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Abstract

The estimation of the conversion rates in a biochemical process, subject to
the balance equations, raises the issues of detecting gross errors, estimating
unobserved rates, and determining the improvement on the estimation of an
observed rate contributed by the other measurements (balanceability). In this
article we show that the observations constrained by the balance equations may
be represented by a linear multiple regression model, with the consequence that
the appropriate procedures for each issue are straightforward derivations from
standard regression theory. The criteria derived from our approach are shown to
be equivalent to the ones proposed by Wang and Stephanopoulos (1983) and by
van der Heijden et al.(1994), which are based on special and seemingly different
approaches.

A quantity familiar in the detection of regression outliers, called the leverage
of an observation, is shown to determine both the observation’s balanceability,
and the probability of detecting a gross error in it.

Several examples with real and simulated data are analysed. The probabili-
ties of detecting the existence of gross errors and of identifying their source are
computed. It is shown that these probabilities may be rather low in practical
cases, and an approach is proposed to remedy this difficulty.
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INTRODUCTION

The problem of estimating the conversion rates in a biochemical process,
subject to the balance equations, has been considered by several authors. Ba-
sic issues are whether: (a) an observed rate is a gross error, (b) the estimation
of an observed rate can be improved by using the other measurements (bal-
anceability), and (¢) an unobserved rate is estimable from the observed ones
(calculability).

These issues have been addressed by several authors, who used special and
seemingly different approaches for them. For issue (a), Wang and Stephanopou-
los (1983) proposed an approach based on deleting one observation at a time:
an observation is suspect if its deletion causes a large decrease of the error sum
of squares. Van der Heijden et al. (1992 and 1994b) compared the residual
vectors as functions of the different sources of error with the help of the redun-
dancy matrix introduced by van der Heijden (1991). For issues (b) and (c), van
der Heijden et al. (1994a) used the redundancy matrix and the Singular Value
Decomposition for the systematic classification of the measurements according
to their balanceability and calculability.

In this article we show that the observations constrained by the balance
equations may be represented by a linear multiple regression model. This ap-
proach has the advantage that the appropriate procedures for each issue follow
in a straightforward manner from the standard theory of linear least squares:
no ad-hoc methods are necessary, and the procedures are very simple to apply.

An important consequence of the regression approach is that it naturally
brings into consideration the key role of a quantity which is very familiar in
outlier detection in regression. This quantity, called the leverage of an obser-
vation, is shown to determine both the observation’s balanceability, and the
probability of detecting a gross error in it. The regression model yields also an
explicit expression for this probability.

For the detection of gross errors, we compare the criterion derived from
our approach with the ones proposed in the literature, and show that all are
equivalent. This criterion is also shown to yield the maximum probability of
correct detection. The criteria for balanceability and calculability derived from
the regression model are also shown to be equivalent to the published ones. We
consider however that they are simpler and more intuitive for a user familiar
with regression methods.

We consider some examples analyzed in the literature, and some simulated
ones, to show how our procedures work, and also to demonstrate the effect of
gross errors on the results. The probabilities of detecting the existence of a
gross error, and of identifying its source, are computed through analytic and
Monte Carlo methods. It turns out that these probabilities may be rather low
in practical cases. Finally an approach is proposed to remedy this difficulty.



THE BASIC MODEL
Let r be a vector of n unknown rates rq, ..., 7, subject to p < n independent
constraints given by the p X n composition matrix E :

Er =0. (1)

Call ry, and r. the vectors of (true) measured and non-measured rates, of
dimensions m and c respectively, and E,, and E. the respective constraint ma-
trices, so that

C

e=| ] B=(BalEd. 2
and (1) may be written as
Enrm + Ecre = 0. (3)

Call rop, = (Tob,1, -+ Tob,m) the vector of observed rates: rop = ry, + € where
e is the vector of random errors which are assumed to have zero means and
known variances. Interest lies in estimating r —or at least those elements of it
that can be estimated— subject to the balance restrictions (1), and to detect
gross errors.

Finding a set of values that fits the observed values under a set of linear
constraints is the subject of linear regression. The standard linear multiple
regression model has the form

y=XB+u, (4)

where y is the vector of observed responses, X is a fixed known matrix of
predictors, 3 is the unknown vector of regression parameters, and u is a vector
of independent random errors with zero means and equal variances. There are
numerous texts on linear regression; e.g., (Draper and Smith, 2001; Montgomery
et al., 2001; Weisberg, 1985). It will be now shown that ro;, may be represented
in the form (4). This form will make it possible to apply known results of linear
model theory to derive criteria for estimability, balanceability, and gross error
detection.

To this end, note that set of n-dimensional vectors b such that Eb =0 is a
linear subspace, i.e., it is closed under addition and multiplication by a scalar.
This subspace —called the null subspace of E— has dimension ¢ = n —p. Hence
there exist g linearly independent n-dimensional vectors by, ..., b, —a basis of
the subspace— such that any vector r satisfying (1) can be expressed as a linear
combination of them, and therefore

r=>y Bjb;. (5)

for a set of ¢ (unknown) numbers 1, .., 4. Call B the n x g—matrix whose
columns are the b;, and 3 the g-dimensional vector with components 3;. Then



(5) can be written as r = BS. The matrix B (which is not unique) is easy to
compute. In the matrix languages Matlab and Gauss, B is obtained through
the command “null(E)”. Otherwise B can be computed using the QR orthog-
onalization procedure.

If B, and B, are the m x ¢- and ¢ X g—matrices consisting of the first m
and the last ¢ rows of B, that is

B =[by,...,by] = [ BI: ] , (6)
then
and
rm: Bmﬁ; rc: BCﬁ (8)

The observations rq;, differ from ry, by random errors, and hence we can
write
rob=BnjS +e, (9)

where e is a random vector whose elements are the errors ey, .., €,,, which has
mean 0 and a covariance matrix V assumed known. Henceforth var (x) and
var (z) will denote the covariance matrix of the random vector x and the variance
of the random variable x, respectively. It will be assumed that the errors are
independent and hence that V is a diagonal matrix:

V =var(e) =var(rop) =diag(c?, ...,02%,) = X2, (10)

with ¥ =diag(o1, ..., om), where o; = sd(e;) is the standard deviation of e;.

It follows from (4) that ro, is the response vector of a linear regression
model with predictor matrix B, and errors with possibly unequal variances.
To transform it to a standard regression model, call y and u the vectors of
observations and of errors normalized to unit variances, with elements

Tob,i €; .
i =—, u;=— (=1,....,m), 11
p= T =2 ) (1)
that is, y = 2 'rop and u = ¥ 'e; and call X the matrix obtained by dividing
each row of By, by the respective o;, that is

X=Y"'B,. (12)

Then (9) is equivalent to (4). Since the u;s are independent with unit vari-
ances, we have var(u) =var(y) = I, where L,, is the m-dimensional identity

~

matrix. The ordinary least squares estimate 3 of § is the solution of
HnyEH = min, (13)

where ||a|| denotes the Euclidean norm of a. A solution is given by B =Xty,
where X+ denotes the pseudo-inverse of X. This estimate has the smallest



variances among unbiased estimates which are linear in y, according to the
Gauss-Markov Theorem (Stapleton, 1995). If u is normal, then f§ is also the
Maximum Likelihood Estimate. The vectors of fitted values and of observation
residuals are respectively

T = BB =XXB and €=rop — T (14)

ESTIMATION AND CALCULABILITY

Let d = rank(X) = rank(By,); then d < min(m, q). If d = ¢ (“full rank”),
then B is unique and X+ = (XtX)_1 X* where in general X* denotes the
transpose of X. In this case the unmeasured rates are estimated through (8):

T.= B.j3. (15)

If d < ¢, (13) has infinite solutions, but the fitted values are the same for all B

In the terminology of linear regression, a parameter is estimable if it has a
linear unbiased estimate. If d < g, it can be shown that the estimable elements
of r. correspond to the null columns of

C = [,-x" (x*)"| BL.

In general, a linear combination v of the elements of r., v = a’r. —where a
is a given c-dimensional vector— is estimable if and only if

Ca=0, (16)

and its estimate is ¥ = alT. (to simplify the exposition, proofs of all mathemat-
ical statements are deferred to Appendix A).

The estimable elements of r. are the calculable ones in the sense of van der
Heijden et al. (1994a). We thus have a simple criterion for calculability.

BALANCEABILITY
The relationship between the fitted and observed values in model (4) is given
by y = XB = Hy,where
H=XX" (17)

is the so called “hat matrix” (because it relates the observations y to the fitted
“y hat”). Then

i =Y Hiyyj, (18)
j=1
and hence
var(y) = H. (19)

The diagonal element H;; of H is called the leverage of the i-th observation
in regression theory, and will be denoted for simplicity as h;. The name stems



from the fact that an observation with a large h; has a high weight in the
determination of the least squares fit. The h;’s fulfill

0<hi <1 (20)

and
n

> " hi = rank (H). (21)
i=1
If h; = 1, then the i-th residual is null.
Call rm; (i =1,...,m) the elements of ry,. It follows from (19) that

var(Tm,:)

var(rob,i) = b (22)

var(y;) =
According to the terminology of van der Heijden et al. (994a), 7y ; is bal-
anceable if it can be estimated using observations other than rop ;; in this case,
the variance of the estimate is smaller than that of gy, ;.
It follows from (22) and (11) that if h; = 1, then var(r, ;) = var(rop,:), and
hence measurement ¢ is not balanceable. Otherwise

var(Tm,i) = h;var(rop,i) < var(rob,i),

and hence 7, ; is balanceable. Moreover, h; measures the reduction in variance
gained, and hence h; can be taken as a measure of “unbalanceability”.

Since X depends on X, so do the h;s. This can be seen intuitively by noting
that if for a particular ¢ we let o; — 0, then the corresponding h; — 1, which
is natural since if an observation has no error, the other observations will not
improve on its estimation. However, it can be shown that ezact unbalanceability
(i.e., h; being ezactly one) does not depend on 3.

DETECTION OF GROSS ERRORS
The residuals for model (4) are

i=y-X3=3%"1g, (23)
with € defined in (14). Call

Sees =0U =Y U2 (24)

the residual sum of squares. If m = ¢, then S;¢s = 0 and no further analysis can
be performed. It will henceforth be assumed that m > q.

Assume the errors u; to be normal. It is a standard result of multiple re-
gression theory that S.es has a chi-squared distribution with m — d degrees of
freedom, where d = rank(B,,) = rank(X). This fact may be used to carry an
overall test of fit: if S,es is larger than —say— the 0.95 quantile of the chi-
squared distribution, then the data do not support model (4), with p-value less
than 0.05.



This test does not signal the specific cause of misfit. We shall now estimate
the location of a gross error. The residual vector U has covariance matrix I — H,
and hence var(u;) = 1—h;. Call ey ; the residuals standardized to unit variance

- u; €
€st,i = = —. 25
Tk sd(@) (25)

The €, are standard normal (but not independent!). Let i* be the value of ¢

that maximizes ey ;|, and let A= w;«. Then ¢* estimates the location of the
suspect value, which can be corrected replacing y;« by y;+ — A= ¥~ and hence
replacing 7op, i+ by Zi= 0=

An alternative to the chi-squared test is to use the statistic

T = ma e (26)

Call G the distribution of T under the hypothesis of no gross errors. Then a
new test can be defined, by declaring an observed value of T significant at level
«a if it is larger than the (1 — «)-percent point of G. The distribution G depends
on X, and does not have an explicit form, but accurate approximations can be
found; see (Siddk, 1967).

This procedure has a theoretical justification. Call x; the i-th row of X.
Consider the model of a single gross error, represented by

B xt B+u; for i+
Yi = { X! B+A +wu; for i=1g (27)

where 79 and A are unknown. Then it is shown by Belsley et al. (1980) that
i* and A are the Maximum Likelihood Estimates of 190 and A, respectively;
and that T yields the Likelihood Ratio Test of the null hypothesis {A = 0}
against the alternative {A # 0} . The estimator ¢* maximizes the probability of
correctly choosing 7.

A natural approach to outlier detection would be to omit each observation
in turn and recompute the estimates. For i = 1,...,m call 3; the least squares
estimate computed without using observation i, and v; the respective (“leave-
one-out”) residual: v; = y; — xt,@\(i). It can be shown (Belsley et al., 1980;
Chatterjee and Hadi, 1988) that v; = u;/ (1 — h;), and hence v;/sd(v;) = €4,
so that nothing new can be obtained through this approach.

Detection probabilities

Assume model (27). Then the probability that the chi-squared test yields a
p-value less than « is

m=1-Fpx[xi(1—-a)], (28)

where A = AL/1 — h;,, X3(0) is the d-quantile of the chi-squared distribution
with & degrees of freedom, and Fj ) is the distribution function of the non-
central chi-squared distribution with & degrees of freedom and non-centrality
parameter 2. Table I gives 7 for o = 0.05 and a range of values of k, h; and
A. Tt follows that if h; = 0.9, then the probability is very low even for A = 4.



In general, an observation with small o; will have a large h;. In fact, the i-th
row of the matrix X is obtained by dividing the i-th row of By, by ¢;, and this
will yield large values if o; is small. Intuitively, an observation with a low error
variance receives a high weight in weighted least squares, which makes it more
dangerous if it is a gross error.

In a typical situation with m = 5 and d = 2, the sum of the h;s is 0.6
according to (21), and so we cannot hope all of them to be small.

RELATIONSHIP WITH PREVIOUS WORK

Van der Heijden (1991) and Van der Heijden et al. (1994a) define the redun-
dancy matriz as R = E,, — E.ETE,,. It follows from (3) that r. = —EfE,,ry,,
and hence that Rr,, = 0. They define the weighted least squares estimate T,
of ry, as

(ron — Fm)t var (rob)f1 (fob — Tmy) = min with Rry, = 0. (29)

Let
e =Rrop, P =var(e), h. =c'PTe. (30)

The vector ¢ is called “residual vector” in the cited articles; note that it does
not coincide with our observation residuals € or U.

It is shown by van der Heijden et al. (1994a) that h. has a chi-squared
distribution with & = rank(R) degrees of freedom. This statistic is then used
for testing the significance of departures from the model. The location of gross
errors is estimated with the technique of “compare vectors” (van der Heijden et
al., 1994b). Call ¢; the i-th column of R. The technique is based on the idea that
if the i-th observation contains a gross error, then c; should have approximately
the same direction as . Actually, both £ and the c¢; can be represented in a
space of dimension k (the “reduced vectors”), which allows a graphical analysis
when k = 2. The proximity between the directions of € and c; is measured by

£ Pte; ’
0 = (C;P—Jrcz) (31)

and hence suspect observations correspond to large 9;s.

Alternatively, Wang and Stephanopoulos (1983) define a sum of squared
residuals which coincides with h.. They estimate the location of the gross error
by looking for the observation that causes the largest decrease in h.. That is, for
i=1,..,m call S;) the value of h. computed without using the i-th observation.
Then they look for the i such that S(;) is minimum.

It is shown in Appendix A that

A) T, coincides with Ty, in (14)
B) ¢ = Re coincides with € defined in (14)

C) the sum h. coincides with our Sy in (24) and k =m —d



D) 0; = é\gt,i

E) Si) = Sres — €2 ., and hence minimizing S(iy is equivalent to maximizing

). st,2)
|€sm‘| .

It follows from (D)-(E) that our Maximum Likelihood estimator i*, the dele-
tion approach of Wang and Stephanopoulos (1983) and the “compare vector”
approach of Van der Heijden et al. (1994b) give the same results.

EXAMPLES
Consider first the examples in pages 7-9 of (van der Heijden et al., 1994a),
where r = (Tx,Ts,Tp,TN,Tc,To,Tw)t and

1 1 1 0100
183 2 3 3 0 0 2

B= 056 1 05 0 2 2 1 (32)
017 0 0 1 0 0 O

Since ezact balanceability does not depend on 3, we may take ¥ = L.
In Example 1, ry, = (TN,Tx,To)t and the h; are

0.9719 0.02809 1.0000
so that ro is not balanceable; and

—-0.697 0465 0232 0
C=| 0204 -0.136 —-0.068 0
—-0.340 0227 0113 O

so that ry, is calculable and rg, rp and ro are not calculable. Note however
that each row of C adds to zero, so that Ca =0 for a =(1,1, 1,0), and hence
alr.= rg + rp+rc is calculable.

In Example 2, ry, = (ry). Here H =[1], and hence rx is not balanceable.
The first column of C is null, so that rx is calculable.

In Example 3, ry, = (Tx,TN,Tc,To)t, the h; are

0.9719 0.02809 1.0000 1.0000

and hence neither r¢ nor 7o are balanceable; and C = 0 so that all unmeasured
rates are calculable.

We now deal with the example in pages 16-17 of van der Heijden et al.
(1994b), with the same matrix (32) and r, = (rx,7s,7p,rc,70)" (details of
the computation are given in Appendix B). Their fitted values coincide with
ours, as it to be expected. The tests based on the chi-squared statistic Sies
and on the likelihood ratio statistic 7" in (26) have both p-values of 0.09. The
leverage values h; and normalized residuals €y ; are given in table II. The
absolute error standard deviations o; are also included for reference. The first
three measurements are suspect. The first is almost unbalanceable. Note that
it has both the largest h; and the smallest o;.
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To examine the performance of the proposed methods, we generate an ar-
tificial data set in which the gross errors are known beforehand. To this end,
we first take the values fitted in the former example as the “true values” ry, ;
(i.e., they fulfill the model (1) exactly), and define new “observations” by
Tobi = Tm, + 0i%, where o; is the standard deviation in Table II, and the
z; are independent standard normal. Table III shows the new “data” and the
results. The p-values of both tests are 0.64. Now we generate a gross error
by adding to observation iy the quantity Ac;,. Table IV shows the results, for
1o = 1 with A =4 and ig = 4 with A = 3 and 4. When ig = 1, the gross error
is not detected despite its large size. When iy = 3 and A = 3, the result is only
significant at the 0.10 level, and i is incorrectly estimated; when A = 4 the
result is very significant, but O appears also as a probable error source.

Table V gives for each of the five measurements the probability w (test)
of detecting a gross error with A = 3, and the probability = (:*) of correctly
identifying ip in the cases that the test was significant at the 0.05 level. The
first was computed using (28) , and the second was obtained by a Monte Carlo
simulation, repeating 10000 times the generation of the artificial data. The
simulation was also used to compute the detection probabilities of the test based
on T defined in (26). Since the results were not better than those of the chi-
squared test, we found no reason to recommend 7"

DISCUSSION

The approach based on regression has yielded a straightforward derivation
of the criteria for balanceability and calculability, and for the detection of gross
errors. The proposed methods are equivalent to the former ones. Besides, this
approach highlights the key role of the leverage h;, in measuring both the degree
of balanceability of an observation, and the probability of detecting a gross error
in it.

The regression aproach makes it straightforward to calculate the probabilities
of detecting the presence of a single gross error, and of locating its source. These
probabilities are seen to be rather low in practical cases. For observations with
high leverage, they may be extremely low. The main reason for this difficulty is
that usually the number of observations is small compared to that of unknown
parameters. The situation is better if there are replications, for in this case the
leverage of each observation is divided by the number of replications.

However, there is a better way to reconcile the data and detect gross errors,
and it is to use all the available information. In a biochemical experiment one
seldom has an isolated set of observations. There is an external variable ¢, such
as time, flow rate or dilution rate, and for each value of t there is a vector
rob(t). It is natural to assume that the true values rop(¢) depend smoothly on
t, and hence to reconcile the data for a given ¢, one may use the information
contained in rop(t') for ¢’ close to ¢. This approach allows us to fit the data with
a much lower number of parameters, and should hence be better than dealing
with each rop(t) independently of one another. The implementation of this idea
is in progress.
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APPENDIX A: PROOFS OF RESULTS

For reasons of space, only the essential steps of the proofs are presented.

Proof of (16)

Let v = a'r, = a'B./3 for some c-dimensional vector a. If B is not unique,
a linear combination of 3 is estimable (Stapleton 1995) if and only if it de-
pends on 8 only through X3 (recall that Xﬁ is always unique even if B is
not). Let d = Bfa. Then the estimability of v is equivalent to d = X’c for
some m-dimensional vector ¢. A solution to d = X'c is ¢ =(X*)*d, and hence
Bla = X' (X*)" Bta, which is equivalent to (16).

The matrix H

It follows from (17) that H verifies H = H' = H?, and hence

m

hi :ZHEJ = hi + Z ijs
i=1

J#i

which implies that h; > 0 and h;(1 — h;) > 0, which is equivalent to (20); and
that if h; is either 0 or 1, then H;; = 0 for j # <.

It will now be shown that exact balanceability does not depend on 3. The
image of X is the subspace Im(X) of vectors equal to Xa for some a. Assume
that X is such that hy = 1. This is equivalent to Hy; = 0 for j # 1, and hence
to Hv=v for v=(1,0,0,..,0). This is in turn equivalent to v €lm (X) =
Im (B,,) ; and this property does not depend on X.

Optimality of *

Note that each ig in (27) yields a different distribution for the observations
rob. Assume that ig is chosen at random among {1,..,m} with equal probabil-
ities. Estimating iy is then a typical problem in Discrimination (Seber, 1984).
It is known that the estimator that maximizes the probability of choosing the
true value of ¢ is given by choosing among the m distributions the one that at-
tributes the highest likelihood to the observed data, and this property is fulfilled
by ¢* since it is the Maximum Likelihood estimator.

Proof of (28)

If the random vector z is k-variate normal with var (z) = I, and expectation
11, then ||z]|* has a non-central chi-squared distribution with & degrees of freedom
and non-centrality parameter A2 = [|u]|*. Under model (27), y has identity
covariance matrix and expectation XG+Av, where v = (v, .., Uy,) with v;, =1
and v; = 0 for i # 4y. Hence u= (I, ,—H)y has var (1) = I,,—H and expectation
Ap with g = (I,—H) v. Note that ||p]|* = 1—hj,. Since I, —H is an orthogonal
projection matrix of rank kK = m — d, it has k unit eigenvalues and m — k null
ones. Call a; (¢ = 1,..., k) the eigenvectors corresponding to the former, and let
z; = 0'a; and 7; = u'b;, so that

k k
= zay, |z]? = [G)* = Swes and p=) wa;
=1

i=1

Then z = (21, ..., 2;;) has var(z) = I, and expectation A7, where 7 = (74, .., %)
has ||| = ||l -

12



The redundancy matrix
Proof of (A): Tt suffices to show that the condition RT,,= 0 is equivalent to
= B, 0 for some 5. It follows from (7) that

RB,, = 0, (33)
and hence r,,,= B,,3 implies Rr,,,= 0. On the other hand, if Rr,,,= 0, the vector

[ ]

verifies (1), and it follows from (8) that Tp,= B,[.

Proof of (B): The result follows from Re = Rr,, —Rry, and Rry,, = R, =0
by (A) and (29).

Proof of (C): The null subspace of a matrix A is the set Null(A) of the
vectors a such that Aa = 0. The equivalence proved in (A) can be restated as

Null(R) =Im(B,y). (34)

The dimensions of Null(R) and of Im(B,,) are m —rank (R) and rank (B,,),
respectively, and hence m — k = d.

Let z;, z and a; be the variables and vectors defined in the proof of (28).
Then zivar (z) " z = ||z]|> = |[6]|*> = Sres.

On the other hand, we may write ¢ =(RX)u. Since u € Im(I,,—H),
¢ belongs to the subspace V' = Im (RX (I,,—H)). Since (34) implies that
Null(R¥) =Im(X), which is orthogonal to Im (I,,—H), we have that V has
dimension k. Let vy, ..., vi be an orthogonal basis of V| so that € may be writ-
tenase = Zle w;v;. Let w = (w1, ..., wy) . Then w = Az for some k x k-matrix
A of rank k, and hence

etvar ()" e = whvar (w) ' w = z'var (z) ' z.

Proof of (D): Tt will be shown that the denominator of (31) equals (1 —
+
hi)/o?. Let Q = (RX)" [(RE)(RE)t} (RX). Then the denominator is the i-

th diagonal element of ¥71QX, and is hence equal to @;;/0?. We shall show
that Q =1,,—H.

A result from Linear Algebra states that if ¢ is orthogonal to Null(A) —i.e.,
cta=0 for all a eNull(A), then ¢ €Im(A").

Since Null(RX) =Im(X), the image of (RX)" coincides with the orthogonal
complement of Im(X), which is Im (I,,, — H) . Finally, the definition of Q implies
that 9 = Q' = Q?, and hence Q is the orthogonal projection on the image of
(RX)".

A similar argument shows that the denominator of (31) equals u?/o?.

Proof of (E): The result is proved in (Belsley et al., 1980). By the way, since
Sy > 0 for all 4, it follows that the statistic (26) fulfills T2 < Spes.

APPENDIX B: DETAILS OF COMPUTATION

13



The purpose of this section is to give the reader the elements to reproduce
our results corresponding to the example in pages 16-17 of van der Heijden et al.
(1994b). Table VI gives the matrix E =[E,|E.] in (1)-(2) Table VII gives the
matrix B in (6) resulting from the Matlab command “Null(E)”. Finally table
VIII gives the vectors ro, and y, the matrix X and the parameter vector (3
defined in (11), (12) and (13).

Recall that another software may yield a different B and hence different y,
X and S; but H and therefore the fitted values and residuals are the same.

14
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Table I: Rejection probabilities of the chi-squared test

A hy deg. fr.

2 4 6

3 02 0.67 055 048

04 054 043 0.36

06 038 029 0.24

0.8 021 0.16 0.13

09 0.12 0.10 0.09

4 02 090 0.83 0.77

04 080 0.70 0.62

0.6 0.61 0.50 0.43

0.8 034 0.26 0.22

09 019 0.14 0.12

Table II: Example

T h €st,i
1.07 0.958 -2.11
4.17 0.388 -2.05
220 0.628 -2.161
2.62 0.250 0.114
146 0.776 1.311

0.09

=|O Qw4

Table III: Artificial data without gross errors

Tob,i é\st,i
X 13909 -0.89
S -24.642 -0.91
P 0.156 -0.59
C 5.340 -0.56
O -5456 -0.04
D 0.65

Table IV: Artificial data with gross errors (altered values in boldface)
=1, A=4 io=4, A=3 iv=4, A=4

Tob,i é\st,i Tob,i é\st,i Tob,i €st,q
18.181 -0.07 13.909 -0.24 13.909 -0.03
-24.642  -0.09 -24.642  -0.07 -24.642  0.21
0.156  0.12 0.166 -1.29 0.156 -1.52
5.340 -0.36 13.190 2.04 15.811 2.90
-5.456 -0.31 -5.456  2.13 -5.456  2.85

p=0.94 0.09 0.01
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Table V: Detection and identification probabilities

m (test) m (%)

0.08
0.55
0.35
0.64
0.23

OQ™wmHK

0.15
0.49
0.52
0.75
0.48

Table VI: Balance matrix of example

En E.

1 1 1 1 0 0 0
1.83 2 3 0 0 3 2
056 1 05 2 2 0 1
017 0 0 0 O 1 0

Table VII: Matrix B given by Matlab

-0.2714  0.7745 -0.1469
-0.3114  -0.5235 -0.5977

B, 0.6555 -0.0346 0.2247
-0.0727  -0.2163  0.5198
0.3868 0.2378 -0.4148

B. 0.0461 -0.1317  0.0250
-0.4927  0.0643  0.3575

Table VIII: Elements of regression model

Tob y X
21.37  20.00 -0.2540 0.7248 -0.1375
-69.45 -16.67 -0.07473  -0.1256  -0.1434
147 6.667 0.2973 -0.01569  0.1019
23.57  9.009 -0.02779 -0.08267  0.1987
-12.51 -8.547 0.2643 0.1625 -0.2834
153 7.284 42.82 63.69
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