σ∗(τ)

)]
= b,
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where h(u) = 1−u− exp(u). Under mild conditions, β̃n
a.s.−→ β and σ̂n

a.s.−→ σ∗(τ), besides
σ∗(τ) is a continuous and strictly decreasing function and so, an estimator of τ can be
defined as τ̂n = σ∗−1(σ̂n) leading to a a strongly consistent estimator for τ .

• Step 2. In the second step, we compute τ̂n = σ∗−1(σ̂n) and

ĉn = max(σ̂n, Ce(τ̂n)) = max(σ̂n, Ce(σ
∗−1(σ̂n)) .

We then have that ĉn
p−→ c0 = max{σ∗(τ), Ce(τ)}.

• Step 3. Let β̂n be the adaptive estimator of β defined by

β̂n = argmin
b

n∑

i=1

δiφ
(√

d∗(yi,xi,b)/ĉn

)
w1(xi) . (9)

The results stated in Section 3 allow to show that since ĉn
p−→ c0

√
n(β̂n − β)

D−→ N

(
0k,

B(ψ, τ, c0)

A2(φ, τ, c0)
C

)
,

where C = A−1
E
(
p(x)w2

1(x)xx
t
)
A−1 with A = E

(
p(x)w1(x)xx

t
)
. Note that when a 0 − 1

weight function is considered the asymptotic matrix C reduces to C = E
(
p(x)w1(x)xx

t
)−1

.

For missing responses, the asymptotic relative efficiency of β̂n depends on the asymptotic
efficiency for the complete data set ARE(φ, τ, c0) and on the matrixC. For the sake of simplicity,
in the simulation study we have calibrated the estimators for p ≡ 1 and w1 ≡ 1 and so, an extra
loss of efficiency should be expected.

Propensity score estimators β̂p,n can be defined similarly. In this case, results stated in
Section 3 allow to show that

√
n(β̂p,n − β)

D−→ N

(
0k,

B(ψ, τ, c0)

A2(φ, τ, c0)
Cp

)

where

Cp = A−1
p E

(
w2
1(x)

p(x)
xxt

)
A−1

p

with Ap = E
(
w1(x)xx

t
)
.

2.2 Test statistics

In Section 3 it will be shown that, if
(
yi,x

t
i , δi

)
, 1 ≤ i ≤ n are as described above, under mild

conditions,

√
n
(
β̂ − β

)
D−→ N (0k,Σ) and

√
n
(
β̂p − β

)
D−→ N (0k,Σp) ,
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where Σ = A−1BA−1, Σp = A−1
p BpA

−1
p and the symmetric matrices A, B, Ap and Bp are

defined as

A = EF

(
χ
(
y,xtβ, τ

)
w1(x)p(x)xx

t
)

(10)

B = EF

(
Ψ2
(
y,xtβ, τ

)
w2
1(x)p(x)xx

t
)

(11)

Ap = EF

(
χ
(
y,xtβ, τ

)
w1(x)xx

t
)

(12)

Bp = EF

(
Ψ2
(
y,xtβ, τ

)
w2
1(x)p(x)

−1xxt
)
, (13)

with χ (y, u, τ) = ∂Ψ(y, u, τ)/∂u. Estimators of A, B, Ap and Bp can be obtained through
their sample versions. So, let us define Â = Â(β̂, τ̂), B̂ = B̂(β̂, τ̂), Âp = Âp(β̂, τ̂ , p̂) and
B̂p = B̂p(β̂, τ̂ , p̂) where

Â(b, t) =
1

n

n∑

i=1

δi χ
(
yi,x

t
i b, t

)
w1(xi)xix

t
i

B̂(b, t) =
1

n

n∑

i=1

δiΨ
2
(
yi,x

t
i b, t

)
w2
1(xi)xix

t
i

Âp(b, t, q) =
1

n

n∑

i=1

δi
q(xi)

χ
(
yi,x

t
i b, t

)
w1(xi)xix

t
i

B̂p(b, t, q) =
1

n

n∑

i=1

δi
q2(xi)

Ψ2
(
yi,x

t
i b, t

)
w2
1(xi)xix

t
i .

Two Wald–type test statistics to test the hypothesis H0 : β = β0 versus H1 : β 6= β0

can thus be defined as Ŵn = n(β̂ − β0)
tΣ̂

−1
(β̂ − β0) and Ŵp,n = n(β̂p − β0)

tΣ̂
−1

p (β̂p − β0).
These test statistics will be asymptotically χ2

k distributed under the null hypothesis. Their
asymptotic behaviour under contiguous alternatives is derived in Section 3. Also, a score type
test as defined in Heritier and Ronchetti (1994) when there are no missing responses in the
sample, can be adapted to the present situation.

3 Asymptotic behaviour of the test statistics

In this section, we will derive the asymptotic distribution of the test statistics under the null
hypothesis and under contiguous alternatives. We will consider the following set of assumptions.

N1. The functions w1(x) and w1(x)‖x‖ are bounded.

N2. EF

(
p(x)w1(x)‖x‖2

)
<∞.

N3. Ψ(y, u, v) and χ(y, u, v) = ∂Ψ(y, u, v)/∂u are bounded continuous functions.

N4. The matrix A defined in (10) is non–singular.
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N5. The class of functions F = {fτ (y,x, δ) = δΨ
(
y,xtβ, τ

)
w1(x)x, τ ∈ K} where K is a

compact neighbourhood of τ , has finite entropy.

N6. EF

(
Ψ
(
y,xtβ, τ

)
|x
)
= 0k for any fixed τ ∈ K.

N7. infx∈Sw1∩Sx
p(x) = A > 0, where Sw1 and Sx stand for the support of w1 and x,

respectively.

N8. p(x) = G(λtx) for some continuous function G : R → (0, 1) with bounded variation.

N9. The matrix Ap defined in (12) is non–singular.

Remark 3.1. Assumptions N1 and N3 are standard requirements since they state that the
weight function control large values of the covariates and that the score function bound large
residuals, respectively. N2 is fulfilled for instance, for a 0−1 weight function and more generally,
if w1(x)‖x‖2 is bounded. Note that N6 holds for the usual functions considered in robustness,
it is the conditional Fisher–consistency defined by Künsch et al. (1989). Moreover, N5 is
fulfilled for the family of functions studied in Bianco et al. (2005), when τ plays the role of the
tuning constant, and ρ(y,xtβ, τ) = ρ(

√
d∗(y,x,β)/τ) if ρ is twice continuously differentiable

and there exists M such that |u| > M implies that ρ(u) = supv ρ(v). Assumptions N4 and N9

are standard conditions in the robustness literature to guarantee that the regression estimators
will be root−n consistent. Note that if w1 has compact support, as it is the case for the
Tukey weight function used in the simulation study, N7 holds for any continuous missingness
probability such that p(x) > 0. This includes, for instance, a logistic model for p(x). On the
other hand, if Sx = R

k and w1 ≡ 1, i.e., if high leverage points are not downweighted, N7

restricts the family of missing probabilities to be considered.

The following Lemma will be useful when deriving the asymptotic distribution of the robust
simplified and robust propensity estimators defined in Section 2.1. We omit its proof since
it follows using analogous arguments to those considered in Lemma 1 of Bianco and Boente
(2002).

Lemma 3.1. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti β0). Assume that N1 and N2 hold. Let ϕ(y, u, v) be a continuous function and

assume that τ̃
p−→ τ and β̃

p−→ β. Define

V = EF

(
ϕ(y,xtβ, τ)w1(x)p(x)xx

t
)

V̂ =
1

n

n∑

i=1

δiϕ(yi,x
t
i β̃, τ̃)w1(xi)xix

t
i ,

Vp = EF

(
ϕ(y,xtβ, τ)w1(x)xx

t
)

V̂p =
1

n

n∑

i=1

δi
p̂(xi)

ϕ(yi,x
t
i β̃, τ̃ )w1(xi)xix

t
i .

Then, we have that, V̂
p−→ V. Moreover, assume that either
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i) N7 holds and supx∈Sw1∩Sx

|p̂(x)− p(x)| p−→ 0
or

ii) N8 holds, p̂(x) = G(λ̃
t
x) where λ̃

p−→ λ,

then, V̂p

p−→ V holds.

Theorem 3.1. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti βn), with βn = β0 + cn−
1
2 . Assume that N1 to N6 hold and that τ̂n

p−→ τ .
Let Σ = A−1BA−1 where the symmetric matrices A and B are defined in (10) and (11),
respectively. Then, we have that

a) Under H0 : c = 0k, i.e., under H0 : β = β0,
√
n
(
β̂ − β0

) D−→ N (0k,Σ).

b) Under H1,n : c 6= 0k, i.e., under H1,n : β = βn, if E
(
|H ′(xtβ0)| ‖x‖2

)
< ∞,

√
n(β̂ −

β0)
D−→ N (−c,Σ). Moreover, B̂−1/2Â

√
n(β̂ − β0)

D−→ N
(
−B−1/2Ac, Ik

)
where Â and

B̂ are defined in Section 2.2.

We omit the proof of the following result since it follows using analogous arguments to
those considered in the proof of Theorem 3.1 using that N8 implies that the class of functions
P = {p(x) = pλ(x) = G(λtx),λ ∈ R

k} has finite entropy.

Theorem 3.2. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti βn), with βn = β0 + cn−
1
2 . Consider β̂p the propensity estimator defined through

(7) with p̂(x) = G(λ̂
t
x) such that λ̂

p−→ λ. Assume that N1 to N3 and N5 to N9 hold and

that τ̂n
p−→ τ . Let Σp = A−1

p BpA
−1
p where the symmetric matrices Ap and Bp are defined in

(12) and (13), respectively. Then, we have that

a) Under H0 : c = 0k, i.e., under H0 : β = β0,
√
n
(
β̂p − β0

)
D−→ N (0k,Σp).

b) Under H1,n : c 6= 0k, i.e., under H1,n : β = βn, if E
(
|H ′(xtβ0)| ‖x‖2

)
< ∞,

√
n(β̂p −

β0)
D−→ N (−c,Σp). Moreover, B̂

−1/2
p Âp

√
n(β̂p − β0)

D−→ N
(
−B

−1/2
p Apc, Ik

)
where

Âp and B̂p are defined in Section 2.2.

The following Theorems state the asymptotic behaviour of the proposed Wald–type test
statistics and their proofs follow easily applying Theorem 3.1, 3.2 and Lemma 3.1.

Theorem 3.3. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti βn), with βn = β0 + cn−
1
2 . Let Σ = A−1BA−1 where the symmetric matrices

9



A and B are defined in (10) and (11), respectively. Assume that N1 to N6 hold and that

τ̂n
p−→ τ , then we have that

a) Under H0 : c = 0k, i.e., under H0 : β = β0, Ŵn
D−→ χ2

k.

b) Under H1,n : c 6= 0k, i.e., under H1,n : β = βn, if E
(
|H ′(xtβ0)| ‖x‖2

)
< ∞, Ŵn

D−→
χ2
k(θ), where θ = ctΣ−1c.

Theorem 3.4. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti βn), with βn = β0+cn−
1
2 . Consider β̂p be the propensity estimator defined through

(7) with p̂(x) = G(λ̂
t
x) such that λ̂

p−→ λ. Assume that N1 to N3 and N5 to N9 hold and

that τ̂n
p−→ τ . Let Σp = A−1

p BpA
−1
p where the symmetric matrices Ap and Bp are defined in

(12) and (13), respectively. Then, we have that

a) Under H0 : c = 0k, i.e., under H0 : β = β0, Ŵp ,n
D−→ χ2

k.

b) Under H1,n : c 6= 0k, i.e., under H1,n : β = βn, if E
(
|H ′(xtβ0)| ‖x‖2

)
< ∞, Ŵp ,n

D−→
χ2
k(θp), where θp = ctΣ−1

p c.

From Theorems 3.3 and 3.4, to test the null hypothesis H0 : β = β0 at a given asymptotic
level α, the following consistent tests can be used

• Reject H0 if Ŵn > χ2
k,α

or

• Reject H0 if Ŵp ,n > χ2
k,α.

In regression, one of the most frequent hypothesis testing problems involves only a subset of

the regression parameter. Let β = (βt(1),β
t
(2))

t, β̂ = (β̂
t

(1), β̂
t

(2))
t and x = (xt(1),x

t
(2))

t, where

β(1) ∈ R
k1 with k1 < k. In order to test H0β(1)

: β(1) = β(1),0 , β(2) unspecified, one may use
the statistic

Ŵ1,n = n(β̂(1) − β(1),0)
t Σ̂

−1

11 (β̂(1) − β(1),0) , (14)

where Σ̂11 denotes the k1 × k1 submatrix of Σ̂, corresponding to the coordinates of β(1).

Theorem 3.5. Assume that (yi,x
t
i , δi) satisfy (1) and are such that yi|xi ∼ F (·, µi, τ) where

µi = H(xti βn), with βn = β0 + cn−
1
2 with c = (ct(1),0

t
k−k1

)t. Assume that N1 to N7 hold

and that τ̂n
p−→ τ . Denote by Σ11 the k1 × k1 submatrix of Σ = A−1BA−1, corresponding to

the coordinates of β(1) where the symmetric matrices A and B are defined in (10) and (11),
respectively. Then, we have that

10



a) Under H0β(1)
: c(1) = 0k1 , i.e., under H0 : β(1) = β(1),0, Ŵ1,n

D−→ χ2
k1
.

b) Under H1β(1),n : c(1) 6= 0k1 , i.e., under H1β(1),n : β = βn, if E
(
|H ′(xtβ0)| ‖x‖2

)
< ∞,

Ŵ1,n
D−→ χ2

k(θ), where θ = ct(1)Σ
−1
11 c(1).

An analogous result can be obtained for the propensity score test.

4 Influence functions of the test functionals

Influence functions are measures of robustness with respect to single outliers. The influence
functions allows us to study the local robustness and the asymptotic efficiency of the estimators,
providing a rationale for choosing appropriate weight functions and tuning parameters. It can
be thought as the first derivative of the functional version of the estimator. The influence
function of a functional T (F ) is defined as:

IF(z0, T, F ) = lim
ε→0

T (Fz0,ε)− T (F )

ε
, (15)

where Fz0,ε = (1 − ε)F + ε∆z0 and ∆z0 denotes the probability measure which puts mass 1 at
the point z0 = (y0,x

t
0 , δ0) and represents the contaminated model.

4.1 Influence function of the test functionals based on the simplified estima-

tors

For any distribution F1, let V(F1) be a Fisher–consistent scatter functional at F , i.e., such
that V(F ) = Σ. Denote by β(F1) and τ(F1) the functionals related to the estimators β̂ and τ̂ ,
respectively, and assume that β(F1), the solution of

S(1)(β(F1), τ(F1)) = EF1

(
Ψ
(
y,xtβ(F1), τ(F1)

)
w1(x)p(x)x

)

= EF1

(
δΨ
(
y,xtβ(F1), τ(F1)

)
w1(x)x

)
= 0k ,

is a Fisher–consistent functional at F , i.e., β(F ) = β. Define the functionals

A(F1) = EF1

(
δχ
(
y,xtβ(F1), τ(F1)

)
w1(x)xx

t
)

B(F1) = EF1

(
δΨ2

(
y,xtβ(F1), τ(F1)

)
w2
1(x)xx

t
)
.

The Wald–type test functional related to the statistic used to test H0 : β = β0 versus H1 : β 6=
β0 is given by

W(F1) = (β(F1)− β0)
tV(F1)

−1(β(F1)− β0) .

It is easy to see that, under H0, IF(x,W, F ) = 0. In order to obtain a non-null influence
function, we consider the square root of the test statistics (as in Hampel et al., 1986, p. 348),
T (F1) = W(F1)

1/2. As for the linear model, using that, under H0 W(F ) = 0, we have that

IF(x,T , F ) =
{
1

2

∂2

∂ε2
W(Fx,ε)

∣∣∣
ε=0

} 1
2

.

11



The following Theorem gives the value of the influence function of the test functional T (F ).

Theorem 4.1. Let V(F1) be a scatter functional such that V(F ) = Σ where Σ = A−1BA−1

with symmetric matrices A = A(F ) and B = B(F ) defined in (10) and (11). Assume that the

influence function IF (z0,β, F ) and that ∂2β(Fx,ε)/∂ε
2
∣∣∣
ε=0

exist. Then, the influence function

at F of the functional T (F1) to test H0 : β = β0 versus H1 : β 6= β0 is given by

IF(z0,T , F )2 = IF (z0,β, F )
tΣ−1IF(z0,β, F ) . (16)

Besides, under N3, N4 and N6, we have that IF (z0,β, F ) exists and if τ(F ) = τ , then

IF(z0,β, F ) = −Ψ
(
y0,x

t
0β, τ

)
w1(x0)δ0{EF

(
χ
(
y,xtβ, τ

)
w1(x)p(x)xx

t
)
}−1x0

= −Ψ
(
y0,x

t
0β, τ

)
w1(x0)δ0A

−1x0 . (17)

Replacing (17) in (16), it is easy to see that the influence function equals IF(z0,T , F )2 =
Ψ2
(
y0,x

t
0 β(F ), τ(F )

)
w2
1(x0)δ0 x

t
0B

−1x0.

Remark 4.1. It is worth noticing that the influence function depends on the indicator of the
missingness response δ0 and so, it will be 0 if no responses arise. A more reliable function to
measure the sensitivity to outliers of a given functional T (F1) under a missing scheme may
be to consider the expected influence function given an observed data z∗0 = (y0,x

t
0 )

t, denoted
EIF(z∗0, T, F ), i.e., EIF(z

∗
0, T, F ) = E(IF(z0, T, F )|(y0,x0)). For the functionals under study, we

have that

EIF(z∗0,β, F ) = −Ψ
(
y0,x

t
0 β, τ

)
w1(x0)p(x0)A

−1x0

EIF(z∗0,T , F )2 = Ψ2
(
y0,x

t
0β(F ), τ(F )

)
w2
1(x0)p

2(x0) x
t
0B

−1x0 .

When considering a test, a different measure may be to consider the expected squared influence
function EIF2(z

∗
0,T , F ) = E(IF(z0,T , F )2|(y0,x0)). In our case, we obtain

EIF2(z
∗
0,T , F ) = Ψ2

(
y0,x

t
0β(F ), τ(F )

)
w2
1(x0)p(x0) x

t
0B

−1x0 .

Note that EIF(z∗0,T , F ) = EIF2(z
∗
0,T , F )p(x) and so, the difference between both measures is

the importance given to the missingness probability.

4.2 Influence function of the test functionals based on the propensity score

estimators

Let us assume a parametric model for the probability of missing, i.e., p(x) = G(xtλ). As in the
previous section, denote by βp(F1), τp(F1) and λ(F1) the functionals related to the estimators

β̂p, τ̂p and λ̂, respectively, where β̂p is solution of S
(1)
p,n(b, τ̂p, λ̂) = 0k for

S
(1)
p,n(b, τ̂p, λ̂) =

1

n

n∑

i=1

δi
p̂(xi)

Ψ
(
yi,x

t
i b, τ̂p

)
w1(xi)xi ,

12



with p̂(x) = G(xtλ̂) the propensity score estimate and λ̂ is a consistent estimator of λ. Assume
that βp(F1) is a Fisher–consistent functional at F , i.e., βp(F ) = β. Note that βp(F1) is the

solution of S
(1)
p (b, τp(F1),λ(F1)) = 0k with

S
(1)
p (b, τ,λ(F1)) = EF1

(
δΨ
(
y,xtb, τ

)
w∗
1(x, F1)x

)
,

and w∗
1(x, F1) = w(x)/G(xtλ(F1)). Define the following functionals for any distribution F1

Ap(F1) = EF

(
δχ
(
y,xtβp(F1), τp(F1)

)
w∗
1(x, F1)xx

t
)

Bp(F1) = EF

(
δΨ2

(
y,xtβp(F ), τp(F1)

)
w∗2
1 (x, F1)xx

t
)
.

Note that, since βp(F ) = β, τp(F ) = τ and λ(F ) = λ, we have that Ap(F ) = Ap and
Bp(F ) = Bp where Ap and Bp are defined in (12) and (13), respectively.

The Wald–type test functional related to the statistic based in the estimator β̂p, used to test
H0 : β = β0 versus H1 : β 6= β0, is given by Wp(F1) = (βp(F1)− β0)

tVp(F1)
−1(βp(F1)− β0).

The following Theorem gives the value of the influence function of the test functional
Tp(F1) = Wp(F1)

1/2.

Theorem 4.2. Let Vp(F1) be a scatter functional such that Vp(F ) = Σp, where Σp =
A−1

p BpA
−1
p for Ap = Ap(F ) and Bp = Bp(F ) defined in (12) and (13), respectively. Assume

that the influence function IF (z0,βp, F ) and the ∂2βp(Fz0,ε)/∂ε
2
∣∣∣
ε=0

exist. Then, the influence

function at F1 of the functional Tp(F ) to test H0 : β = β0 versus H1 : β 6= β0 is given by

IF(z0,Tp, F )2 = IF (z0,βp, F )
tΣ−1

p IF(z0,βp, F ) . (18)

Moreover, under N3, N6 and N8, we have that IF (z0,βp, F ) exists and

IF(z0,βp, F ) = −{EF

(
χ
(
y,xtβ, τ

)
w1(x)xx

t
)
}−1Ψ

(
y0,x

t
0 β, τ

)
w∗
1(x0, F )δ0x0

= −Ψ
(
y0,x

t
0 β, τ

)
w1(x0)

δ0
p(x0)

A−1
p x0 . (19)

Besides, we have that

EIF(z∗0,βp, F ) = −Ψ
(
y0,x

t
0 β, τ

)
w1(x0)A

−1
p x0

EIF(z∗0,Tp, F )2 = Ψ2
(
y0,x

t
0 β, τ

)
w2
1(x0)x

t
0B

−1
p x0

EIF2(z
∗
0,Tp, F ) = Ψ2

(
y0,x

t
0 β, τ

)
w2
1(x0)x

t
0B

−1
p x0/p(x0) .

It is worth noticing that except for the matrix Bp, the expected square influence of the
propensity test, EIF2(z

∗
0,Tp, F ) is that of the Wald–type test corresponding to the complete

case. This is quite natural since βp(F1) = βc(F1) where βc(F1) is the weighted estimator when
the sample contains no missing responses.
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4.3 Expected influence functions for the Gamma model

Consider the generalized linear model where the distribution of the response y given the vector
of covariates x is Γ(τ, µ(x)) and the link function is log(µ(x)) = xtβ, where, for any τ > 0
and µ > 0, we denote by Γ(τ, µ) the parametrization of the Gamma distribution given by the
density

f(y, τ, µ) =





τ τ

µτ Γ(τ)
yτ−1 exp(−(τ/µ)y) if y ≥ 0

0 if y < 0
.

Note that, if z ∼ Γ(τ, µ), we have that E(z) = µ and Var(z) = µ2/τ , where τ is a shape
parameter.

Figures 1 to 5 show the squared expected influence functions (EIF2) and the expected square
influence functions (EIF2) at y = exp(1) corresponding to the maximum likelihood estimators,
the estimators related to those introduced in Bianco et al. (2005) based on the deviance, i.e.,
with w1 ≡ 1, and the weighted estimators computed with the Tukey bisquare weight function,
denoted as β̂ml, β̂bgy and β̂tuk, respectively. The weights were computed over the Mahalanobis
distances with tuning constant c = χ2

k,0.95. The gamma regression model considered was

yi|xi ∼ Γ(τ, µ(xi)) with µ(xi) = β1x1i + β2x2i + β3, i = 1, ..., n, (20)

with τ = 3, β1 = β2 = β3 = 0 and (x1i, x2i) ∼ N(0, I). Figure 1 corresponds to the test
functionals related to the simplified estimators with p(x) = 1, while Figure 2 and Figure 3 to the
test functionals related to the simplified and propensity estimators with missing probabilities
satisfying the logistic model p(x) = 1/(1 + exp(−λtx − 2)) with λ = (2, 2)t and p(x) =
0.4 + 0.5(cos(λtx+0.4))2 with λ = (2, 2)t, respectively. To plot the influence functions a grid
of values for each component xj, j = 1, 2, was taken between -4 and 4 with step 0.1.

A reduced range was also considered to compare the behaviour near the origin by using
grid of points between -1 and 1 with step 0.025. Besides, when plotting EIF2 for the classical
propensity test and that based on the Bianco et al. (2005) propensity estimators a larger range
of values (between -10 and 4 with step 0.25) was considered, in order to have a better idea of the
EIF shape. As expected, the shape of both the EIF2 and EIF2 of the test functionals based on
the Bianco et al. (2005) estimators and on their weighted versions is comparable to that of their
classical relatives at the center of the distribution of the covariates. Note that EIF2 and EIF2

are unbounded due to leverage points for the classical test and also for that based on the Bianco
et al. (2005) estimators. This feature make us suspect that even when the latter are based on
a robust procedure to estimate the regression parameter, the test statistic may be sensitive to
outliers. On the other hand, when using a weight function to downweight carriers with large
Mahalanobis distances, the expected influence at points further away is downweighted.

It is worth noticing that the logistic model chosen corresponds to a missing probability that
does not fulfil infx p(x) = A > 0 and so, a worst performance of the propensity estimators
when w1 ≡ 1 may be expected. Effectively, the EIF2 for both the classical procedure and
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that based on the Bianco et al. (2005) propensity estimators attain very large values in this
case for large negative values of the covariates. As noted above, the shape of the EIF2 of
all procedures is comparable at the center of the distribution of the covariates with that of
the classical test (see Figure 4). A different pattern to that described above is observed in
this situation due to the effect of the missing probability. The EIF2 of the test related to the
simplified estimators are downweighted for large negative values of the carriers for the logistic
model. Thus, only leverage points with at least one large positive component will lead to large
values of the influence function for the test based on the simplified classical estimators and also
for that based on the simplified version of the Bianco et al. (2005) estimators. On the other
hand, as above, when using the weighted estimators, the influence at points further away is
downweighted.

When considering p(x) = 0.4+0.5(cos(λtx+0.4))2, the defined influence measures of both
the classical tests and those based on the Bianco et al. (2005) estimators are unbounded, while
for the weighted version, observations with large Mahalanobis distances have null expected
influence.

As mentioned above, the EIF2 of the propensity estimators for both missing probabilities
is similar to that obtained when p ≡ 1. The difference in the shape is only due to the effect of
the missingness probability on the matrix Bp.

5 Monte Carlo Study

As in Section 4.3, the observations follow the log–gamma regression model (20), with β1 = β2 =
β3 = 0 and (x1i, x2i) ∼ N(0, I). We now consider two different values for the shape parameter:
τ = 1 and τ = 3. The sample size was n = 100 and the number of Monte Carlo replications
was K = 1000.

We study the behaviour of the test statistic for samples that do not contain outliers and
samples contaminated with 5% outliers. In the contaminated samples, the outliers are all
equal, say (y0,x

t
0 ). Since the magnitude of the effect of these outliers depends on x10 and

x20 only throughout x210 + x220, without loss of generality they were taken of the form (y0,x
t
0 )

with xt0 = (x0, 0, 1) and y0 = exp(m x0). The value m represents the slope of the outliers
observations. We chose two values of x0 : low leverage outliers with x0 = 1, moderate leverage
outliers with x0 = 3 and high leverage outliers with x0 = 10. As values for m we considered
m = 0.5 and 2.5. These contaminations are denoted Cm,x0 . We have also considered an
intermediate contamination C1 by replacing 5 observations by (y0,x

?
0) where x

?
0 = (2.5, 2.6, 1)t

and y0 = exp(1).
The robust estimators were computed as described in Remark 2.1.1. For the weighted

estimators, we used the Tukey’s bisquare weight function with tuning constant c = χ2
k,0.95.

The weights were computed over the robust Mahalanobis distances based on an S−estimator
with breakdown point 0.25 using 500 subsamples. From now on, we denote by Wml, Wbgy,
Wtuk, the tests based on the maximum likelihood estimators, the estimators related to those
defined in Bianco et al. (2005), i.e., with w1 ≡ 1, and their weighted version with Tukey’s
weights, respectively. The propensity score tests will be denoted as Wp,ml, Wp,bgy, Wp,tuk,
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respectively. The nominal level was set equal to 0.05.
We considered four models for the missing probability

• p ≡ 1

• p ≡ 0.8, missing completely at random

• p(x) = 0.4 + 0.5(cos(λtx+ 0.4))2 with λ = (2, 2)t.

• p(x) = 1/(1 + exp(−λtx − 2)) with λ = (2, 2)t, i.e., a logistic model for the missing
probability.

In order to study the convergence speed to the χ2 distribution, Table 1 reports the observed fre-
quencies of rejection in the non–contaminated case C0, for different sample sizes n = 50, 100, 250
and 500. It is worth noticing that, as mentioned in Section 4.3, in the logistic case, N8 does
not hold and so, the propensity score tests perform worst than the test based on the simplified
estimators. In all cases the convergence is quite slow and so, a bootstrap approach may be
considered. However, providing bootstrap tests in this setting is beyond the scope of the paper.
On the other hand, due to the strong asymmetry of the exponential distribution, the observed
frequencies of rejection are further away to the nominal level than when τ = 3.

Figures 6 to 17 allow to study the power performance of the tests when n = 100. Therein,
we have plotted the observed frequencies of rejection under the null hypothesis H0 : β = 03
and the alternatives β = β0 + ∆n−1/2(1, 0, 0)t with ∆ = ±6, ±4.8, ±3.6, ±2.4, ±1.2, ±0.8,
±0.4 and ±0.2. The lines in black, green and red correspond, respectively, to the test based
on the classical estimators, βml or βp,ml, to the robust estimators βbgy or βp,bgy and to their
weighted version βtuk and βp,tuk.

As expected, under C0 the test procedures based on classical or robust estimators perform
quite similarly, under all the missing schemes. As noted in Section 4.3, the simplified methods
perform better than the propensity ones when considering a logistic missing probability. For
large values of m and/or x0, the classical procedure is non–informative. On the other hand,
the tests Wbgy and Wp,bgy show their sensitivity to moderate outliers (m = 0.5 and x0 = 3)
for all the missigness models and also to extreme outliers (x0 = 10), when considering a logistic
missingness model, probably due to the effect of high leverage points on the estimation of the
asymptotic covariance matrix. Their weighted versions are more stable with respect to all the
contaminations considered.

6 Example: Leukemia data

The data of Feigl and Zelen (1965) represent the survivorship of 33 patients of acute myeloge-
nous leukemia divided in two groups, that correspond to a factor variable AG which classifies
the patients as positive or negative depending on the presence or absence of a morphological
characteristic in the white cells. The original data are time at death and also the white blood
cells count WBC, which is a useful tool for diagnosing the initial condition of the patient,
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Wn Wp,n

n 50 100 250 500 50 100 250 500

p ≡ 1

τ = 1 Wml 0.160 0.092 0.079 0.065
Wbgy 0.163 0.107 0.069 0.044

Wtuk,c=χ2
2,0.95

0.136 0.105 0.060 0.053

Wtuk,c=χ2

2,0.975

0.135 0.102 0.061 0.051

τ = 3 Wml 0.114 0.097 0.062 0.051
Wbgy 0.136 0.101 0.066 0.061

Wtuk,c=χ2
2,0.95

0.121 0.084 0.055 0.057

Wtuk,c=χ2

2,0.975

0.116 0.085 0.056 0.056

p ≡ 0.8

τ = 1 Wml 0.186 0.122 0.080 0.070
Wbgy 0.207 0.118 0.081 0.064

Wtuk,c=χ2

2,0.95

0.171 0.107 0.073 0.075

Wtuk,c=χ2
2,0.975

0.168 0.105 0.070 0.070

τ = 3 Wml 0.159 0.090 0.065 0.051
Wbgy 0.195 0.108 0.072 0.059

Wtuk,c=χ2

2,0.95

0.167 0.087 0.067 0.067

Wtuk,c=χ2
2,0.975

0.170 0.082 0.068 0.063

p(x) = 0.4 + 0.5(cos(λtx+ 0.4))2

τ = 1 Wml 0.197 0.124 0.087 0.060 0.230 0.123 0.084 0.054
Wbgy 0.279 0.135 0.080 0.059 0.294 0.133 0.085 0.061

Wtuk,c=χ2

2,0.95

0.213 0.114 0.084 0.053 0.242 0.117 0.08 0.052

Wtuk,c=χ2
2,0.975

0.212 0.106 0.085 0.054 0.234 0.112 0.081 0.054

τ = 3 Wml 0.174 0.114 0.081 0.061 0.189 0.120 0.080 0.061
Wbgy 0.253 0.142 0.074 0.063 0.260 0.135 0.071 0.063

Wtuk,c=χ2
2,0.95

0.207 0.110 0.063 0.049 0.218 0.112 0.067 0.059

Wtuk,c=χ2
2,0.975

0.205 0.115 0.062 0.050 0.220 0.112 0.062 0.056

p(x) = 1/(1 + exp(−λtx− 2))

τ = 1 Wml 0.191 0.116 0.088 0.082 0.294 0.203 0.169 0.145
Wbgy 0.264 0.106 0.088 0.060 0.377 0.223 0.191 0.163

Wtuk,c=χ2
2,0.95

0.224 0.098 0.086 0.071 0.331 0.167 0.133 0.087

Wtuk,c=χ2

2,0.975

0.212 0.105 0.088 0.067 0.334 0.179 0.137 0.101

τ = 3 Wml 0.163 0.111 0.068 0.047 0.246 0.201 0.145 0.107
Wbgy 0.233 0.121 0.053 0.051 0.329 0.224 0.178 0.135

Wtuk,c=χ2
2,0.95

0.192 0.108 0.062 0.046 0.282 0.160 0.091 0.068

Wtuk,c=χ2

2,0.975

0.194 0.101 0.062 0.046 0.297 0.166 0.113 0.072

Table 1: Observed frequencies of rejection in the non–contaminated case C0 with p ≡ 1, p ≡ 0.8, p(x) =

0.4 + 0.5(cos(λtx+ 0.4))2 and p(x) = 1/(1 + exp(−λtx− 2)) with λ = (2, 2)t.

indeed higher counts seem to be associated with more severe conditions. Bianco et al. (2005)
fit, to the complete data set, the model

log(yi) = β1WBCi + β2AGi + β3 + ui,
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where ui has log Γ(τ0, 1) distribution through their bgy–estimator. The QQ-plot of the residuals
of the bgy-estimate computed by Bianco et al. (2005) reveals four clear outliers corresponding
to patients with very high values of WBC who survived more than expected.

Denote by β̂ml, β̂bgy and β̂tuk the ml–estimates and the two robust estimates bgy and

tuk–estimates computed with all the data, respectively. Besides, β̂
−{4out}
ml stands for the

ml-estimator applied to the sample without the four outliers. In this case, since AG is a
factor variable, when computing the weighted estimators with the Tukey’s bisquare function,
β̂tuk, the weights w1(x) were based only on the variable WBC and the tuning constant was
chosen as c = χ2

1,0.95. The robust Mahalanobis distance of WBC equals in this case |WBCi −
mediani(WBCi)|/mad(WBCi).

Table 2 reports the values of the above mentioned estimates together with the p−values of
the related Wald–type statistics to check H0 : β1 = 0 versus H1 : β1 6= 0. It is worth noticing
that according to the results given by β̂ml, the coefficient of the variableWBC is non-significant
at a 5% level. On the other hand, the ml-estimator applied to the sample without the four
outliers and the robust estimators lead to the opposite conclusion.

To evaluate the performance of the proposed tests for incomplete data sets, we introduced
artificially missing data to this example and we took the above analysis as a natural counterpart.
Missing responses among the non–outlying points were introduced at random according to two
missing schemes, a completely at random situation with p(x) = 0.9 and a missing at random case
with logistic probability of missing p(x) = 1/(1+exp(0.2WBC−4)). In this way, for the logistic
case, 8 responses (almost 25% of the data) result in missing observations. The analysis was
repeated for each of the obtained samples. In Table 3 we summarize the corresponding results.
Different conclusions are derived depending on the missing scheme. As expected, when missing
responses occur completely at random, analogous results to those obtained with the complete
data set are obtained. In this sense, when p(x) = 0.9, according to the computed robust tests
the variable WBC is significant, while from the ml-estimator we conclude otherwise. On the
other hand, for the incomplete sample obtained through a logistic missingness probability, the
estimators β̂ml and β̂bgy take similar values. Moreover, according to the robust test statistic

Ŵtuk, based on Tukey’s weights, the variable WBC is significant, while both the classical test
and Ŵbgy lead to the opposite conclusion. Besides, if the 4 identified outlying observations
were removed from this incomplete sample, the three tests would lead to the same conclusion
obtained for the situation with no missing responses, indeed the p–value of the classical test
and both robust tests would be 0. These results show the advantage of introducing weights as
a useful tool to prevent from outlying points even under different missing schemes.

7 Concluding Remarks

We have introduced two resistant procedures to test hypotheses on the regression parameter
under a generalized regression model, when there are missing observations in the responses
and it can be suspected that anomalous observations are present in the sample. The estimators
turn out to be asymptotically normally distributed. In particular, the asymptotic distribution of
the robust estimators based on a propensity score approach is the same when the missingness
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Estimated Coefficients H0 : β1 = 0 p−value

β̂ml β̂
−{4out}

ml β̂bgy β̂tuk Ŵml Ŵ
−{4out}

ml Ŵbgy Ŵtuk
WBC
1000

-0.007 -0.051 -0.051 -0.089 0.102 0 0 0
AG -1.101 -1.574 -1.802 -1.510

Intercept 4.227 4.795 4.849 5.101

Table 2: Analysis of Feigl and Zelen data. Complete data set.

Estimated Coefficients H0 : β1 = 0 p−value

β̂ml β̂bgy β̂tuk Ŵml Ŵbgy Ŵtuk

p(x) = 0.9
WBC
1000

-0.008 -0.050 -0.084 0.071 0 0
AG -0.974 -1.469 -1.364

Intercept 4.333 4.841 5.055

p(x) = 1/(1 + exp(0.2WBC − 4)
WBC
1000

-0.0012 -0.0004 -0.1210 0.743 0.912 0
AG -1.3718 -1.4371 -1.4315

Intercept 4.4432 4.5055 5.2617

Table 3: Analysis of Feigl and Zelen data with two missingness probabilities.

probability is assumed to be known or when it is estimated parametrically using consistent
estimators. Moreover, if the test statistic involves a bounded support function w1, it allows to
control the effect of high leverage points and also that of continuous missing probabilities such
that p(x) > 0 for any x, but infx p(x) = 0.

The test statistics are robust versions of the classical Wald–type statistic. Even when the
tests statistics have a limiting χ2−distribution under the null hypothesis and under contiguous
alternatives, the simulation study illustrates the slow convergence to the asymptotic distribu-
tion. Bootstrapping techniques could be implemented in order to improve the convergence
rate, but this task deserves further research that will be the subject of a forthcoming work. A
measure of sensitivity based on the influence function and adapted to the missing situation was
also defined.

The simulation study also confirms the expected inadequate behaviour of the classical Wald–
type test and of the unweighted robust estimators in the presence of outliers. The proposed
robust procedures for the regression parameter perform quite similarly both in level and power,
under the central model or under the contaminations studied.

Finally, through a real data set, we confirm the stability, under different missingness prob-
ability patterns, of the decision rule induced by Ŵtuk, which is based on weights that control
high leverage points.
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8 Appendix

Proof of Theorem 3.1. a) Using a Taylor’s expansion of order one, we get that

0k =
1

n

n∑

i=1

δiΨ
(
yi,x

t
i β̂, τ̂

)
w1(xi)xi

=
1

n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ̂

)
w1(xi)xi +

1

n

n∑

i=1

δiχ
(
yi,x

t
i β̃, τ̂

)
w1(xi)xix

t
i (β̂ − β0) ,

and so, we have that

√
n(β̂ − β0) = −A−1

n

1√
n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ̂

)
w1(xi)xi .

Note that Lemma 3.1 entails that

An =
1

n

n∑

i=1

δiχ
(
yi,x

t
i β̃, τ̂

)
w1(xi)xix

t
i

p−→ A

Using that τ̂
p−→ τ , N5 and the maximal inequality, we get that

1√
n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ̂

)
w1(xi)xi −

1√
n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ0

)
w1(xi)xi

p−→ 0 .

Hence, 1√
n

∑n
i=1 δiΨ

(
yi,x

t
i β0, τ̂

)
w1(xi)xi

D−→ N(0k,B) entailing that

√
n(β̂ − β0) = −A−1 1√

n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ

)
w1(xi)xi + op(1) (21)

and so,
√
n(β̂ − β0)

D−→ N(0k,Σ).

b) Let Tn stand for
√
n(β̂ − β0) or B̂−1/2Â

√
n(β̂ − β0). We will use Le Cam’s third Lemma

(see van der Vaart, 2000, page 90). Therefore, we need to obtain the asymptotic distribu-
tion of (Tn, ln(qn(y,X, δ)/pn(y,X, δ))), where pn(y,X, δ) is the joint density under the null
hypothesis and qn(y,X, δ) is the corresponding one under the alternative, y = (y1, . . . , yn)

t,
X = (x1, . . . ,xn) and δ = (δ1, . . . , δn).
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Let θn(xi) = xti β0 + xti cn
−1/2 = θ(xi) + xti cn

−1/2, using (1) we get that

qn(y,X, δ)

pn(y,X, δ)
=

n∏

i=1

exp
{[
yiθ(xi) + yix

t
i cn

−1/2 −B
(
θ(xi) + xti cn

−1/2
)]
/A(τ) +C(yi, τ)

}

exp {[yiθ(xi)−B(θ(xi))] /A(τ) + C(yi, τ)}

=

n∏

i=1

exp
{
yix

t
i cn

−1/2/A(τ) +
[
B(θ(xi))−B

(
θ(xi) + xti cn

−1/2
)]
/A(τ)

}
.

Then, if ξi = ξi,n denotes an intermediate point between θ(xi) and θ(xi) + xti cn
−1/2, we have

ln
qn(y,X, δ)

pn(y,X, δ)
=

1

A(τ)

1√
n

n∑

i=1

(
yix

t
i c−B′(θ(xi))x

t
i c
)
− 1

A(τ)

1

2n

n∑

i=1

B′′(θ(xi))(x
t
i c)

2

− 1

A(τ)

1

2n

n∑

i=1

[B′′(ξi)−B′′(θ(xi))](x
t
i c)

2 .

Since B′(θ(xi)) = H(xti β0), we have that

A(τ) ln
qn(y,X, δ)

pn(y,X, δ)
=

1√
n

n∑

i=1

[yi −H(xti β0)]x
t
i c−

1
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t
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2

− 1
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2 . (22)

Let σ2 = ctE(H ′(xti β0))xix
t
i )c/A(τ). Then, (22) entails that

A(τ) ln
qn(y,X, δ)

pn(y,X, δ)
=

1√
n
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i=1

[yi −H(xti β0)]x
t
i c−

1

2n
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i=1

H ′(xti β0)(x
t
i c)

2 + op(1) ,

implying that ln (qn(y,X, δ)/pn(y,X, δ))
D−→ N(−σ2/2, σ2).

On the other hand, in the proof of a), see (21), we obtained that
√
n(β̂−β0) = −A−1 Cn+

op(1), where A is defined in (10) and

Cn =
1√
n

n∑

i=1

δiΨ
(
yi,x

t
i β0, τ

)
w1(xi)xi .

Moreover, Lemma 3.1 entails that Â
p−→ A and B̂

p−→ B, thus, using that Cn is asymptotically
normally distributed, we get that B̂−1/2Â

√
n(β̂ − β0) = −B−1/2 Cn + op(1). Hence, to derive

the joint asymptotic distribution of (Tn, ln(qn(y,X, δ)/pn(y,X, δ)))
t, it is enough to compute

the covariance between Cn and

R1 =
1

A(τ)

1√
n

n∑

i=1

[yi −H(xti β0)]x
t
i c .
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Using that EF (yi −H(xti β0)) = 0, we get that

Cov(Cn, R1) =
1

A(τ)
Cov(δiΨ

(
yi,x

t
i β0, τ

)
w1(xi)xi, [yi −H(xti β0)]x
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=
1
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EF [(yi −H(xti β0))Ψ

(
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t
i β0, τ

)
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t
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It is easy to see that N5 entails that

1

A(τ)
EF [(y1 −H(xt1 β0))Ψ

(
y1,x

t
1β0, τ

)
|x1] = −EF [χ

(
y1,x

t
1 β0, τ

)
|x1] ,

and so, Cov(Cn, R1) = −A c, which implies that

(
√
n(β̂ − β0)

t, ln(qn(y,X, δ)/pn(y,X, δ)))
t D−→ N

((
0k

−1
2σ

2

)
,

(
Σ −c

−c σ2

))

and so,
√
n(β̂ − β0)

D−→ N (−c,Σ) under H1,n, concluding the proof.

Proof of Theorem 4.1. We need to compute ∂2W(Fz0,ε)/∂ε
2
∣∣∣
ε=0

. Since under H0 β(F ) =

β0, we get

∂2

∂ε2
W(Fz0,ε)

∣∣∣
ε=0

= 2

(
∂

∂ε
(β(Fz0,ε)− β0)

)t
V−1(Fz0,ε)(

∂

∂ε
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∣∣∣
ε=0

and so,
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To obtain the influence function of β(F ), note that
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Therefore, differentiating (24) with respect to ε and evaluating at ε = 0, we obtain that
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Using the condition N6 and the fact that

EF

(
δΨ
(
y,xtβ(F ), τ(F )

)
w1(x)x

)
= EF

(
Ψ
(
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)
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,

we conclude the proof.

Proof Theorem 4.2. Following the same steps as in the proof of Theorem 4.1, we need to
compute influence function of βp(F ). From
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we have that
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Differentiating (25) with respect to ε and evaluating at ε = 0, we obtain

0k = EF
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and the proof follows from N6.
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Figure 2: Square of the expected influence functions of the Wald–type statistics, EIF2, under the Gamma

model (20) when p(x) = 1/(1 + exp(−λtx − 2)) with λ = (2, 2)t for the test functionals. The upper figures

correspond to the simplified estimators and the lower ones to the propensity estimators.
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Figure 3: Square of the expected influence functions of the Wald–type statistics, EIF2, under the Gamma

model (20) when p(x) = 0.4 + 0.5(cos(λtx+ 0.4))2 with λ = (2, 2)t for the test functionals. The upper figures

correspond to the simplified estimators and the lower ones to the propensity estimators.
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Figure 4: Expected squared influence function of the Wald–type statistics, EIF2, under the Gamma model (20)

when p(x) = 1/(1 + exp(−λtx − 2)) with λ = (2, 2)t for the test functionals. The upper figures correspond

to the simplified estimators, the middle ones to the propensity estimators and the lower ones to the propensity

estimators in a reduced range of values.
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Figure 5: Expected squared influence function of the Wald–type statistics, EIF2, under the Gamma model (20)

when p(x) = 0.4 + 0.5(cos(λtx+ 0.4))2 with λ = (2, 2)t for the test functionals. The upper figures correspond

to the simplified estimators and the lower ones to the propensity estimators.
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Figure 6: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 1. Simplified estimators. The lines

in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators βbgy and their weighted version

βtuk.
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Figure 7: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 0.8. Simplified estimators. The lines

in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators βbgy and their weighted version

βtuk.

29



C0 C1

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆

C0.5,1 C0.5,3 C0.5,10

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆  

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆

C2.5,1 C2.5,3 C2.5,10

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

Figure 8: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 1/(1+ exp(−λtx− 2)) with λ = (2, 2)t.

Simplified estimators. The lines in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators

βbgy and their weighted version βtuk.
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Figure 9: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 1/(1+ exp(−λtx− 2)) with λ = (2, 2)t.

Propensity estimators. The lines in black, green and red correspond to the test based on the classical estimators, βp,ml, the robust estimators

βp,bgy and their weighted version βp,tuk.
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Figure 10: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 0.4 + 0.5(cos(λtx + 0.4))2 with

λ = (2, 2)t. Simplified estimators. The lines in black, green and red correspond to the test based on the classical estimators, βml, the robust

estimators βbgy and their weighted version βtuk.

32



C0 C1

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆

C0.5,1 C0.5,3 C0.5,10

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
∆

π

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆

C2.5,1 C2.5,3 C2.5,10

 

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆  

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆  

0.
0

0.
5

1.
0

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

π

∆

Figure 11: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 0.4 + 0.5(cos(λtx + 0.4))2 with

λ = (2, 2)t. Propensity estimators. The lines in black, green and red correspond to the test based on the classical estimators, βp,ml, the robust

estimators βp,bgy and their weighted version βp,tuk.
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Figure 12: Observed frequencies of rejection under the Gamma model when τ = 3, c = χ2
p,0.95, p(x) = 1. Simplified estimators. The lines

in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators βbgy and their weighted version

βtuk.
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Figure 13: Observed frequencies of rejection under the Gamma model when τ = 3, c = χ2
p,0.95, p(x) = 0.8. Simplified estimators. The lines

in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators βbgy and their weighted version

βtuk.
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Figure 14: Observed frequencies of rejection under the Gamma model when τ = 3, c = χ2
p,0.95, p(x) = 1/(1+exp(−λtx−2)) with λ = (2, 2)t.

Simplified estimators. The lines in black, green and red correspond to the test based on the classical estimators, βml, the robust estimators

βbgy and their weighted version βtuk.
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Figure 15: Observed frequencies of rejection under the Gamma model when τ = 1, c = χ2
p,0.95, p(x) = 1/(1+exp(−λtx−2)) with λ = (2, 2)t.

Propensity estimators. The lines in black, green and red correspond to the test based on the classical estimators, βp,ml, the robust estimators

βp,bgy and their weighted version βp,tuk.
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Figure 16: Observed frequencies of rejection under the Gamma model when τ = 3, c = χ2
p,0.95, p(x) = 0.4 + 0.5(cos(λtx + 0.4))2 with

λ = (2, 2)t. Simplified estimators. The lines in black, green and red correspond to the test based on the classical estimators, βml, the robust

estimators βbgy and their weighted version βtuk.
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Figure 17: Observed frequencies of rejection under the Gamma model when τ = 3, c = χ2
p,0.95, p(x) = 0.4 + 0.5(cos(λtx + 0.4))2 with

λ = (2, 2)t. Propensity estimators. The lines in black, green and red correspond to the test based on the classical estimators, βp,ml, the robust

estimators βp,bgy and their weighted version βp,tuk.
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