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Abstract

In this paper we present two robust estimates for GARCH(p,q)
models. The first is defined by the minimization of a conveniently
modified likelihood and the second is similarly defined, but includes
an additional mechanism for restricting the propagation of the effect
of one outlier on the next estimated conditional variances. We study
the asymptotic properties of our estimates proving consistency and as-
ymptotic normality . A Monte Carlo study shows that the quasi max-
imum likelihood estimate practically collapses when there is a small
percentage of outlier contamination, while the proposed robust esti-
mates perform much better. This Monte Carlo study also includes
two other robust estimates : a maximum likelihood estimate based on
a Student distribution and the least absolute deviation estimate pro-
posed by Peng and Yao. Moreover, we consider several real examples
with financial data that illustrate the behavior of these estimates.
Classification code: C22
Keywords: GARCH models, robust estimation, M-estimates, out-
liers.

1 Introduction

In a seminar paper, Engle (1982) introduced the autoregressive conditional
heteroskedastic (ARCH) models. ARCHmodels were the first of a large fam-
ily of heteroskedastic time series models such as, for example, the GARCH
introduced in Bollerslev (1986), ARCH-M models by Engle, Lilien and
Robins (1987) and EGARCH in Nelson (1991).

These models are usually estimated by maximum likelihood assuming
that the distribution of one observation conditionally to the past is normal.
If the data satisfy the assumption of conditional normality, this procedure
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is asymptotically efficient. Moreover, even when the conditional distribu-
tion of the observations is not normal, these procedures give consistent and
asymptotically normal estimates under certain moment conditions. The as-
ymptotic properties of this estimate, known as quasi-maximum likelihood
(QML) estimate, were studied by Lee and Hansen (1994) and Lumsdaine
(1996) for the GARCH(1, 1) model. Elie and Jeantheau (1995) established
strong consistency of the QML-estimate in the GARCH (1, 1) model and
Boussama (2000) proved the asymptotic normality of the same estimate.
For the general GARCH(p, q) model, asymptotic properties of this estimator
were studied for instance by Berkes, Hováth and Kokoszka (2003), Strau-
mann and Mikosch (2003) and Christian and Zaköian (2004). These results
show that if the innovation has four moments, then the QML—estimate is
consistent and has asymptotically normal distribution. Hall and Yao (2003)
show that if the fourth moment of the innovation is infinity, then the as-
ymptotic distribution of the QML-estimate may not be normal.

These estimates based on a normal likelihood are very sensitive to the
presence of a few outliers in the sample. In fact, a single huge outlier may
have a very large effect on the QML-estimate. Estimates that are not much
influenced by a small fraction of outliers are called robust estimates.

Several types of outliers have been studied for time series such as additive
outliers and innovation outliers. Outliers may be isolated or occur in patches.
In our simulated studies we consider only isolated additive outliers. These
outliers can be modeled as follows. Suppose that the GARCH(p, q) series is
given by xt. Then, the observed series corresponding to the isolated additive
outliers is

xt + vtut,

where xt, vt and ut are independent processes. Here vt, and ut are sequences
of
independent and identically distributed (i.i.d.) random variables and the
variable ut takes values 0 and 1. The event ut = 1 indicates that an outlier
occurs at time t, and therefore xt + vt is observed instead of xt. Usually
θ = P (ut = 1) is small, so that most of the time the GARCH series xt is
observed. Mendes (2000) studied the asymptotic bias produced by additive
outliers on the QML-estimate.

Several authors have proposed robust estimates for ARCHmodels. Sakata
and White (1998) proposed estimates based on an M-scale, Mendes and
Duarte (1999) defined a class of constrained M-estimates and Muler and
Yohai (2002) introduced a class of estimates based on a τ−scale estimate
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combined with robust filtering. Jiang, Zhao and Hui (2001) proposed L1
estimates of modified ARCH models. Franses and van Dijk ( 2000) and
Carnero, Peña and Ruiz (2001) used diagnostic procedure for detecting out-
liers in GARCH models. Rieder, Ruckdeschel and Kohl (2002) introduced a
class of robust estimates for a general class of models that includes GARCH,
based on the minimization of the mean square error on infinitesimal neigh-
borhoods of contamination. Robust tests for ARCH heteroskedasticity were
proposed by van Dijk, Lucas and Franses (1999) and Ronchetti and Trojani
(2001).

Li and Kao (2002) proposed a bounded influence estimate for a log
GARCH (1,1) model introduced by Geweke (1986). Park (2002) consid-
ered a modified GARCH model where the conditional standard deviation
(instead of the variances as in GARCH) is modelled as a linear combination
of the preceding standard deviations of the absolute values of the preceding
observations. The proposed estimator is based on a least absolute deviation
(LAD) criterion. Peng and Yao (2003) propose estimates for the GARCH
model which are also variations of the LAD criterion. Finally a widespread
procedure of protection against heavy tailed distributions in GARCHmodels
uses a maximum likelihood estimate assuming that the conditional distrib-
ution given the past is a heavy tailed distribution (like a Stude nt with a
small degree of freedom) instead of the normal distribution.

Huber (1981) considers a stricter concept for a robust estimate. It should
satisfy the following two properties:

(H1) The estimate should be highly efficient when all observations of
the sample follow the assumed model. This condition can be checked by
comparing its efficiency to that of the maximum likelihood estimate for that
model.

(H2) Replacing a small fraction of observations of the sample by outliers
should produce a small change in the estimate. This property was formal-
ized in terms of continuity of the estimate and called qualitative robustness
by Hampel (1971) for independent observations. Boente, Fraiman and Yohai
(1987) generalized this concept for time series.

None of the estimates mentioned above for the GARCH model simulta-
neously satisfies H1 and H2. If the assumed model is a GARCH model with
normal conditional distribution, neither the maximum likelihood estimates
corresponding to a heavy tailed distribution nor those based on a LAD cri-
terion satisfy the property H1 stated above. This is shown in Table 1 of
Section 4 where we compute the efficiencies of some of these estimate for
the normal GARCH. Although these estimators behave much better than
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the QML-estimate when the conditional distribution has heavy tailed dis-
tributions, they also fail to satisfy property H2. See Section 4 where we
report of the results of a Monte Carlo study, showing that a small fraction
of additive outliers may have a large influence on them.

In this paper we present two classes of robust estimates for GARCHmod-
els. The first class can be considered an extension of the M-estimates intro-
duced by Huber (1964) for location and Huber (1973) for regression. They
are obtained by maximizing a conveniently modified likelihood function.
We show that the M-estimates are consistent and asymptotically normal.
These M-estimates are less sensitive to outliers than the QML-estimate and
satisfy H1 However they do not satisfy criterion H2, i.e., a few large outliers
can still have a large influence on them. This lack of robustness is due to the
fact that a single large outlier may have much influence on the conditional
variance of an undetermined large number of subsequent observations.

To improve robustness, we propose another estimate that includes an
additional mechanism that restricts the propagation of the outlier effect in
such a way that the influence of past variances on the present observation are
bounded. These estimates are called bounded M-estimates (BM-estimates).
BM-estimates are also consistent and asymptotically normal and they pos-
sess both properties H1 and H2, i.e., they have a high efficiency under a
GARCH normal model and are not much influenced by a small fraction of
outlying observations.

In financial data it is very common to use GARCH models to predict
stock volatilities, which are one of the parameters required to determine op-
tion prices It may be argued that since outlying observations really happen
and represent a risk factor, they should be taken into account to determine
the option prices. This line of thinking would conclude that for these appli-
cations the QML-estimates for GARCH models, which does not downweight
the effect of outliers, may be preferable to robust estimates. The following
three comments respond to this criticism:

(i) A model with robustly estimated parameters fits the majority of the
observations. Instead, if the data contains gross departures from the model,
the QML-estimate may fit the bulk of the data poorly while fitting some of
the outliers.

(ii) When a robust estimate is used, outliers can be detected as obser-
vations not well fitted by the estimated model. This allows the possibility
to improve the model by including variables that explain the outliers. How-
ever, if a non robust estimate is used, the outliers may remain hidden, thus
precluding the possibility of improving the model.
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(iii) The downweighting of outliers in the robust estimation process does
not preclude their use in prediction, since the estimated coefficients deter-
mine only the predictive dynamics of the model. If the recent past contains
outliers and the user assumes that these outliers are valid inputs for predic-
tion, they may be used as such without downweighting.

This paper is organized as follows. In Section 2, we state some of the
properties of GARCH processes and define the proposed robust estimates.
In Section 3, we give the consistency and asymptotically normality results.
In Section 4, we report the results of a Monte Carlo Study for the QML
-estimate, the Peng and Yao LAD estimator, the maximum likelihood es-
timates corresponding to a Student distribution with a small degrees of
freedom (SML) and our proposed M- and BM-estimators. These results
show a clear advantage of the robust estimates when the sample contains
outliers, especially in the case of the BM-estimate. In Section 5, we consider
examples of series corresponding to daily data and compare the truncated
variance and rank correlation of the errors for the daily returns series of the
QML-estimate, the LAD-estimate, the SML- and the BM-estimate. Section
6 contains some concluding remarks. Section 7 is an Appendix with some
of the proofs. For brevity sake we omit several proofs which can be found
in a technical report by Muler and Yohai (2005).

2 Robust Estimates for GARCH(p, q) Models

A series x1, ..., xT is a centered GARCH (p, q) process if

xt = σtzt, (1)

where z1, z2, ..., zT are i.i.d. random variables with a continuous density f
such that E(zt) = 0 and var(zt) = 1(var(x) denotes variance of x) and where
the conditional variances σ2t are given by

σ2t = α0 +
pX
i=1

αix
2
t−i +

qX
i=1

βiσ
2
t−i,

where αi ≥ 0, 1 ≤ i ≤ p, βi ≥ 0, 1 ≤ i ≤ q and α0 > 0. We denote
α = (α0,α1, ...,αp), β = (β1, ...,βq) and γ = (α,β). When q = 0 we obtain
the class of ARCH models introduced by Engle (1982).

A necessary and sufficient condition for strict stationarity of the process
xt with finite variance is

Σpi=1αi +Σ
q
i=1βi < 1, (2)
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see Bollerslev (1986), Nelson (1990), Bougerol and Picard (1992) and Gi-
raitis, Kokoszka and Leipus (2000). In this case

var(xt) =
α0

1− (Pp
i=1 αi +

Pq
i=1 βi)

. (3)

The following condition is required for identification of the GARCH pa-
rameters.

A(x) = Σpi=1αix
i and B(x) = 1− Σqi=1βixi are coprimes. (4)

Hall and Yao (2003) show that an explicit form for σ2t is

σ2t =
α0

1−Pq
i=1 βi

+
pX
i=1

αix
2
t−i+

pX
i=1

αi

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

βj1 · · ·βjkx2t−i−j1−···−jk .

(5)
Put yt = log(x

2
t ) and wt = log(z

2
t ). Then we have

yt = wt + log σ
2
t .

If the density f of zt is symmetric around 0, then the density of wt is g
given by

g(w) = f(ew/2)ew/2. (6)

In particular when f corresponds to the N(0,1) distribution, g = g0 where

g0(w) =
1√
2π
e−

1
2
(ew−w). (7)

Given the parameter values c = (a,b) where a = (a0, a1, ..., ap),
b =(b1, ..., bq) we define for all t

ht(c) = a0 +
pX
i=1

aix
2
t−i +

qX
i=1

biht−i(c). (8)

where xt = 0 for t ≤ 0 and so

ht(c) =
a0

1−Pq
i=1 bi
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for all t ≤ 0. From (5) we obtain that

ht(c) =
a0

1−Pq
i=1 bi

+
pX
i=1

aix
2
t−i

+
pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk It−i−j1−···jk≥1.

These initial conditions are the same as those used by Hall and Yao (2003).
The usual form of the QML-estimate based on the xt’s consists on max-

imizing

−1
2

TX
t=p+1

x2t
ht(c)

− 1
2

TX
t=p+1

loght(c) (9)

and since yt = log(x
2
t ), this can be written as

−1
2

TX
t=p+1

³
eyt−log ht(c) + log ht(c)

´
.

Then, to maximize (9) is equivalent to maximize

L0,T (c) =
TX

t=p+1

log(g0(yt − log ht(c)). (10)

where the function g0 is given by (7).
Observe that this equivalence does not require that the true density f

of zt be symmetric.
Maximizing (10) is equivalent to minimizing

M0,T (c) =
1

T − p
TX

t=p+1

ρ0(yt − log ht(c)), (11)

where
ρ0 = − log(g0), (12)

where g0 is given in (7).
In a similar way, it can be proved that the ML-estimate for a GARCH(p, q)

model corresponding to any symmetric density f∗ (it is not necessary that
f∗ coincides with the true density f) is obtained by minimizing

1

T − p
TX

t=p+1

ρ∗(yt − log ht(c)),
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where ρ∗ = − log(g∗) and g∗ is given by (6) with f = f∗.
As could be expected, the QML-estimate is not robust, i.e., a few outliers

may have a large influence on this estimate. This can be seen in our Monte
Carlo simulation in Section 4. One reason for the lack of robustness of the
QML-estimate is that ρ0 is unbounded, so that one large outlier may have
an unbounded effect on M0,T .

Put

MT (c) =
1

T − p
TX

t=p+1

ρ(yt − loght(c)). (13)

Then, the M-estimates for GARCH models are defined as

bγ = argmin
c∈C

MT (c) (14)

for some convenient compact set C. These estimates can be considered a
generalization of the class of M-estimates proposed by Huber (1964) for
location and Huber (1973) for regression.

Define
J(u) = E(ρ(wt − u)).

In Lemma 1 we show that J(u) is well defined when ρ0 is finite.
Lemma 1. Consider a stationary GARCH model xt given by (1). Then
(a) E(|wt|) <∞ and (b) If ψ = ρ0 is finite, then J(u) is finite for all u.
To guarantee good consistency properties of the estimates we need that

ρ satisfy the following property
P1. There exists a unique value u0 where J(u) takes the minimum.
Bollerslev, Chou and Kroner (1992) proposed using the ML-estimate

for zt having a symmetric heavy tail distribution, for example a Student
distribution with a small degree of freedom. This corresponds to an M-
estimate with ρ = − log(g), where g is the density of log(z2). Peng and Yao
(2003) LAD estimate corresponds to ρ(u) = |u|.

We can distinguish two types of M-estimates: (i) M-estimates with ρ0

bounded but ρ unbounded (ii) M-estimates with both ρ and ρ0 bounded.
The M- estimates with ρ0 bounded but ρ unbounded are robust when zt
has heavy tail distribution, although they may be much affected by another
type of outliers as for example additive outliers, as we see in our Monte
Carlo simulation in Section 4. To increase the degree of robustness we need
that ρ be bounded too. There is extensive literature on the properties of M-
estimates for regression. For example, Huber (1973) shows that M-estimates
for regression with bounded ρ0 are robust when the distribution of the error
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is heavy tailed. Yohai (1987) shows that M-estimates for regression with ρ
bounded are robust against any kind of outliers.

The ML-estimates for heavy tail zt and the Peng and Yao (2003) LAD
estimates are examples of M-estimates with bounded ρ0 but unbounded ρ.
For instance for the Student distribution with three degrees of freedom we
have

ρ(u) = 2 ln (1 + eu)− u/2
and

ρ0(u) =
3eu − 1
2(1 + eu)

.

For the Peng and Yao estimate we have

ρ(u) = |u|, ρ0(u) = sign(u).

M-estimates with ρ bounded are more robust than the QML-estimate,
although large outliers may still have a strong effect on the estimates. The
reason is that this estimate requires computing the values ht(c) using (8),
so a large outlier at time t may affect all the ht0(c) with t

0 > t.
The same problem appears in the estimates of ARMA models, where

an outlier at time t may influence the estimated innovations corresponding
to several periods. To deal with this problem, several authors used ro-
bust filters. See Denby and Martin (1979), Martin, Samarov and Vandaele
(1983) and Bianco, Garćia Ben, Mart́inez and Yohai (1996). Muler and
Yohai (2002) used robust filters for estimating ARCH models. However, the
asymptotic theory of these estimates is very complicated and proofs of as-
ymptotic normality are not available.

In this paper we propose a method related to robust filters, which has
the advantage that the resulting estimates are mathematically tractable. To
gain robustness, we modify the M-estimates for GARCHmodels by including
a mechanism which restricts the propagation of the outlier effect on the
estimated ht(c)’s. For this purpose, we replace in the computation of the
M-estimate ht(c) by

h∗t,k(c) = a0 +
pX
i=1

aih
∗
t−i,k(c)rk

Ã
x2t−i

h∗t−i,k(c)

!

+
qX
i=1

bih
∗
t−i,k(c), (15)
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where xt = 0 for t ≤ 0 and where

rk(u) =

(
u if u ≤ k
k if u > k.

. (16)

Observe that if k is large, then ht(c) and h
∗
t,k(c) are close. However

the propagation of the effect of one outlier in time t on the h∗t0,k(c), t
0 > t,

practically vanishes after a few periods. Therefore, if xt follows a GARCH
model but contains some outliers, we may expect that the M-estimates using
conditional variances given by (15) would fit better than the M-estimate cor-
responding to the GARCH model. This suggests modifying the M-estimate
as follows. Let bγ1 be defined as in (14) and bγ2 by

bγ2 = argmin
c∈C

M∗
Tk(c), (17)

where

M∗
Tk(c) =

1

T − p
TX

t=p+1

ρ(yt − log h∗t,k(c)). (18)

When the process is a perfectly observed GARCH process without out-
liers the conditional variances are given by (8). Then the estimate bγ1using
these conditional variances generally behaves better than bγ2. In this case bγ2
is asymptotically biased and we may expect MT (bγ1) ≤M∗

Tk(bγ2). Theorem
4 of Section 3 proves that this holds asymptotically with probability one.
As explained above, when there are outliers, bγ2 may be preferable and we
may expect MT (bγ1) > M∗

Tk(bγ2). Then we define the BM-estimate by
γB =

( bγ1 if MT (bγ1) ≤M∗
Tk(bγ2)bγ2 if MT (bγ1) > M∗
Tk(bγ2). (19)

We will see that BM-estimates simultaneously possess both properties:
robustness against outliers and consistency when the series follows a GARCH
model without outliers. Moreover, by choosing m and k conveniently, these
estimates have high efficiency under the GARCH model

Our proposal is to use BM-estimates with ρ of the form ρ = m(ρ0),
where m is a bounded nondecreasing function. We see in the next section
that this function satisfies P1 with u0 = 0 when zt is normal. Moreover, as
shown in Section 4, when we take m equal to the identity in a sufficiently
large interval, the BM-estimates are going to be highly efficient when zt
has normal distribution and less sensitive to additive outliers than the other
estimates mentioned in this section.
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However, if we consider that zt has a symmetric density f different from
the normal, it is possible to define ρ = m(− log(g)) where g is given by (6)
and ρ is a non decreasing and bounded function.

3 Asymptotic results

In this Section we state the main asymptotic results for the M- and BM-
estimates: consistency and asymptotic normality. In Theorems 1, 2 and 3 we
prove the consistency and asymptotic normality for any M-estimate defined
in (14) as long as P1 holds and ρ0 is bounded. In Theorem 4 and 5 we prove
the consistency and asymptotic normality for the proposed BM-estimators.

Suppose first that we have the infinite sequence of observations Xt =
(..., xt−1, xt) corresponding to a GARCH(p, q) process up to time t with pa-
rameter γ = (α,β), and given c = (a,b) call eht(c) the conditional variance
of xt given Xt−1 when γ = c. Then the following recursive relationship is
satisfied

eht(c) = a0 + pX
i=1

aix
2
t−i +

qX
i=1

bieht−i(c). (20)

The following Theorem shows the Fisher consistency of the M-estimates
of the GARCH model and gives a sufficient condition for P1.

Denote by

Rn+ = {x = (x1, ...xn) : xi ≥ 0, 1 ≤ i ≤ n}.
Theorem 1. Let xt be a stationary GARCH(p, q) process satisfying (1)

and (2). Let yt = log(x
2
t ) and define for c = (a,b) ∈ Rp+q+1+

M(c) = E(ρ(yt − eht(c)).
Suppose that ρ0 is bounded, that P1 and (4) hold and that βq > 0 in

the case of a GARCH(p,q) process or αp > 0 in the case of an ARCH(p)
process. Then

(i) M(c) is minimized when ai = e
u0αi, 0 ≤ i ≤ p, bi = βi, 1 ≤ i ≤ q.

(ii) Assume that wt = log(z
2
t ) has a density g(w) that is unimodal, contin-

uous and positive for all w. If we take ρ = m(− log(g)), where m is
monotone, P1 holds with u0 = 0.
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Observe that according to part (i) of Theorem 1, the M-estimate of α
should be corrected by the factor e−u0 for consistency. Part (ii) shows that if
we take ρ = m(− log(g)) there is no need of correction. An alternative that
avoids the correction factor is to replace ρ(u) with ρ(u) = ρ(u − u0), and
then in the rest of the paper without loss of generality we assume u0 = 0.

Put

Cδ =

(
(a,b) : a ∈Rp+1+ , b ∈Rq+, a0 ∈ [δ, 1/δ],

pX
i=1

ai ≥ δ ,

pX
i=1

ai +
qX
j=1

bj ≤ 1− δ

 (21)

The set C in (14) and (17) is taken as Cδ0 for some δ0 > 0.
Put γ = (α0,α1, ...αp,β1, ...,βq). The following two Theorems state the

consistency and asymptotic normality of the M-estimates to γ.
Theorem 2. Suppose that all the assumptions of Theorem 1 hold. Let bγT
be defined as in (14) with C = Cδ0 given by (21). We also assume that P1 is
satisfied with u0 = 0, that ρ has a bounded derivative, and that γ ∈C. ThenbγT → γ a.s..
Theorem 3. Suppose that all the assumptions of Theorem 2 hold. As-
sume also that (i) ρ has three continuous and bounded derivatives, (ii)
E(ψ2(wt)) > 0 and (iii) E(ψ

0(wt)) > 0, where ψ = ρ0. Then T 1/2(bγT − γ)
converges in distribution to a N(0, V ) and

V =
Eg(ψ

2(wt))

E2g(ψ
0(wt))

Ã
Eg

Ã
1eh2t (γ)∇eht(γ)∇eht(γ)0

!!−1
, (22)

where ∇h denotes gradient of h.
For the case of the QML-estimate, we have ρ = ρ0 given in (12). Then

the assumption of ρ0 bounded is not satisfied. However, in the case that
zt has a finite fourth moment, the QML-estimate has asymptotic normal
distribution with a covariance matrix given by (22). See Berkes, Hováth and
Kokoszka (2003). Then the relative asymptotic efficiency of the M-estimate
with respect to the QML-estimate is given by

AEF =
a(ψ, g)

a(ψ0, g)
,

where ψ0 = ρ00 and
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a(ψ, g) =
Eg(ψ

2(wt))

E2g (ψ
0(wt))

.

Therefore, by choosing m bounded and close to the identity function, we
can obtain a robust estimate that is highly efficient when the zt’s are normal.

The next two Theorems show that asymptotically the M and BM-estimates
are equivalent when xt follows an exact GARCH model without outliers.
Theorem 4. Suppose that all the assumptions of Theorem 3 hold and that
the distribution of zt gives positive probability to the complement of any
compact. We also assume that lim|u|→∞ ρ(u) = supu ρ(u). Moreover if we

let bγT be the M-estimate defined by (14) and γBT the BM-estimate defined
by (19), then limT→∞ P (γBT = bγT ) = 1.

Remark. Suppose that g is a unimodal and positive density. Then, it
can be proved that the assumption lim|u|→∞ ρ(u) = supu ρ(u) holds if we
take ρ = m(− log(g)) and m non decreasing.

From Theorems 2, 3 and 4 we derive the following result.
Theorem 5. Theorems 2 and 3 also hold for the BM-estimate γBT .

4 Monte Carlo Simulation

We performed a Monte Carlo study to compare the behavior of seven es-
timates: (i) the QML-estimate (QML), (ii) the maximum likelihood cor-
responding to zt with Student distribution with three degrees of freedom
(SML) (iii) the LAD Peng-Yao estimate (LAD), (iv) the M-estimate based
on a loss function ρ1 = m1(ρ0), where ρ0 is given in (12) and m1 is a nonde-
creasing, bounded and close to the identity function which is defined below
(M1), (v) A BM-estimate as defined in (19) with ρ = ρ1 and k = 5.02 (BM1),
(vi) an M-estimate based on a loss function ρ2 defined as ρ2(x) = m2(ρ0(x)),
m2(v) = 0.8m1(v/0.8) (M2) and (vii) A BM-estimate as defined in (19) with
ρ = ρ2 and k = 3 (BM2).

The function m1 is defined as

m1(x) =


x if x ≤ 4. 02
c4x

4 + c3x
3 + c2x

2 + c1x+ c0 if 4. 02 < x ≤ 4. 30
4.16 if x > 4. 30,

where c0 = 6777, c1 = −6536.2, c2 = 2362.3, c3 = −379.0087, c4 = 22.7770.
This function is shown in Figure 1.
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Figure 1: Function m1
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As we see in Figure 1, m1 is a smoothed version of

m (x) =

(
x if x ≤ 4.02
4.02 if x > 4.02.

The function m1 is equal to the identity in a larger interval than m2
and therefore the estimates based on m1 are more similar to the QML than
those based on m2. These, (see in Table 1), make estimates M1 and BM1

more efficient than estimates M2 and BM2. As a counterpart we see in our
Monte Carlo results that the first estimates are going to be less robust than
the second ones. The choice of m1 and m2 were done so

P (ρ1(wt) = ρ0(wt)) = 0.96. (23)

and
P (ρ2(wt) = ρ0(wt)) = 0.90

when wt is log(z
2
t ) and zt is N(0,1).

After several trials, the value of k in (16) for BM1 was taken as equal to
5.02. This value is such P (z2t ≤ 5.02) = 0.975, when zt is N(0,1). For the
BM2 estimate, in order to gain robustness, we chose k = 2.72. This value
is such P (z2t ≤ 2.72) = 0. 90. We found in the Monte Carlo simulations
that BM1 was a convenient trade off between efficiency under a normal
GARCH model and robustness. Instead, BM2 has rather low efficiency
under a GARCH model, but we found in the Monte Carlo simulation that
is more robust when the fraction of outliers is 10%.

The correction term u0 defined in P1 when zt is N(0,1) is 0.636 for the
SML estimate and −0.787 for the LAD estimate. For the other estimates
it is zero. The asymptotic efficiencies (EFF) of all the estimates we used
in these simulations under a normal GARCH model are shown in Table
1. We observe that the asymptotic efficiencies of the M1, BM1 and SML
estimates are quite high, the asymptotic efficiencies of M2 and BM2 are
intermediate and the asymptotic efficiency of the LAD estimate is quite
low.Table 1. Asymptotic efficiencies (EFF) of the estimates under normal
GARCH models.

Table 1. Asymptotic efficiencies (EFF) of the estimates under normal
GARCH models.

Estimate QML SML LAD M1 and BM1 M2 and BM2

EFF 1 0. 79 0. 37 0. 83 0. 67
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We report the results using a GARCH(1,1) model with parameters α0 =
1, α1 = 0.5 and β1 = 0.4 and an ARCH(2) model with parameters α0
= 1,α1 = 0.5 and α2 = 0.4. Other GARCH(1,1) and ARCH(2) models were
simulated, and the results were similar to those mentioned above. In all
cases the number of observations n was 1000 and the number of Monte
Carlo replications was 500. The constant δ0 used to define the compact set
C in (21) was taken as equal to 0.01.

For each model we consider four cases: (a) zt normal and no outliers
(b) zt normal with 5% of additive outliers and, (c) zt normal with 10% of
additive outliers and (d) zt has a Student distribution with 3 degrees of
freedom.

The series x∗t with additive outliers is defined as follows

x∗t =
(
xt + dσt if t = ti, 1 ≤ i ≤ l = hn/100
xt elsewhere,

where h is the percentage of contamination, xt is the non contaminated
series in GARCH models with zt normal, t1, ..., tl are the times when the
outliers are observed. The values ti, 1 ≤ i ≤ l, were chosen equally spaced.
We considered two values for d : 3 and 5.

Tables 2 and 3 show the mean square errors (MSE) in the case of no
outliers for the normal GARCH(1,1) model and for the normal ARCH(2)
model respectively. In both tables we show the efficiency (EFF) of the
estimates for these finite samples with respect to the QML. We observe that
in this case M1 and BM1 behave similarly. The same happens with M2 and
BM2.

Table 2. Mean square errors (MSE) and efficiencies with respect to
the QML (EFF) for a normal GARCH(1,1) model without outliers with
parameters α0 = 1, α1 = 0.5, β1 = 0.4.

Estimate α0 α1 β1
MSE EFF MSE EFF MSE EFF

QML 0.033 1.00 0.004 1.00 0.003 1.00
SML 0.042 0.80 0.005 0.79 0.003 0.80
LAD 0.092 0.36 0.011 0. 33 0.008 0.35
M1 0.040 0.84 0.004 0.90 0.003 0.87
BM1 0.040 0.85 0.004 0.88 0.003 0.87
M2 0.068 0.49 0.007 0.51 0.004 0.72
BM2 0.067 0.50 0.008 0.45 0.004 0.70
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Table 3. Mean square errors (MSE) and efficiencies with respect to the
QML (EFF) for a normal ARCH(2) model without outliers and parameters
α0 = 1, α1 = 0.5, α2 = 0.4.

Estimate α0 α1 α2
MSE EFF MSE EFF MSE EFF

QML 0.012 1.00 0.004 1.00 0.0035 1.00
SML 0.015 0.80 0.005 0. 80 0.0042 0.83
LAD 0.032 0.38 0.012 0.33 0.0093 0.38
M1 0.014 0.86 0.005 0.87 0.0040 0.88
BM1 0.014 0.87 0.005 0.87 0.0041 0.85
M2 0.028 0.43 0.009 0.44 0.0067 0.52
BM2 0.026 0.45 0.009 0.44 0.0067 0.52

In Tables 4 and 5 we show the MSE for 5% contaminated samples for
the normal GARCH(1,1) model and for the normal ARCH(2) model respec-
tively. We observe in these tables that QML can be seriously affected by
outliers, especially for d = 5. Although LAD, SML, M1 and M2 are not so
much affected by outliers we can see that both, BM1 and BM2, in general,
behave much better.

Table 4. Mean square errors for a normal GARCH(1,1) model with 5%
of additive outliers and parameters α0 = 1, α1 = 0.5, β1 = 0.4 Outlier size:
dσt.

Estimate d = 3 d = 5
α0 α1 β1 α0 α1 β1

QML 2.11 0.037 0.021 23.27 0.38 0.104
SML 1.13 0.015 0.017 5.82 0.05 0.088
LAD 0.83 0.046 0.022 2.22 0.13 0.065
M1 1.38 0.022 0.040 0.49 0.05 0.029
BM1 0.39 0.011 0.012 0.07 0.01 0.006
M2 1.25 0.022 0.032 0.76 0.051 0.040
BM2 0.34 0.013 0.010 0.09 0.007 0.006
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Table 5. Mean square errors for a normal ARCH(2) model with 5% of
additive outliers and parameters α0 = 1, α1 = 0.5, α2 = 0.4 Outlier size:
dσt.

Estimate d = 3 d = 5
α0 α1 α2 α0 α1 α2

QML 0.61 0.025 0.017 4.79 0.26 0.1613
SML 0.35 0.014 0.014 1.23 0.04 0.0558
LAD 0.37 0.040 0.034 1.06 0.11 0.0865
M1 0.26 0.022 0.019 0.08 0.03 0.0338
BM1 0.12 0.012 0.012 0.02 0.010 0.0119
M2 0.29 0.020 0.018 0.18 0.033 0.0348
BM2 0.11 0.014 0.010 0.04 0.006 0.0073

In Tables 6 and 7 we report the MSE for the normal GARCH(1,1) and
normal ARCH(2) models respectively when there is 10% outlier contamina-
tion. In the case of d = 5 the behavior of the estimates is similar to the case
with 5% of outliers. In the case of d = 3 the only estimate that is not much
affected by outliers is BM2.

Table 6 Mean square errors for a normal GARCH(1,1) model with 10%
of additive outliers and parameters α0 = 1, α1 = 0.5, β1 = 0.4 Outlier size:
dσt.

Estimate d = 3 d = 5
α0 α1 β1 α0 α1 β1

QML 15.80 0.06 0.07 95.83 0.41 0.19
SML 7.24 0.06 0.06 9.87 0.22 0.17
LAD 2.58 0.13 0.05 2.44 0.23 0.12
M1 12.76 0.12 0.20 0.23 0.14 0.048
BM1 6.22 0.04 0.10 0.07 0.03 0.007
M2 8.52 0.12 0.13 0.21 0.14 0.055
BM2 1.58 0.02 0.03 0.07 0.01 0.006
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Table 7. Mean square errors for a normal ARCH(2) model with 10% of
additive outliers and parameters α0 = 1, α1 = 0.5, α2 = 0.4 Outlier size:
dσt.

Estimate d = 3 d = 5
α0 α1 α2 α0 α1 α2

QML 3.96 0.047 0.030 44.50 0.66 0.49
SML 2.82 0.051 0.052 12.72 0.16 0.12
LAD 1.92 0.106 0.084 4.67 0.21 0.14
M1 5.65 0.195 0.177 0.56 0.09 0.098
BM1 2.18 0.049 0.067 0.03 0.02 0.026
M2 3.80 0.127 0.118 0.71 0.099 0.094
BM2 0.68 0.020 0.025 0.04 0.009 0.013

Table 8 reports the MSE for the Student GARCH(1,1). As may be
expected the smallest MSE corresponds to the SML. The other robust esti-
mates behave quite similarly and better than the QML.

Table 8. Mean square errors for a student GARCH(1,1) model with
parameters α0 = 1, α1 = 0.5, β1 = 0.4.

Estimate α0 α1 β1
QML 0.275 0.109 0.023
SML 0.048 0.011 0.007
LAD 0.080 0.019 0.011
M1 0.067 0.018 0.010
BM1 0.070 0.018 0.010
M2 0.089 0.022 0.013
BM2 0.090 0.023 0.013

In Figures 2-4 we plot the MSE’s as a function of the outlier size d
for QML, SML, LAD, BM1 and BM2 for the normal GARCH(1,1) model
with parameters α0 = 1, α1 = 0.5 and β1 = 0.4 and 5% of additive outlier
contamination. We observed that both BM1 and BM2 behave more robustly
than the others.
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Figure 2: Mean Square Errors of α0 as a function of the outlier size d for the
normal GARCH(1,1) model with parameters α0 = 1, α1 = 0.5 and β1 = 0.4
and 5% of additive outlier contamination.
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Figure 3: Mean Square Errors of α1 as a function of the outlier size d for the
normal GARCH(1,1) model with parameters α0 = 1, α1 = 0.5 and β1 = 0.4
and 5% of additive outlier contamination.

21



size of the outliers

M
SE

0 2 4 6 8 10

0.
0

0.
05

0.
15

(a) SML-estimate

size of the outliers

M
SE

0 2 4 6 8 10

0.
02

0.
08

(b) LAD-estimate

size of the outliers

M
SE

0 2 4 6 8 10

0.
00

4
0.

00
7

(c) BM1-estimate

size of the outliers

M
SE

0 2 4 6 8 10

0.
00

4
0.

00
6

(d) BM2-estimate

size of the outliers

M
S

E

0 2 4 6 8 10

0.
0

0.
10

0.
20

(e) QML-estimate

Figure 4: Mean Square Errors of β1 as a function of the outlier size d for the
normal GARCH(1,1) model with parameters α0 = 1, α1 = 0.5 and β1 = 0.4
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Figure 5: Plot of the Daily Return Series.

5 Analysis of Some Examples

We consider four different examples of series corresponding to daily financial
data: (a) The Standard and Poor 500 Index (S&P 500) from February 1,
2000 to June 30, 2002 (b) The SBS Technologies Inc.(SBSE) from January 3,
2000 to December 31, 2001 (c) Electric Fuel. Corp (EFCX) from January 3,
2000 to December 31, 2001 and (d) Rohm and Haas Company (ROH) from
January 3, 2000 to December 31, 2001. In Fig 5 we plot the daily returns
of these four series. We observe that the series contain several outliers that
correspond to unusually large movements in the prices.

After centering with the median, each of these series was fitted as a
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GARCH(1,1) model using the QML-estimate, SML-estimate, LAD-estimate
and BM1-estimate defined as in the Section 4. In Table 9 we show these
estimates. Since the series contain outliers, as can be expected, the estimates
show some important differences.

Table 9. Fitted GARCH(1,1) models for the daily returns series.

S&P 500 SBSE

Estimates bα0 bα1 bβ1 bα0 bα1 bβ1
QML 3.9 ∗ 10−6 0.11 0.86 3.2 ∗ 10−4 0.28 0.68
SML 5.1 ∗ 10−6 0.08 0.85 2.1 ∗ 10−4 0.09 0.76
LAD 4.9 ∗ 10−6 0.06 0.85 4.5 ∗ 10−4 0.07 0.56
BME1 4.5 ∗ 10−6 0.10 0.84 4.1 ∗ 10−4 0.26 0.50

EFCX RHO

Estimates bα0 bα1 bβ1 bα0 bα1 bβ1
QML 3.0 ∗ 10−4 0.050 0.91 3.1 ∗ 10−5 0.054 0.91
SML 1.0 ∗ 10−3 0.106 0.65 3.4 ∗ 10−5 0.048 0.88
LAD 1.02 ∗ 10−3 0.138 0.54 9.2 ∗ 10−5 0.076 0.71
BME1 2.6 ∗ 10−3 0.259 0.20 2.4 ∗ 10−4 0.306 0.30

Let xt, 1 ≤ t ≤ T, be an observed centered series and (bα0, bα1, bβ1) an
estimate for the GARCH(1,1) model. Let bσ2t be the conditional variance of
xt obtained using the estimated parameters. In the case of the QML-, SML-
and LAD-estimates, bσ2t is recursively computed by

bσ2t = bα0 + bα1x2t−1 + bβ1bσ2t−1, 2 ≤ t ≤ T. (24)

In the case of the BM1- and the BM2-estimate bσ2t is also given by (24) if
(bα0, bα1, bβ1) coincides with the correspondingM−estimate bγ1 defined in (14)
or by

bσ2t = bα0 + bα1bσ2t−1gk(x2t−1/bσ2t−1) + bβ1bσ2t−1, 2 ≤ t ≤ T
if (bα0, bα1, bβ1) coincides with the bounded estimate bγ2 defined in (17).

When xt follows a GARCH model, the series zt have the following two
properties (a) var(zt)=1 and (b) z

2
t is uncorrelated to z

2
t−1. We use these

properties to evaluate the performance in the four data sets of the different
estimates.
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Given an estimate (bα0, bα1, bβ1) let us define
bzt = xtbσt , 2 ≤ t ≤ T. (25)

If this estimate use to define bσt is close to the true value, properties (a)
and (b) should approximately hold for the bz0ts.

Since the sample variance is not robust, to compare how property (a) is
satisfied for the different estimates we use a normalized 0.10-trimmed sample
variance of bzt defined by

σ2TR =
1.605

T1

T1X
t=1

bz2(t), (26)

where bz2(1) ≤ ... ≤ bz2(T−1) are the order statistics of ¡bz22 , ..., bz2T ¢, T1 is the
integer part of 0.9(T−1). The value 1.605 was chosen so that the normalized
trimmed variance be one for normal samples. To compare the estimates in
reference to property (b) we compute the rank correlation between bz2t−1 andbz2t , which is a robust correlation measure. We denote this estimate by τ.

Table 10 shows the value of σ2TR and τ corresponding to the QML-,
SML-, LAD- and BM1-estimates for the four series.

Table 10. Truncated variance (σ2TR ) and rank correlation (τ) for the
daily returns series.

S&P 500 SBSE EFCX RHO

Estimates σ2TR τ σ2TR τ σ2TR τ σ2TR τ

QML 0.79 0.043 0.58 0.044 0.60 0.083 0.685 0.060
SML 0.93 0.045 0.98 0.093 0.97 0.025 0.928 0.059
LAD 1.07 0.056 1.24 0.072 1.18 −0.009 1.144 0.041
BME1 0.98 0.022 1.02 −0.015 0.96 −0.043 1.045 −0.035

We observe that value of σ2TR for QML is in general much lower than one.
Instead the robust estimates give values closer to one. In general all the
estimates give values of τ close to zero. Taking into account both indicators
σ2TR and τ, the BM-estimate performs better than the others for series S&P
500, SBSE and RHO. However, for EFCX the SML seems preferable to the
others.
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6 Concluding Remarks.

In this paper we present two classes of robust estimates for GARCH mod-
els: M- and BM-estimates. A Monte Carlo study shows that for the
GARCH(1,1) model, the QML-estimate may practically collapse when there
is 5% outlier contamination. All the robust estimates are in general less
influenced by outliers. However, the BM-estimates generally behave much
better than the rest of the robust methods under outlier contamination.

The study of four examples of daily returns series containing outliers
shows that all the robust estimates are better than the QML-estimate. The
BM-estimate seems to behave better than the others in three of these ex-
amples.

Our proposal is to always compute the BM- and the QML-estimates
when fitting a GARCH model. A strong discrepancy between the two esti-
mates indicates the presence of outliers in the series. In this case the decision
of which estimate is preferable can be based on the comparison of the sta-
tistics σ2TR and τ for both fits. Of course this strategy can include other
robust estimates such as the LAD or the SML.

7 Appendix

Proof of Lemma 1.
We have that

E(|wt|) =
Z ∞
−∞

¯̄̄
log(z2)

¯̄̄
f(z)dz. (27)

Since f is continuous, there is a constant K such that |f(z)| ≤ K for all
z ∈ [−1, 1]. Then we haveZ

|z|≤1

¯̄̄
log(z2)

¯̄̄
f(z)dz ≤ K

Z
|z|≤1

¯̄̄
log(z2)

¯̄̄
dz <∞. (28)

Since for u ≥ 1 it holds that log(u) < u. Then using that zt has finite
second moment we getZ

|z|>1

¯̄̄
log(z2)

¯̄̄
f(z)dz ≤

Z
|z|>1

z2f(z)dz <∞. (29)

Then part (a) of the Lemma follows from (27),(28) and (29).
Then (b) follows from (a) and the fact that ρ satisfies a global Lipschitz

condition.
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Proof of Theorem 1.
(i) Let γ = (α,β) be the true parameter. Then, we can write

M(c) = E

Ã
ρ

Ã
wt − log

Ãeht(c)eht(γ)
!!!

, (30)

where wt = log(yt/eht(γ)) = log(z2t ) are i.i.d. random variables with distri-
bution g. Since eht(c) depends only on xt∗ with t∗ < t and E(ρ (wt − u))
has a unique minimum at u0, the minimum of M(c) is attained at a point
c such that eht(c) = eu0eht(γ) a.s..
Let γ∗ = (eu0α0, eu0α1, ..., eu0αp,β1, ...,βq), then we have eht(γ∗) = eu0eht(γ)
and so eht(c) = eht(γ∗). Therefore, from Corollary 2.1 of Berkes, Horvath
and Kokoszka (2003), we obtain c = γ∗.

(ii) Since g is strictly unimodal, continuous and g(u) > 0 for all u, Lemma
1 of Bianco, Garcia Ben and Yohai (2005) implies that E(ρ (wt − u)) has a
unique minimum at u0 = 0. Hence, (ii) follows

According to the Remark after Theorem 1, in the rest of the Appendix
we will assume u0 = 0 and γ

∗ = γ without loss of generality.
The following Lemmas 2, 3 and 4 are used in the proofs of Theorems 2

and 3.
Lemma 2. Let xt be a stationary and ergodic GARCH(p, q) process sat-

isfying (1) and(2). Let ht(c) be as defined in (8) and eht(c) as defined in
(20). Then

(i) There exists 0 < ϑ < 1 and a positive finite random variable W such

that sup
c∈C

¯̄̄eht(c)−ht(c)¯̄̄ ≤ ϑtW for all t ≥ p+ 1.
(ii)There exists a neighborhood U of γ such that sup

c∈U
E
¯̄̄
∇ log(eht(c))¯̄̄n <

∞ for all n.
(iii)There exists a neighborhood U of γ, 0 < ϑ < 1 and a finite positive

finite random variable W1 such that

sup
c∈U

¯̄̄
∇ log(eht(c))−∇ log(ht(c))¯̄̄ ≤ ϑtW1

for all t ≥ p+ 1.
(iv)There exists a neighborhood U of γ, 0 < ϑ < 1 and a positive finite

random variable W2 such that
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sup
c∈U

°°°∇ log(eht(c))∇ log(eht(c))0−∇ log(ht(c))∇ log(ht(c))0°°° ≤ ϑtW2

for all t ≥ p+ 1,where ||A|| denotes the l2 norm of A.

(v)There exists a neighborhood U of γ such that E

Ã
sup
c∈U

°°°∇2eht(c)°°°2
!
<

∞.
(vi)There exists a neighborhood U of γ, 0 < ϑ < 1 and positive finite

random variable W3 such that

sup
c∈U

°°°°°∇2eht(c)eht(c) − ∇
2ht(c)

ht(c)

°°°°° ≤ ϑtW3

for all t ≥ p+ 1.
Proof of (i)
Hall and Yao (2003) show that

eht(c) = a0
1−Pq

i=1 bi
+

pX
i=1

aix
2
t−i+

pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk ,

(31)
and then

ht(c) =
a0

1−Pq
i=1 bi

+
pX
i=1

aix
2
t−i (32)

+
pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk It−i−j1−···jk≥1

for t ≥ p+ 1 and c = (a,b).
Then, from (31) and (32) we obtain

0 ≤ eht(c)− ht(c) ≤ pX
i=1

ai

∞X
k=kt

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk ,

where kt is the integer part of (t− p− 1)/q.
Define eb = maxC {max(b1, ..., bq), (a,b) ∈C} and then
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sup
c∈C

¯̄̄eht(c)− ht(c)¯̄̄ ≤ ebkt−1 sup
c∈C

pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk .

Then (i) follows taking ϑ = eb1/q and
W = eb−p/q−2 sup

(a,b)∈C

pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk .

Observe that sup(a,b)∈C
Pq
i=1 bi < 1 implies thatW <∞ and since 0 < eb <

1 we also have 0 < ϑ < 1.
(ii) is proved in Hall and Yao (2003).
(iii) Hall and Yao (2003) derive the following formulas

∂eht(c)
∂a0

=
1

1−Pq
j=1 bj

, (33)

∂eht(c)
∂ai

= x2t−i +
∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk , 1 ≤ i ≤ p, (34)

∂eht(c)
∂bj

=
a0

(1−Pq
i=1 bi)

2

+
pX
i=1

ai

∞X
k=0

(k + 1)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk , 1 ≤ j ≤ q.(35)

In a similar way, from (32) we can derive

∂ht(c)

∂a0
=

1

1−Pq
j=1 bj

, (36)

∂ht(c)

∂ai
= x2t−i +

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jkIt−i−j1−···jk≥1 (37)

and
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∂ht(c)

∂bj
=

a0

(1−Pq
i=1 bi)

2 + (38)

+
pX
i=1

ai

∞X
k=0

(k + 1)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jkIt−i−j1−···jk≥1

for t ≥ p+ 1 and c = (a,b). Then we get

∂eht(c)
∂a0

− ∂ht(c)

∂a0
= 0, (39)

0 ≤ ∂eht(c)
∂ai

− ∂ht(c)

∂ai
≤

∞X
k=kt

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk (40)

and

0 ≤ ∂eht(c)
∂bj

− ∂ht(c)

∂bj
≤

pX
i=1

ai

∞X
k=kt

(k + 1)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk ,

(41)
where kt is the integer part of (t − p − 1)/q. Consider a neighborhood U
of γ such U ⊂ Cδ0/2, then, using a similar argument than the one used the
proof of (i), we can prove that there exists ϑ1, 0 < ϑ1 < 1, and a random
variable W ∗

1 such that

sup
c∈U

¯̄̄̄
¯∂eht(c)∂ai

− ∂ht(c)

∂ai

¯̄̄̄
¯ ≤ ϑt1W

∗
1 . (42)

A similar bound can be obtained for the right hand side of (41) as follows

pX
i=1

ai

∞X
k=kt

(k + 1)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk

≤ ebkt−1 pX
i=1

ai

∞X
k=1

(kt + k)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk ,

where eb = maxC {max(b1, ..., bq), (a,b) ∈C} .
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There exists 0 < b∗ < 1 and t0 such that for t ≥ t0 we have
ebkt−1kt ≤ ebt/qteb−p/q−2 ≤ (b∗)t eb−p/q−2.

and from Hall and Yao (2003) we know that the random variables

sup
c∈U

pX
i=1

ai

∞X
k=1

qX
ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j−j1−···−jk

and

sup
c∈U

pX
i=1

ai

∞X
k=1

k
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j−j1−···−jk

are finite. Then taking ϑ2 = b
∗ and

W ∗
2 =

eb−p/q−2 sup
(a,b)∈C

pX
i=1

ai

∞X
k=1

(1 + k)
qX

ji=1

· · ·
qX

jk=1

bj1 · · · bjkx2t−i−j1−···−jk

we obtain

sup
c∈U

¯̄̄̄
¯∂eht(c)∂bj

− ∂ht(c)

∂bj

¯̄̄̄
¯ ≤ ϑt2W

∗
2 (43)

for t ≥ t0 where W ∗
2 is a finite random variable.

From (39),(42) and (43) we get that there exists a constant 0 < ϑ3 < 1
and a finite random variable W ∗

3 such that

sup
c∈U

¯̄̄
∇eht(c)−∇ht(c)¯̄̄ ≤ ϑt3W

∗
3 (44)

for t ≥ t0
Since c ∈U ⊂ Cδ0/2, from (21) we obtain

eht(c) ≥δ0/2, ht(c) ≥δ0/2. (45)

We can write

∇ log eht(c)−∇ log ht(c)
=

1

ht(c)eht(c)∇eht(c)
³
ht(c)− eht(c)´+ 1

ht(c)
(∇eht(c)−∇ht(c)),
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and so from (i), (ii), (44) and (45) we prove (iii).
(iv) We can write

∇ log(eht(c))∇ log(eht(c))0−∇ log(ht(c))∇ log(ht(c))0
= ∇ log(eht(c))(∇ log(eht(c))−∇ log(ht(c)))0+³∇ log(eht(c))−∇ log(ht(c))´∇ log(ht(c))0
Then using (ii) and (iii) we get (iv).
(v) This is shown by Peng and Yao (2003) while proving Theorem 1.
(vi) The proof is similar to that of (iv) using the expression for ∇2eht(c)

given in Peng and Yao (2003).
Lemma 3. Let C be as in (21) and

fMT (c) =
1

T − p
TX

t=p+1

ρ(yt − log eht(c)). (46)

Then under the assumptions of Theorem 2, have

lim
T→∞

sup
c∈C

¯̄̄ fMT (c)−M(c)
¯̄̄
= 0 a.s..

Proof.Proof.
We start proving

E

Ã
sup
c∈C

(|ρ(yt − log eht(c))|)
!
<∞. (47)

Since ρ has a bounded derivative, it is enough to show that

E

Ã
sup
c∈C

(|yt − log eht(c)|)
!
<∞. (48)

We also have

yt − log eht(c) = wt + log eht(γ)− log(eht(c)).
Since by Lemma 1 (a) E(|wt|) <∞, to prove (47) it is enough to show

that

E

Ã
sup
c∈C

(| log eht(c)|)
!
<∞. (49)
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From (21) and (31) we have that

E(sup
c∈C

eht(c)) <∞, (50)

and from (21) we obtain
δ0 ≤ inf

c∈C
eht(c). (51)

Then (49) follows from (50) and (51) and the Lemma follows from Lemma
3 of Muler and Yohai (2002).
Lemma 4.Under the assumptions of Theorem 2, we have

lim
T→∞

sup
c∈C

¯̄̄
MT (c)− fMT (c)

¯̄̄
= 0

a.s.
Proof

We have

MT (c)−fMT (c) =
1

(T − p)
TX

t=p+1

³
ρ
³
yt − log

³eht(c)´´− ρ (yt − log (ht(c)))
´
.

Let K = sup |ρ0| < ∞. Then, from Lemma 2-(i) and (21) we have that
there exists 0 < ϑ < 1, and a finite positive random variable W such that¯̄̄
ρ
³
yt − log

³eht(c)´´− ρ (yt − log (ht(c)))
¯̄̄
≤ K

δ0

¯̄̄eht(c)− ht(c)¯̄̄ ≤ K
δ0
ϑtW,

and this proves the Lemma.
Proof of Theorem 2.

From Lemmas 3 and 4 we get

lim
T→∞

sup
c∈C

|MT (c)−M(c)| = 0

a.s. Then, putting

A =

(
sup
c∈C

|MT (c)−M(c)|→ 0

)
,

we have P (A) = 1. Therefore it is enough to prove

A ⊂ { bγT → γ} . (52)
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Assume that (52) is not true. Then we can find in A a subsequencebγTi such that
bγTi → γ (53)

with γ 6= γ. Since M(c) has a unique minimum at γ, and M(c) is continu-
ous, there exists a neighborhood U(γ) and ε > 0 such that for all c ∈ U(γ)
we obtain

M(c) > M(γ) + ε. (54)

From (53) there exists i0 large enough such that for all i ≥ i0 we obtain

bγTi ∈ U(γ), sup
c∈C

|MTi(c)−M(c)| <
ε

2
. (55)

Therefore from (54) and (55) for all i ≥ i0 we obtain

MTi(bγTi) =MTi(bγTi)−M(bγTi) +M(bγTi) > M(γ) + ε

2
. (56)

Using the definition of bγT and (55), we have
MTi(bγTi) ≤MTi(γ) < M(γ) +

ε

2
,

for all i ≥ i0. This contradicts (56) and therefore the Theorem is proved.
We need the following four Lemmas to prove Theorem 3.

Lemma 5. Suppose that all the assumptions of Theorem 2 hold. More-
over, assume that ρ has a continuous and bounded derivative ψ such that
E(ψ2(wt)) > 0. Then,

1√
T − p

TX
t=p+1

∇ρ
³
yt − log

³eht(γ)´´ →D N(0, E(ψ
2 (wt))D0),

where
D0 = E

³
∇ log(eht(γ))∇ log(eht(γ))0´ .

Proof.
From Lemma 2-(ii) D0 is finite, and from (4) it can be shown that D0 is

positive definite (see for instance Horvath and Kokoszka (2003)).
On the other hand, since E(ρ (wt − u)) is minimized at u = 0, we have
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E(ψ(wt)) = 0.

This implies that b0ψ(wt )∇ log(eht(γ)) is a stationary martingale difference
sequence for any vector b 6= 0 in Rp+q+1. Then applying the Central Limit
Theorem for Martingales (see for instance Theorem 24.4, Davidson(1994))
we obtain

1√
T − p

TX
t=p+1

b0ψ(wt)∇ log(eht(γ)) →D N(0, E(ψ
2 (wt))b

0 D0b).

Finally, using a standard Cramer-Wold device we get the desired result.
Lemma 6. Suppose that all the assumptions of Lemma 5 hold. More-
over, assume that ρ has a two continuous and bounded derivatives and that
E(ψ0(wt)) > 0. Define A(c) = E(∇2ρ(yt − log(eht(c)))), then there exists a
neighborhood U of γ such that

(i)

lim
T→∞

sup
c∈U

°°°°°° 1

T − p
TX

t=p+1

∇2ρ(yt − log(eht(c)))−A(c)
°°°°°° = 0 a.s..

(ii) A(γ) is a positive definite matrix given by A(γ) = E(ψ0(wt))D0.

Proof.
Differentiating ∇ρ

³
yt − log

³eht(c)´´ we get
∇2ρ

³
yt − log

³eht(c)´´
= (ψ0(yt − log eht(c)) + ψ(yt − log(eht(c)))∇ log(eht(c))∇ logf(ht(c))0
−ψ(yt − log(eht(c)))∇2eht(c)eht(c) . (57)

From (21) and Lemma 2-(v) there exists a neighborhood U of γ such
that

E

Ã
sup
c∈U

°°°°°∇2eht(c)eht(c)
°°°°°
!
<∞. (58)
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Then by Lemma 2-(ii), (57), (58) and the fact that ψ and ψ0 are continuous
and bounded we get

E sup
c∈U

°°°∇2ρ ³yt − log ³eht(c)´´°°° <∞.
Therefore, part (i) of the Lemma follows from Lemma 3 of Muler and Yohai
(2002).

Since E(ψ(wt)) = 0 and yt − log(eht(γ)) = wt we get
E(ψ(yt − log(eht(γ))∇ log(eht(γ))∇ logf(ht(γ))) = 0

and

E

Ã
ψ(yt − log(eht(γ)))∇2eht(γ)eht(γ)

!
= 0.

Then
A(γ) = E(ψ0(wt))D0.

Since D0 is positive definite and E(ψ
0(wt)) > 0 part (ii) follows.

Lemmas 7 and 8 are necessary to show that the asymptotic distribution
of the M-estimates can be derived using the eht(γ)’s instead of the ht(γ)’s.
Lemma 7. Suppose that all the assumptions of Lemma 6 hold. Then

lim
T→∞

1√
T − p

TX
t=p+1

°°°∇ρ (yt − log (ht(γ)))−∇ρ ³yt − log ³eht(γ)´´°°° = 0.
a.s..
Proof.

We can write

∇ρ (yt − log (ht(γ)))−∇ρ
³
yt − log

³eht(γ)´´ (59)

= ψ (yt − log (ht(γ)))∇
³
log

³eht(γ)´− log (ht(γ))´
+
³
ψ
³
yt − log

³eht(γ)´´− ψ (yt − log (ht(γ)))
´
∇ log

³eht(γ)´ .
From Lemma 2-(iii) there exists a finite and postive random variable W1

and a constant 0 < ϑ < 1 such that

lim
T→∞

1√
T − p

TX
t=p+1

°°°∇³log ³eht(γ)´− log (ht(γ))´°°° ≤ lim
T→∞

W1√
T − p

TX
t=p+1

ϑt = 0
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a.s.. Then, since ψ is bounded we have

lim
T→∞

1√
T − p

TX
t=p+1

°°°ψ (yt − log(ht(γ)))³∇ log(eht(γ))−
∇ log(ht(γ)))k = 0 (60)

a.s..
The function ψ0 is bounded and both eht(γ) and ht(γ) has positive lower

bounds, so using the Mean Value Theorem we have that there exists a
constant k1 > 0 such that

1√
T − p

TX
t=p+1

°°°³ψ ³yt − log ³eht(γ)´´− ψ (yt − log (ht(γ)))
´
∇ log

³eht(γ)´°°°

≤ k1√
T − p

 TX
t=p+1

¯̄̄eht(γ)−ht(γ)¯̄̄ °°°∇ log ³eht(γ)´°°°
 . (61)

By Lemma 2-(i) there exists a finite positive random variable W and
0 < ϑ < 1 such that

TX
t=p+1

¯̄̄eht(γ)−ht(γ)¯̄̄ °°°∇ log ³eht(γ)´ °°°
≤ W

TX
t=p+1

ϑt
°°°∇ log ³eht(γ)´ °°° . (62)

Define for all T ≥ p+ 1,

ST =
TX

t=p+1

ϑt
°°°∇ log ³eht(γ)´ °°° ,

Since from Lemma 2-(ii), E
³¯̄̄
∇ log

³eht(γ)´¯̄̄ ´ <∞, we get limT→∞E(ST ) <
∞ and then

S =
∞X

t=p+1

ϑt
°°°∇ log ³eht(γ)´ °°° (63)
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is a finite random variable with E(S) < ∞. Then from (61), (62) and (63)
we obtain

lim
T→∞

1√
T − p

TX
t=p+1

°°°³ψ ³yt − log(eht(γ))´

−ψ (yt − log(ht(γ))))∇ log(eht(γ))°°° = lim
T→∞

k1WS√
T − p = 0 (64)

a.s..
Then, the lemma follows from (59), (60) and (64).

Lemma 8. Suppose that all the assumptions of Theorem 3 hold. Then,
there exists a neighborhood U of γ such that

lim
T→∞

sup
c∈U

1

T − p

°°°°°°
TX

t=p+1

∇2ρ
³
yt − log

³eht(c)´´−∇2ρ (yt − log (ht(c)))
°°°°°° = 0

a.s..
Proof.

Let ζ(x) = (ψ0 (x) + ψ (x)) .We can write from (57),

∇2ρ
³
yt − log

³eht(c)´´−∇2ρ (yt − log (ht(c))) = Ht(c)−Gt(c), (65)

where

Ht(c) = ζ(yt − log(eht(c)))∇ log ³eht(c)´∇ log ³eht(c)´0
−ζ(yt − log(ht(c)))∇ log (ht(c))∇ log (ht(c))0

and

Gt(c) = ψ
³
yt − log

³eht(c)´´ ∇2eht(c)eht(c)
−ψ (yt − log (ht(c))) ∇

2ht(c)

ht(c)
. (66)

Let

Qt(c) = ∇ log
³eht(c)´∇ log ³eht(c)´0 −∇ log (ht(c))∇ log (ht(c))0 .

Then, we have
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Ht(c) = ζ(yt − log(ht(c)))Qt(c) (67)

+
³
ζ(yt − log(eht(c)))− ζ(yt − log(ht(c)))

´
∇ log

³eht(c)´∇ log ³eht(c)´0 .
From Lemma 2-(iv) there exists a neighborhood U1 of γ with U1 ⊂

Cδ0/2, 0 < ϑ < 1 and a finite random variable W2 such that

sup
c∈U1

kQt(c)k < ϑtW2

for t ≥ p+ 1. Then

lim
T→∞

sup
c∈U1

1

T − p
TX

t=p+1

kQt(c)k = 0 (68)

a.s.. Then, since ζ(yt − log(ht(c))) is bounded we obtain

lim
T→∞

sup
c∈U1

1

T − p
TX

t=p+1

kζ(yt − log(ht(c)))Qt(c)k = 0 (69)

a.s.. From Lemma 2-(ii) we have that there exists a neighborhood U2 ⊂ U1
of γ such that,

E

Ã
sup
c∈U2

°°°°∇ log ³eht(c)´∇ log ³eht(c)´0°°°°
!
<∞. (70)

Since ζ 0 is bounded and U2 ⊂ Cδ0/ 2 , applying Lemma 2-(i) and using
similar arguments that in the proof of Lemma 7, we obtain

lim
T→∞

sup
c∈U2

1

T − p
TX

t=p+1

³
ζ(yt − log(eht(c)))− ζ(yt − log(ht(c)))

´
∇ log

³eht(c)´∇ log ³eht(c)´0 = 0
(71)

a.s.. Then, by (67), (69) and (71) we have

lim
T→∞

sup
c∈U2

1

T − p
TX

t=p+1

Ht(c) = 0 (72)

a.s..
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From Lemma 2-(vi) and Lemma 2-(v) there exists a neighborhood U ⊂
U2 of γ, a constant 0 < ϑ < 1 and a positive variable W3 such that for all
t ≥ p+ 1

sup
c∈U

°°°°°∇2eht(c)eht(c) − ∇
2ht(c)

ht(c)

°°°°° ≤ ϑtW3,

and

sup
c∈U

E

°°°°°∇2eht(c)eht(c)
°°°°°
2

<∞.

Then, since ψ0 is bounded and U ⊂ Cδ0/2 using similar arguments than in
the proof of Lemma 7, we can show

lim
T→∞

sup
c∈U

1

T − p
TX

t=p+1

Gt(c) = 0 (73)

a.s.. Finally, the Lemma follows from (72) and (73).
Proof of Theorem 3

From Lemmas 5 and 7 we have

1√
T − p

TX
t=p+1

∇ρ (yt − log (ht(γ))) →D N(0, E(ψ
2 (wt))D0), (74)

and from Lemmas 6-(i) and 8 we get that there exists a neighborhood U of
γ such that

lim
T→∞

sup
c∈U

°°°°°° 1

T − p
TX

t=p+1

∇2ρ (yt − log (ht(c)))−A(c)
°°°°°° = 0 a.s.. (75)

From (74) and (75) and Theorem 2 we get that

1

T − p
TX

t=p+1

∇2ρ (yt − log (ht(c)))

is continuous in c, and that A0 = A(γ) is nonsingular (Lemma 6-(ii)). Then,
Theorem 3 follows from Theorem 4.1.3. of Amemiya (1985).
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The following Lemmas 9, 10 and 11 are going to be used to prove The-
orem 4.
Lemma 9. Let Yt be an ergodic process in R

m and g : Rm × R → R, a
continuous function satisfying:

(i) There exists g0 : R
m → R such that |g(Yt, u)| ≤ g0(Yt), and g0(Yt)

integrable.

(ii) limu→∞ g(Yt, u) = g+(Yt) and limu→−∞ g(Yt, u) = g−(Yt). Then

lim
T→∞

sup
u∈ R

¯̄̄̄
¯ 1T

TX
t=1

g(Yt, u)−E (g(Yt, u))
¯̄̄̄
¯ = 0 a.s..

Proof.
From Muler and Yohai (2002) we have

lim
T→∞

sup
u∈ K

¯̄̄̄
¯ 1T

TX
t=1

g(Yt, u)−E (g(Yt, u))
¯̄̄̄
¯ = 0 a.s. (76)

for any compact set K ⊂R. Then to prove the Lemma, it is enough to show
that given any ε, there exists u such that

lim
T→∞

sup
u≥u

¯̄̄̄
¯ 1T

TX
t=1

g(Yt, u)−E (g(Yt, u))
¯̄̄̄
¯ ≤ ε a.s. (77)

and

lim
T→∞

sup
u≤u

¯̄̄̄
¯ 1T

TX
t=1

g(Yt, u)−E (g(Yt, u))
¯̄̄̄
¯ ≤ ε a.s..

Since both proofs are similar we only show (77). To this purpose, it is
enough to prove that

lim
T→∞

sup
u≥u

1

T

TX
t=1

g(Yt, u)−E (g(Yt, u)) ≤ ε a.s. (78)

and

lim
T→∞

inf
u≥u

1

T

TX
t=1

g(Yt, u)−E (g(Yt, u)) ≥ −ε a.s.. (79)
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Since the proofs of (78) and (79)are similar, we only show (78).
Let

Bt(v) = sup
u>v
(g(Yt, u)−E(g(Yt, u)).

Clearly, by the Dominated Convergence Theorem we have limv→∞Bt(v) =
g+(Yt) − E(g+(Yt)) and limv→∞ E(Bt(v)) = 0. Therefore there exists u
such that E(Bt(u)) < ε. Then using the Law of Large Numbers we get

lim
T→∞

sup
u≥u

1

T

TX
t=1

g(Yt, u)−E (g(Yt, u)) ≤ lim
T→∞

1

T

TX
t=1

Bt(u) ≤ ε a.s.

and this proves (78).
Lemma 10. Suppose that all the assumptions of Theorem 2 hold. Then,
we have that

sup
c∈C

h∗t,k(c) ≤ Rt,

where h∗t,k(c) is defined in (15) and Rt is a positive-valued ergodic process.
Proof.

Define

Rt = sup
c∈C

eht(c). (80)

Then, from (21) and (31) we have that Rt is a positive-valued ergodic
processes and from (8) we get

sup
c∈C

ht(c) ≤ Rt. (81)

We prove by induction on t that

h∗t,k(c) ≤ ht(c). (82)

From the (15) it follows immediately that

h∗t,k(c) = ht(c) (83)

for all t ≤ 0. Assume now

h∗j,k(c) ≤ hj(c), j ≤ t.
Then from (15) we have
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h∗t+1,k(c) ≤ a0 +
pX
i=1

aix
2
t+1−i +

qX
i=1

bih
∗
t+1−i,k(c) ≤ ht+1(c), (84)

and thereby (82) follows. Then, the Lemma follows from (81).
Lemma 11. Suppose that all the assumptions of Theorem 4 hold. Let
m0 = E(ρ(wt)) = J(0). Then, there exists δ > 0 such that

lim inf
T→∞

inf
c∈C

M∗
Tk(c) > m0 + δ a.s.,

where M∗
Tk is given in (18).

Proof.
Since γ ∈C, there exists i0, 1 ≤ i0 ≤ p such that αi0 > 0. Then

eht(γ) ≥ αi0x
2
t−i0 = αi0z

2
t−i0

eht−i0(γ). (85)

Consider s = max(p, q). If p < s define ap+1 = · · · = as = 0 and αp+1 =
· · · = αs = 0. If q < s define bq+1 = · · · = bs = 0 and βq+1 = · · · = βs = 0.
Then, we have for all t ≥ 1

h∗t,k(c) ≤ a0 +
sX
i=1

(aik + bi)h
∗
t−i,k(c) ≤ (2 + k)

sX
i=1

h∗t−i,k(c) (86)

and

sX
i=1

h∗t−i,k(c) ≤ (2+k)
sX
i=1

h∗t−i−1,k(c)+
sX
i=2

h∗t−i,k(c) ≤ 2(2+k)
sX
i=1

h∗t−i−1,k(c).

(87)
By Lemma 10, there exists a positive-valued ergodic process Rt such

that supc∈C h∗t,k(c) ≤ Rt. Then, from (86) and (87) we have that

h∗t,k(c) ≤ 2i0(2 + k)i0+1
s+jX
i=j+1

Rt−i. (88)

Let us define the ergodic processes

Nt =
eht−i0(γ)
s+i0P
i=i0+1

Rt−i
, t ≥ 1.

Then there exists η > 0 and ν > 0 such that
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P (Nt > η ) ≥ ν. (89)

Using that limu→∞ ρ(u) = supu ρ(u) > m0, it is easy to show that if ε is
small enough, there exists k1 > 0 such that

inf
u≤−k1

E(ρ(wt − u)) ≥ m0 + ε. (90)

Let us define K as

K =
2i0(2 + k)i0+1ek1

ηαi0
(91)

and define

At =
n
Nt > η, z2t−i0 > K

o
. (92)

Since z2t−i0 is independent ofNt, using (89) and the fact that zt is unbounded,
we have

a = P (At) = νP (z2t−i0 > K) > 0. (93)

From (88), (85) and the choice of K in the definition of At we have

sup
c∈C

(log h∗t,k(c)− log eht(γ)) ≤ −k1. (94)

We can write

M∗
Tk(c) =

1

T − p
TX

t=p+1

ρ(wt + log(eht(γ))− log(h∗t,k(c))).
Let us consider first the case when ρ is a bounded function. From (94) we
obtain

inf
c∈C

M∗
Tk(c) ≥ inf

u

1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt)

+ inf
u≤−k1

1

T − p
TX

t=p+1

ρ(wt − u)IAt . (95)

Since ρ is bounded, lim|u|→∞ ρ(u) = supu ρ(u) and IAt is ergodic and inde-
pendent of wt, from Lemma 9 we get
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lim
T→∞

sup
u

¯̄̄̄
¯̄ 1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt)−E (ρ(wt − u)) (1− a)
¯̄̄̄
¯̄ = 0 a.s.

(96)
and

lim
T→∞

sup
u≤−k1

¯̄̄̄
¯̄ 1

T − p
TX

t=p+1

ρ(wt − u)IAt −E (ρ(wt − u)) a
¯̄̄̄
¯̄ = 0 a.s.. (97)

From (96) and using E (ρ(wt − u)) ≥ m0 > 0 we get

lim inf
T→∞

inf
u

1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt ) ≥ m0(1− a) a.s.,

and from (90) and (97) we obtain

lim inf
T→∞

inf
u≤−k1

1

T − p
TX

t=p+1

ρ(wt − u)IAt ≥ (m0 + ε)a a.s..

Thus, from (95) we derive

lim inf
T→∞

inf
c∈C

M∗
Tk(c) ≥ m0 + εa a.s.,

and then taking δ = εa, the Lemma follows for the case that ρ is bounded.
Consider now the case that lim|x|→∞ ρ(x) = ∞. We start proving that

for any k ≥ 0,
E( sup

|u|≤k
ρ(wt − u)) <∞. (98)

Take any sequence ui with |ui | ≤ k, then

lim sup
i→+∞

E(ρ(wt − ui)) = lim sup
i→+∞

E (ρ(wt − ui)− ρ(wt)) +E(ρ(wt))

≤ k sup
u

ρ0(u) +E(ρ(wt)),

and (98) is proved.
We will prove that there exists k1 large enough such that
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lim inf
T→∞

sup
u≤−k1

1

T − p
TX

t=p+1

ρ(wt − u)IAt ≥ 2m0a a.s. (99)

Given D > 0, define BtD = {|wt| ≤ D} and let D0 be such P (BtD0) ≥ 1/2.
Let d1 be such that for all |x| ≥ d1 we have ρ(x) ≥ 4m0 and put k1 =
2D0 + d1. Then,

lim inf
T→∞

sup
u≤−k1

1

T − p
TX

t=p+1

ρ(wt − u)IAt

≥ lim inf
T→∞

sup
u≤−k1

1

T − p
TX

t=p+1

ρ(wt − u)IAtIBtD0

≥ 4m0 lim inf
T→∞

1

T − p
TX

t=p+1

IAtIBtD0 = 4m0E(IAtIBtD0 ).

Since At and Bt are independent, P (BtD0) ≥ 1/2 we obtain (99).
We prove now

lim inf
T→∞

inf
u

1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt) ≥ m0 (1− a) a.s.. (100)

To prove this it is enough to show that

lim
D→∞

lim inf
T→∞

inf
u

1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt)IBtD ≥ m0 (1− a) a.s..
(101)

Since lim|x|→∞ ρ(x) =∞, there exists a compact set UD ⊂ R such that

inf
u

1

T − p
TX

t=p+1

ρ(wt−u)(1−IAt)IBtD = inf
u∈UD

1

T − p
TX

t=p+1

ρ(wt−u)(1−IAt)IBtD ,

and so using compacity arguments and the fact that IAt is independent of
wt and of BtD we have that

lim inf
T→∞

inf
u∈UD

1

T − p
TX

t=p+1

ρ(wt − u)(1− IAt)IBtD
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≥ inf
u∈UD

E (ρ(wt − u)IBtD) (1− a)
≥ inf

u
E (ρ(wt − u)IBtD) (1− a).

Then to prove (100) it is enough to show that

lim
D→∞

inf
u
E (ρ(wt − u)IBtD) = m0. (102)

Suppose that (102) is not true. Then, there exists (un,Dn) such thatDn ↑ ∞
and ε > 0 such that

E
³
ρ(wt − un)IBtDn

´
< m0 − ε. (103)

Without loss of generality, taking if necessary a subsequence, we have to
consider only the following two cases

(i) lim
n→∞un = u.

(ii) lim
n→∞ |un| =∞.

We have that

lim
n→∞ ρ(wt − un)IBtDn = ρ(wt − u)

Since
sup

|u|≤2|u|
ρ(wt − u)

has finite expectation, by the dominated convergence theorem we get

lim inf
n→∞ E

³
ρ(wt − un)IBtDn

´
= E(ρ(wt − u)) ≥ m0

contradicting (103). This proves (102) for the case (i).
Consider now case (ii). LetD0, d1 and k1 as in the proof of (99). Observe

that in BtD0 the condition |u| ≥ k1 implies |wt − u| ≥ d1 and therefore

lim
n→∞E

³
ρ(wt − un)IBtDn

´
≥ inf
|u|≥k1

E
³
ρ(wt − u)IBtD0

´
≥ 4m0P (BtD0) ≥ 2m0

contradicting (103). This proves (102) for the case (ii). This completes the
proof of the Lemma for the case of unbounded ρ.
Proof of Theorem 4.

Let bγ2 be as defined in (17). From Lemma 11 we have that

lim inf
T→∞

M∗
Tk(bγT,2) > m0 + δ a.s.
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for some δ > 0. On the other hand, by Theorem 2 we have that bγT as defined
in (14) satisfy limT→∞MT (bγT ) = m0. This proves the Theorem.
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