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Ana M. Bianco, Marta Garćıa Ben and Vı́ctor J. Yohai
Universidad de Buenps Aires

October 24, 2003

Technical Report 1/2003
Instituto De Cálculo

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

1



Abstract

In this paper we propose a class of robust estimates for regression with errors
with log-gamma distribution. These estimates, which are a natural extension
of the MM-estimates proposed by Yohai for ordinary regression, may combine
simultaneously high asymptotically efficiency and a high breakdown point. This
paper focuses on the log-gamma regression model, but the estimates can be ex-
tended to a more general class of regression models with continuous asymmetric
errors.

1 Introduction

The MM-estimates for linear regression were introduced by Yohai (1987) to
achieve simultaneously two properties: high breakdown point and high efficiency
for normal errors. In fact, we can find MM- estimates that simultaneously have
breakdown point 0.5 and asymptotic efficiency for normal errors as close to one
as desired.

The MM-estimates are computed through a three step algorithm. In the
first step, we compute an initial high breakdown S-estimator of the regression
parameter, which may be inefficient. In the second stage, we compute a high
breakdown point M-estimate of the scale-parameter. Finally, we calculate an
M-estimate which is tuned, using the scale estimate of the second step, to have
high efficiency. This final estimate also inherits the breakdown point of the
S-estimate computed in the first step.

Other proposal that have simultaneously these two properties are the τ−estimates
(Zamar and Yohai (1988) ) CM-estimates (Mendes and Tyler (1996)), and the
adaptive estimates proposed in Gervini and Yohai (2002).

However, when the errors distribution is asymmetric all these estimates give
no consistent estimates of the intercept and therefore, the corresponding pre-
diction of a conditional mean given the regressors are also no consistent. The
estimates of the slopes are consistent, but they may lose the high efficiency
property.

Marazzi and Yohai (2002) introduce a class of high breakdown point highly
efficient estimates when the distribution of the errors is known except by scale
parameter, as is for example the case of regression with known errors distribu-
tion except from a scale parameter. This is the case, for example, when the
distribution of the errors is log-Weibull. However, these estimates are not suit-
able for other families of asymmetric error distributions, e.g. when the errors
have log-gamma distribution.

Among the robust proposal for estimating the parameters of a gamma dis-
tribution we can mention Hampel (1968) and Marazzi and Ruffieux (1996),
who deal with independent identically distributed (i.i.d) observations. Ste-
fanski, Carroll and Ruppert (1986) and Künsch, Stefanski and Carroll (1989)
obtained Hampel-optimal bounded influence estimators for generalized linear
models. However, the breakdown point of these estimates tends to zero when
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the number of regressors increases. More recently, Cantoni and Ronchetti (2001)
derived a class of robust estimates based on the notion of quasi-likelihood. All
these estimates require the computation of a correction term in order to make
the estimates Fisher-consistent.

In this paper we generalize the MM-estimates for the case of errors with
log-gamma distribution. The definition of these estimates follows closely the
original proposal of Yohai (1987) with the main difference that the ordinary
residuals are replaced by deviance residuals. It is shown that the MM-estimates
defined in this way a have high breakdown and high efficiency under log-gamma
errors.

In Section 2 we describe the log-gamma regression model and the corre-
sponding maximum likelihood estimate. In Section 3 we introduce M-estimates
for the regression model with log-gamma errors and establish their asymptotic
normality. In Section 4 we define the S-estimates and study their breakdown
point and consistency. In Section 5 we define the MM-estimates and show that
they may simultaneously have high breakdown point and high efficiency. Finally,
Section 6 is an Appendix with some proofs.

2 Log-gamma regression models

Let us consider the parametrization of the gamma distribution, denoted by
Γ(α, µ), with density function given by

f(y, α, µ) =
αα

µα Γ(α)
yα−1 e−(α/µ)y if y ≥ 0. (2.1)

Then, µ = E(y) > 0, α > 0 determines the shape of the density function and
Var(y) = µ2/α.

Consider now the gamma generalized linear model where the distribution of
the response z given the vector of covariates x = (x1, x2, ...xp)′ has Γ(α0, µ(x))
distribution and the link function is

log(µ(x)) = x′β0. (2.2)

If the model has intercept, the last component of xp = 1. Observe that we are
assuming that the shape parameter α does not depend on xi. More details of
this model can be found in Chapter 8 of McCullagh and Nelder (1989).

Since ε = z/µ(x) has distribution Γ(α, 1), putting y = log(z) and u = log(ε)
this model can be also written as

y = x′β0+u, (2.3)
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where the error u has the distribution of the logarithm of a Γ(α, 1) variable (log
Γ(α, 1)). Moreover, y and u are independent and the density of u is g(u, α0),
where

g(u, α) =
αα

Γ(α)
eα(u−eu). (2.4)

This density is asymmetric and unimodal with maximum at 0. The model
given by (3) is called log-gamma regression ( LGR).

Let us assume that (x1, y1)... (xn, yn) is a random sample of the LGR model
with shape parameter α0 and regression parameter β0.

The Maximum Likelihood Estimator (MLE) of α0 and β0 are the values
which maximize the likelihood function L(α, β) given by

L(α, β) =
n∏

i=1

g(yi − x′iβ, α),

where g is given by (4). It is well known that the maximization with respect
to β is equivalent to the minimization of the deviance, which compares the log
likelihood under the saturated model with the log likelihood under the model
we are considering

D(α, β) =
n∑

i=1

2 log
(

f(0, α)
f(yi − x′iβ, α)

)
.

Let us call di the deviance component of the i–th observation which is equal
to the square of the deviance residual. In the log-gamma regression model we
have

di(α, β) = 2 log
(

f(0, α)
f(yi − x′iβ, α)

)
= 2 α (−(yi − x′iβ) + eyi−x′iβ − 1)

= 2α d∗(yi,xi, β), (2.5)

where

d∗(yi,xi, β) = −(yi − x′iβ) + eyi−x′iβ − 1. (2.6)

The MLE of β can be defined as

β̂ML = arg min
β

n∑

i=1

d∗(yi,xi, β). (2.7)

Let us observe that d∗(yi, xi, β) does not depend on the shape parameter α,
but its distribution does depend on α.
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3 M-estimates

We define M-estimates of β0 by

β̂M
n = arg min

β

n∑

i=1

ρ
(√

d∗(yi,xi, β)/ĉ
)

, (3.1)

where ĉ is a an estimate of a tuning constant c0 that depends on (xi, yi), 1 ≤ i ≤
n. We will suppose that the loss function ρ satisfies the following assumptions:

A1.( i) ρ(0) = 0, (ii) let a = sup ρ(u), then 0 < a < ∞, (iii) if 0 ≤ u < v,
then ρ(u) ≤ ρ(v), (iv) ρ is differentiable, (v) if ρ(u) < a and 0 ≤ u < v, then
ρ(u) < ρ(v).

We will prove that the M-estimator defined in (1) is Fisher-consistent, that
is, for any α0

arg min
β

Eβ0,α0

[
ρ

(√
d∗(y,x, β)/c0

)]
= β0. (3.2)

The Fisher consistency will be proved for any error density f0 satisfying:
B. The density f0 is strictly unimodal, continuous and f0(x) > 0 for all x.
Observe that the density of a log Γ(α, 1) distribution satisfies A3
Lemma 1 below, proved in the Appendix, shows the Fisher-consistency of a

M-estimate of location for any (symmetric or not ) continuous and unimodal
density. Lemma 2 extends this result for a M-estimate of regression. We need
the following assumption on the error density

Define y0 = arg max f0(y) and put

d(y, µ) = 2(log f0(y0)− log f0(y − µ)). (3.3)

Lemma 1. Let fµ(y) = f0(y − µ) be a location family of density functions,
where f0 satisfies B. Assume that y is a random variable with density fµ0(y)
and ρ(u) is a function that satisfies condition A1. Then,

µ0 = arg min
µ

Eµ0

[
ρ

(√
d(y, µ)/c

)]
.

Lemma 2. Let (x, y) be a random vector such that

y = x′β0+u,

where the error u is independent of x and u has density function f0 satisfying
B. Then, if ρ(u) satisfies condition A1 we have

β0 = arg min
β

Eβ0

[
ρ

(√
d(y,x, β)

c

)]
.

Proof. This result follows from Lemma 1, taking conditional expectation on
x.
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Similar Fisher-consistency results were obtained by Lenth and Green (1987)
for deviance based M-estimators. The difference is that Lenth and Green results
require that the estimating equation obtained differentiating (1) has a unique
solution, and therefore does not include the case of ρ bounded. It is well known
that M-estimates with unbounded ρ are not robust for high leverage outliers.
Marazzi and Yohai (2003). prove Lemma 2 for the particular case of the trun-
cated likelihood, which corresponds to ρ in the family ρk(t) = min(t, k).

The following Theorem, which follows immediately from Lemma 2 and (5),
establishes the Fisher consistency of M-estimates for the LGM.

Theorem 1. Let (x, y) be a random vector such that

y = x′β0+u,

where the error u is independent of x and has log Γ(α, 1) distribution. Assume
that ρ(u) is a function that satisfies condition A1 and d∗(y,x,β) is given by
(6). Then, for any c

β0 = arg min
β

Eβ0

[
ρ

(√
d∗(y,x, β)/c

)]
.

3.1 Asymptotic Distribution

In this Section we establish the asymptotic normality of M-estimates.

Let ψ(t) = ρ′(t) and

w(t) =
ψ(t)

t

and define the residuals r(yi, xi, β) = yi − x′iβ. Taking derivatives in (1), we
have that the M-estimate β̂M

n satisfies the equation

n∑

i=1

ψ




√
d∗(yi,xi, β̂M

n )

ĉ


 (1− er(yi,xi,β̂

M
n ))√

d∗(yi,xi, β̂M
n )

xi = 0 (3.4)

or equivalently

n∑

i=1

w




√
d∗(yi,xi, β̂M

n )

ĉ


 (1− er(yi,xi,β̂

M
n )) xi = 0, (3.5)

where

w(t) =
ψ(t)

t
.

In order to derive the asymptotic distribution of β̂M
n we will use the following

additional assumptions.
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A2. ρ is twice continuously differentiable and there exists m such that
|u| > m implies ρ(u) = sup ρ.

A3. E(||x||2) < ∞, where || || is the l2- norm and E(xx′) is non-singular.
The following Theorem proved in the Appendix gives the asymptotic distri-

bution of the M-estimate.
Theorem 2. Let (x1, y1), .., (xn, yn) be random vectors that satisfy the LGR

model with parameters α0 and β0. Assume that assumptions A1-A3 hold. Let
β̂n be a sequence of estimates satisfying (5), which is strongly consistent to β0.
Assume also that ĉ converges to c0 in probability. Then,

√
n(β̂n − β0) −→D N

(
0,

B(ψ, α0, c0)
(A(ψ, α0, c0))2

E(xx′)−1

)
, (3.6)

where

B(ψ, α, c) = Eα

[
w2

(√
h(u)
c

)
(1− eu)2

]

A(ψ, α, c) = Eα

[
w′

(√
h(u)
c

)
(1− eu)2

2c
√

h(u)
+ w

(√
h(u)
c

)
eu

]
,

where u has log Γ(α, 1) distribution and

h(u) = −u + eu − 1. (3.7)

3.2 Asymptotic Efficiency

The maximum likelihood estimate β̂ML is the M-estimate with loss function
ρMV (u) = u2, or equivalently with score function ψMV (u) = 2u. It is easy to
check that

B(ψMV , α0, c0)
(A(ψMV , α0, c0))2

=
1
α0

.

Therefore, the asymptotic efficiency of the M-estimate for the LGM respect
to the maximum likelihood estimator is given by

ARE(ψ, α0, c0) =
1
α0

(A(ψ, α0, c0))2

B(ψ, α0, c0)
.

Suppose that ψ(0) = a > 0, then it is easy to show that limc→∞ w(u/c) = a,
limc→∞ w′(u/c )= 0, and then

lim
c→∞

ARE(ψ, α0, c) = 1 (3.8)
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Hence, we can choose c0 to achieve any desired efficiency e. Observe that c0

will depend also on α and then, we can define C(e, α)

ARE(ψ, α0, C(α0, e)) = e.

Then, to choose a value c0, so that the MM-estimate defined by (1) achieves a
given efficiency e, an estimate of α0 is required. The MM-estimates defined in
Section 5 includes an estimate of α0 and then, C(α0, e) can be also estimated.
Therefore, they can calibrated to attain any desired efficiency.

4 S-estimators

As it was noted in the previous section, in order to calibrate the M-estimator
an initial estimate of the shape parameter α is needed. For this purpose we will
compute an initial estimate of β by means of a S-estimate. The S-estimates
were introduced by Rousseeuw and Yohai (1984) for ordinary regression.

For each value of β let sn(β) be the M-scale estimate of
√

d∗(yi,xi, β) given
by

1
n

n∑

i=1

ρ

(√
d∗(yi,xi, β)

sn(β)

)
= b, (4.1)

where ρ satisfies A1. In order to obtain an estimate with high breakdown point,
we choose b = 1

2 sup ρ.
The S-estimate of β for the LGR model is defined by

β̃n = arg min
β

sn(β) (4.2)

and the corresponding scale estimate by

ŝn = min
β

sn(β). (4.3)

Next Theorem shows that the S-estimates are Fisher consistent. Define the
asymptotic value of sn(β) as the value s(α0, β, β0) such that

Eα0β0

[
ρ

(√
d∗(y,x, β)

s(α0, β, β0)

)]
= b. (4.4)

It is easy to show that s(α0, β, β0) = s(α0, β − β0, 0) = s∗(α0, β − β0).
Theorem 3.Let (x′1, y1)′, ..., (x′n, yn)′ be independent vectors satisfying the

LGR model and assume that ρ satisfies A1. Then, the S-estimate is Fisher
consistent, i.e., β0 = arg min s∗(α0, β − β0).

Proof. From Theorem 1 we have that for any β 6= β0

Eα0β0

[
ρ

( √
d∗(y,x, β0)

s∗(α0, β − β0)

)]
< Eα0β0

[
ρ

( √
d∗(y,x, β)

s∗(α0, β − β0)

)]
= b.

8



From (4) and the fact that E (ρ(u/s)) is decreasing in s, we get

s(α0,0) < s(α0,β − β0),

and this proves the Theorem.
The following Theorem can be proved using similar arguments to those used

in Theorem 4.1 of Yohai and Zamar (1988). The main change in the proof is
to replace the initial estimates by the true parameters. We need the following
condition:

A4. P (x′θ =0) <1/2 for all θ 6= 0.

Write S∗(α) = s∗(α,0),then

Eα

[
ρ

(√
h(u)

S∗(α)

)]
= b, (4.5)

where h(u) was defined in (7) and u has log-Γ(α, 1) distribution.
Theorem 4. Let (x′1, y1).′, ., (x′n, yn)′ be independent vectors that satisfy

the LGR model . Assume that conditions A1 and A4 hold. Then,

(a) the S-estimate β̃n defined in (2) is strongly consistent to β0,

(b) the scale estimate ŝn is strongly consistent to S∗(α0).

It is immediate that the S-estimate given in (2) also satisfies

β̃n = arg min
β

n∑

i=1

ρ

(√
d∗(yi,xi, β)

ŝn

)

and therefore is an M-estimate. Therefore, is asymptotic distribution is given
by Theorem 2 with c0 = S∗(α0).

We will use part (b) of Theorem 4 to define a robust estimate of α. For this
purpose we need to show that S∗ is invertible. This is done in the next two
Lemmas.

Lemma 3. Let y be a log Γ(α, 1) distribution . Then h(y) = −y + ey − 1
is strictly stochastically decreasing with α.

Proof . We have that h(y) = b(x) = x − log x − 1, where x = ey has
distribution Γ(α, 1). According to (1), the density of x is

f(x, α) = A(α)e−αx+(α−1) log x = A(α)e−αe−αb(x)x−1 = A∗(α)e−αb(x)x−1.

The function b(x) is invertible in the intervals (0, 1] and [1,∞). Let b1 and
b2 the inverses of b(x) in these two intervals. Then, z = h(y) = b(x) takes only
positive values with density

f∗(z, α) = A∗(α)e−αz

( |b′1(z)|
b1(z)

+
|b′2(z)|
b2(z)

)
= A∗(α)e−αzb∗(z),
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for some function b∗ and where A∗(α) =
(∫∞

0
e−αwb∗(w)dw

)−1
.

We have to show that

F ∗(z, α) =

∫ z

0
e−αwb∗(w)dw∫∞

0
e−αwb∗(w)dw

=

∫ z

0
e−αwb∗(w)dw/

∫∞
z

e−αwb∗(w)dw(∫ z

0
e−αwb∗(w)dw/

∫∞
z

e−αwb∗(w)dw
)

+ 1

is strictly increasing with α. This is equivalent to show that

G(z, α) =

∫ z

0
e−αwb∗(w)dw∫∞

z
e−αwb∗(w)dw

is strictly decreasing with α. Take α1 < α2 and let ∆ = α2 − α1. Then

G(z, α2) =

∫ z

0
e−α1we−∆wb∗(w)dw∫∞

z
e−α1we−∆wb∗(w)dw

>
e−∆z

∫ z

0
e−α1w b∗(w)dw

e−∆z
∫∞

z
e−α1w b∗(w)dw

= G(z, α1).

This proves the Lemma.
Lemma 4. The function s∗(α) : (0,∞) −→ (0,∞) defined in (5) is contin-

uous, strictly decreasing and surjective if ρ satisfies A1.
Proof. S∗(α) can be defined by

d(α, S∗(α)) = b,

where

d(α, s) = Eαρ

(√
h(y)
s

)
,

where y has distribution log Γ(α, 1).
Using the Dominated Convergence Theorem we have that d(α, s) is contin-

uous. Since, by Lemma 3, the distribution of h(y) is strictly stochastically
decreasing with α, we have that d(α, s) is decreasing in α. Thus, S∗(α) is
continuous and decreasing.

To show limα→∞ S∗(α) = 0, let αn → ∞ and xn a sequence of variables
with distribution Γ(αn, 1). Since E(xn) = 1 and var(xn) = 1/αn → 0, we have
that yn = log xn → 0 in probability, and therefore, h(yn) → 0 in probability
too. Then, since ρ is bounded and ρ(0) = 0, we get that d(αn, s) → 0 for any s
and this implies that S∗(αn) → 0.

Finally we will show that lima→0 S∗(α) = ∞. We start showing that if x
has distribution Γ(α, 1), then limα→0 Eα(x1/2) = 0. We have that

Eα(x1/2) =
Γ(α + 1/2)
Γ(α)α1/2

.
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Since limα→∞ Γ(α+1/2) = π1/2, it will be enough to show that limα→0 Γ(α)α1/2 =
∞. We have that

Γ(α) =
∫ ∞

0

e−αzzα−1dz

≥ e−α

∫ 1

0

zα−1dz

= e−α/α

Therefore, limα→0 Γ(α)α1/2 ≥ limα→0 e−α/α1/2 = ∞. Consider now αn → 0
and xn a sequence of variables with distribution Γ(αn, 1). Since E(x1/2

n ) → 0 ,
we have that xn → 0 in probability. Then, yn = log(xn) → −∞ in probability
and h(yn) → ∞ in probability. Hence, d(αn, s) → max ρ > b, and this implies
that S∗(αn) →∞.

As a consequence of the above proposition we can compute the inverse of S∗,
that we denote S∗−1. Since ŝn is a consistent estimate of S∗(α), a consistent
estimate of α0 is given by

α̂n = S∗−1(ŝn). (4.6)

Then, from Theorem 4 follows immediately the following result .
Theorem 5. Under the same conditions as in Theorem 4, the estimate α̂n

defined in (6) is strongly consistent to α0.
Proof. Follows from Theorem 4 and the fact that S∗−1 is continuous.

4.1 Breakdown point

One measure of the robustness of an estimate is the breakdown point. Loosely
speaking, the breakdown point of an estimate is the smallest fraction of outliers
than can take the estimate beyond any limit. Hampel (1971) introduced the
asymptotic version of the breakdown point and Donoho and Huber (1983)
defined a finite sample version.

More formally, let Z be a data set of n elements, Z = {z1, ..., zn}, zi =
(x′i, yi)′, xi ∈ Rp, yi ∈ R. Let Zm be the set of all the samples Z∗ = {z∗1, ..., z∗n}
such that #{i : zi = z∗i } = n − m. Given an estimate β̂ of the regression
parameter, we define

bm(Z, β̂) = sup{||β̂(Z∗)||, Z∗ ∈ Zm},

and m∗ = inf{m : bm(Z, β̂) = ∞}. Then the finite sample breakdown point
(FSBDP) of β̂ in Z is ε∗(Z, βn) = m∗/n.

Since the scale estimate ŝn take values between zero and infinity, we can
define two FSBDP, one to zero and one to infinity as follows

b+
m(Z, ŝn) = sup{ŝn(Z∗), Z∗ ∈ Zm}, b−m(Z, ŝn) = inf{ŝn(Z∗), Z∗ ∈ Zm},
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and

m∗ = min
{
m : b+

m(Z, ŝn) = ∞}
, m∗∗ = min

{
m : b−m(Z, ŝn) = 0

}
.

Then, the FSBDP of ŝn to infinity is defined by ε∗(Z, ŝn) = m∗/n and the
FSBDP to zero by ε∗∗(Z, ŝn) = m∗∗/n.

If the set Z has the property that the covariate vectors of any subset of p
observations, are linearly independent it is said that Z is in general position.
Next Theorem shows that if Z is in general position, then the S-estimates with
b = sup ρ have FSBDP point close to 0.5.

Theorem 6 . Let Z = {z1, ..., zn}, zi = (x′i, yi)′and let cn = maxa∈Rp #{i :
a′xi = 0}/n. Suppose that assumptions A1 and A2 hold , then

(a) the S-estimator β̃n defined in (2) has FSBDP satisfying

ε∗(Z, βn) ≥ 1− 2cn

2(1− cn)
.

(b) The scale estimate ŝn has FSBDP satisfying

ε∗(Z, ŝn) ≥ 0.5− cn, ε∗∗(Z, ŝn) ≥ (1− 2cn)/(2(1− cn) ).

Proof. The proof is similar to that of Lemma 3.3 in Yohai and Zamar (1986)
replacing the classical residuals y − x′β by

√
d∗(y,x, β).

If the set Z is in general position cn = (p − 1)/n and ε∗(Z, βn) is close to
0.5.

The parameter α can take two extreme values, 0 and∞, and therefore we can
define two FSBDP of α̂n similarly to those defined for ŝn, one to zero ε∗(Z, α̂n)
and one to infinity ε∗∗(Z, α̂n).

The following Theorem gives a lower bound for both FSBDP.
Theorem 7 . Assume that assumptions A1 and A2 hold, then

(a) ε∗(Z, α̂n) ≥ 0.5− cn.

(b) ε∗∗(Z, α̂n) ≥ (1− 2cn)/(2(1− cn) ).

Proof. Follows immediately from Theorem 6 and Lemma 4.
Then if the sample is in general position, both FSBDP are close to 0.5.

5 MM-Estimates

The MM-estimator for the LGR model is a natural extension of the MM-
estimate introduced by Yohai (1987) for ordinary regression. It is defined by
the following three step procedure:

• Step 1. Compute an S-estimate β̃n and the corresponding scale estimate
ŝn taking b = 1

2 sup ρ.
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• Step 2. Compute α̂n = S∗−1(ŝn) and

ĉn = min{c : c ≥ ŝn and ARE(ψ, α̂n, c) ≥ e}.

• Step 3. The MM-estimate is defined as any local minimum β̂nof Rn(β),
where

Rn(β) =
n∑

i=1

ρ

(√
d∗(yi,xi, β)

ĉn

)
, (5.1)

satisfying Rn(β̂n) ≤ Rn(β̃n).
Since ARE(ψ, α, c) is continuous in α and c, and limc→∞ARE(ψ, α̂n, c) = 1,

the value ĉn is well defined. Moreover, since sn → s∗(α0) and the efficiency
of the S-estimate, ARE(ψ, α, s∗(α)), is very low, in most cases we have sn <
C(α̂n, e), and therefore ĉn = C(α̂n, e).

In practice, in the first step, we compute an approximate S-estimate by
subsampling of elementary sets as proposed in Rousseeuw and Leroy (1987). In
the third step, we compute β̂n using a reweighted least square algorithm starting
from the estimate β̃n computed in Step 1. Details on the computer algorithm
can be found in Section 6.

According to Theorems 5 and 6, the choice of b = sup ρ/2 in the first
step guarantees that β̃n and α̂n have FSBDP close to 0.5 for sample in general
position. Next Theorem show that the FSBDP lower bound found for the S-
estimate in Theorem 5 is also a lower bound for the FSBDP of the MM-estimate.
The proof is completely similar to the one of Theorem 2.1 in Yohai (1987).

Theorem 8 . Let Z = {z1, ..., zn}, zi = (x′i, yi)′, and assume that A1 and
A2 hold. Then ε(Z, β̂n) ≥ (1− 2cn)/(2(1− cn) ).

Next theorem establishes that the efficiency of the MM estimate is at least
e.

Theorem 9 . Let (x′1, y1)′, ., (x′n, yn)′ be random vectors that satisfy the
LGR model with parameters α0 and β0. Suppose that assumptions A1-A3 and
C hold. Let β̂n be a sequence of MM-estimates . Then,

√
n(β̂n − βo) −→D N

(
0,

B(ψ, α0, c0)
(A(ψ, α0, c0))2

E(xx′)−1

)
, (5.2)

where c0 = min{c : c ≥ s∗(α0) and ARE(ψ, α0, c) ≥ e}. Thus, the asymptotic
efficiency of β̂n given by ARE(ψ, α0, c0) is at least e.

Proof. Since according to Theorem 4, the initial estimate β̃n is strongly con-
sistent, using arguments similar to those used in Theorem 4.1 of Yohai (1987),
we can prove β̂n is also strongly consistent. Then, since limn→∞ ĉn = c0 a. s.,
the Theorem follows immediately from Theorem 2.

Theorems 8 and 9 show that the MM-estimate β̂n has simultaneously FSBDP
close to 0.5 for samples in general position and the desired efficiency.
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6 Appendix

Proof of Lemma 1. Since the function ρ∗(u) = ρ(u/k) have the same properties
than ρ,without loss of generality we can assume that k = 1.We begin by proving
that if y has distribution fµ0(y), then

f0(y − µ0) >s f0(y − µ), (6.1)

where >smeans stochastically larger. Without loss of generality it is enough to
show that (1) holds for µ0 = 0.

Then, we have to show that for all 0 < z < f0(y0) and for all µ 6= 0

P0(f0(y) ≥ z) > P0(f0(y − µ) ≥ z).

From the assumptions on f0 we can find A an B such that A < y0 < B
and f0(A) = f0(B) = z. Then {f0(y) > z} = [A,B] and {f0(y − µ) > z} =
[A + µ,B + µ]. Suppose that µ > 0, then

P0(f0(y) ≥ z)− P0(f0(y − µ) ≥ z)

=
∫ A+µ

A

f0(y) dy −
∫ B+µ

B

f0(y) dy

=
∫ A+µ

A

[f0(y)− f0(y + B −A)] dy.

Then, it is enough to show that for y ∈ [A,A + µ] we have

f0(y) > f0(y + B −A). (6.2)

Suppose first that A < y < y0, then f0(y) > f0(A) = z and since y+B−A >
B, we have f0(y + B −A) < f0(B) = z. Hence, (2) follows.

Suppose now that y0 < y, then since y + B − A > y, (2) follows from the
unimodality of f0. The case of µ < 0 is similar.

Since log is a strictly increasing function, we get from (1) that d(y, µ0) <s

d(y, µ).Thus , if we denote Gµ(t) the distribution function of ρ
(√

d(y, µ)
)
, A1

implies that

Gµ0(t)





= Gµ(0) = 0 if t = 0
> Gµ(t) if 0 < t < A
= Gµ(t) = 1 if t ≥ A.

Finally,since for a non-negative random variable z with distribution function
F, E(z) =

∫∞
o

(1− F (z))dz, we get that

Eµ0

[
ρ

(√
d(y, µ0)

)]
< Eµ0

[
ρ

(√
d(y, µ)

)]
.

This proves the Lemma.
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Proof of Lemma 2. Let

Ĝ(β) =
n∑

i=1

w

(√
d∗(yi,xi, β)

ĉ

)
(1− er(yi,xi,β)) xi

and

G(β) =
n∑

i=1

w

(√
d∗(yi,xi, β)

c0

)
(1− er(yi,xi,β)) xi.

Then, βn satisfies Ĝ(βn) = 0. Using a first order Taylor expansion we obtain

Ĝ(β̂n) = Ĝ(β0) + Ĝ′(ξn)(β̂n − β0) = 0,

where

Ĝ′(β) =
∂Ĝ(β)

∂β

and ξn is an intermediate point between β̂n and β0. Hence, we have that

√
n(β̂n − β0) = −

[
1
n

Ĝ′(ξn)
]−1 1√

n
Ĝ(β0). (6.3)

Observe that

Ĝ′(β) =
n∑

i=1

[
w′

(√
d∗(yi,xi, β)

ĉ

)
(1− er(yi,xi,β))2

2c
√

d∗(yi,xi, β)

+ w

(√
d∗(yi,xi, β)

ĉ

)
er(yi,xi,β)

]
xix′i.

From the Central Limit Theorem and the Fisher-consistency we have that

1√
n

G(β0) −→D Np

(
0, Eα0

[
w2

(√
h(u)
c0

)
(1− eu)2

]
E(xx′)

)
. (6.4)

Using arguments similar to those used in Lemma 5.1 in Yohai (1987) it is
possible to show that

lim
n→∞

1√
n

(Ĝ(β0)−G(β0)) = 0 (6.5)

in probability.
Put

g(y,x, β, c) =

[
w′

(√
d∗(y,xi, β)

ĉ

)
(1− ey−β′x)2

2c
√

d∗(y,x, β)

+ w

(√
d∗(y,x, β)

ĉ

)
ey−β′x

]
xix′i. (6.6)
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Then

Ĝ′(ξn) =
n∑

i=1

g(yi,xi, ξn, ĉ). (6.7)

We also have

g(yi,xi, β0, c0) =

[
w′

(√
h(ui)
c0

)
(1− eui)2

2c0

√
h(ui)

+ w

(√
h(ui)
c0

)
eui

]
xix′i,

(6.8)
where the ui ’s have log Γ(α, 1) distribution.

Therefore using Lemma 4.2 in Yohai (1987) from (6), (7), and (8) we get

1
n

G′(ξn) −→p A(α0, c)E(xx′). (6.9)

From (3), (4), (9) and (5) we obtain the Theorem..
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