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1 Introduction

The estimation of derivatives from noisy data has been studied by several authors. For
random carriers, Schuster and Yakowitz (1979) showed the uniform convergence of the
estimates derived from kernel weights while Sarda and Vieu (1988) considered the case of
dependent observations. For fixed design, Gasser and Müller (1984) and Gasser et al. (1985)
studied estimators based on kernel weights which are linear in the response variables.

As it is well known, nonparametric regression estimators depend on a smoothing pa-
rameter that should be choosen by the practitioner. Large bandwidths produce regression
estimators with small variance but high bias, while small values produce more wiggly curves.
This trade–off between bias and variance lead to several proposals to select the smoothing
parameter, such as cross-validation procedures and plug–in methods. The optimum band-
width is defined as the value that minimizes the integrated mean square error. Obviously,
this optimum bandwidth depends on both the regression function and the kernel K. More
precisely, if the regression function ϕ has continuous derivatives up to order ν and a kernel
of at least the same order is considered in the estimation procedure, the optimal bandwidth
depends on ϕ(ν). Therefore, the popular plug–in procedure to select a bandwidth estimates
the unknown quantities in the expression for the optimal bandwidth, in particular, it sub-
stitutes ϕ(ν) by its estimate. Therefore, estimates of the derivatives can also be used to
provide adaptive selectors for the smoothing parameter.

It is well known that in nonparametric regression least squares estimators can be se-
riously affected by anomalous data. As was noted by Härdle and Gasser (1985) linear
estimates of the derivatives are much more sensitive to single outliers than the estimates of
the regression function. Härdle and Gasser (1985) considered an homoscedastic regression
model and proposed kernel M–estimators to estimate nonparametrically the first derivative
of the regression function. They heuristically extend their proposal to higher order deriva-
tives. However, if ν > 2, their extension introduces a bias in the estimation that should be
corrected. Our proposal solves this problem.

The sensitivity of the classical bandwidth selectors to anomalous data was discussed by
several authors, such as, Leung, Marrot and Wu (1993), Wang and Scott (1994), Boente,
Fraiman and Meloche (1997) and Cantoni and Ronchetti (2001). Härdle and Gasser (1984)
(for fixed designs) and Hall and Jones (1990) (for random designs) studied approximations
to the bias and variance of local M–estimates and considered the mean square error of a local
M–estimate, obtaining the optimal bandwidth for it. Therefore, our procedure also allows
to construct robust data–driven bandwidths for the regression function that will converge
to the optimal one. This entails that the final robust regression estimator will have the
same asymptotic distribution as the one defined using the optimal smoothing parameter.

This paper is organized as follows. In Section 2, we propose robust estimators for the
derivatives of the regression function under a nonparametric regression model with fixed
designs. Uniform consitency is derived in Section 3. All proofs are given in the Appendix.
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2 Robust estimation of the derivative of order ν

In this section, we will introduce a robust estimator of the derivative of order ν which
generalizes the proposal considered, when ν = 2, by Boente, Fraiman and Meloche (1997).
On the other hand, our proposal corrects the bias of the estimates considered by Härdle
and Gasser (1985), when ν > 2.

Let yi ∈ IR be independent observations such that

yi = ϕ(ti) + ui 1 ≤ i ≤ n , (1)

where the errors ui are independent and identically distributed with symmetric common
distribution F (·/σu) and 0 ≤ t1 ≤ . . . ≤ tn ≤ 1 are fixed design points.

As mentioned in the Introduction, robust estimates for the first derivative of the re-
gression function have been studied by Härdle and Gasser (1985), when the scale is known.
These authors also discussed the estimation of higher derivatives by formally differentiating
the equation defining the local M−estimator and then, ignoring residual terms. However,
even if these arguments lead to asymptotically unbiased estimators of the second order
derivatives of ϕ, when ν > 2 an asymptotic bias is present and should be corrected. Our
proposal corrects this bias by introducing a term involving estimates of the derivatives up
to the order ν − 2. As mentioned above, when ν = 2, Boente, Fraiman and Meloche (1997)
considered kernel–based estimates for the second derivative of the regression function to
provide a robust bandwidth selector in the nonparametric regression setting.

In order to define the estimates, let us denote by ψ(j) the j−th derivatives of the score
function ψ while wni(t, h) and w

(ν)
ni (t, h) stand for the kernel weights used to estimate the

regression function and its ν−th derivative, respectively. More precisely, let wni(t, h) and
w

(ν)
ni (t, h) be defined as

wni(t, h) =
1
nh
K0

(
t− ti
h

)
, (2)

w
(ν)
ni (t, h) =

1
nhν+1

K(ν)
(
t− ti
h

)
, (3)

with h the bandwidth parameter, K0 : IR → IR a continuous integrable function with
compact support and

∫
K0(t)dt = 1 and K : IR→ IR is an integrable function differentiable

up to order ν with ν−th derivative K(ν) that satisfies the conditions to be stated below.
Note that two different kernels can be used in (2) and (3). Also, Gasser and Müller weights,
as in Härdle and Gasser (1985) can be considered and a kernel Kν of order (ν, k) with
k ≥ ν + 2 either both even or both odd, as defined by Gasser, Müller and Mammitzsch
(1984) can be used in (3). However, according to Lemma 1 in Gasser and Müller (1984), a
kernel of order (ν, k) equals the derivative of order ν of a function K with bounded support
[−τ, τ ] satisfying K(j)(−τ) = K(j)(τ) = 0 for 0 ≤ j ≤ ν − 1,

∫
K(t)dt = 1,

∫
tjK(t)du = 0,

for 1 ≤ j ≤ k− ν− 1 and
∫
tk−νK(t)dt = (−1)ν(k− ν)!β/k! with β 6= 0. Assuming that the

scale σu is known, Härdle and Gasser (1985) suggested to use
n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ̂(t)

σu

)[ n∑

i=1

wni(t, h)ψ(1)
(
yi − ϕ̂(t)

σu

)]−1
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as an estimate of ϕ(ν)(t) where ϕ̂(t) is a preliminary robust estimate of the regression
function. However, as mentioned above this estimate will be biased if ν > 2. In order to
correct the bias, define

B̂ν (t, σ, ϕ) =
n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ(t)

σ

)
(4)

Ĉν (t, σ, ϕ) =
∑

3≤j≤ν

j:odd

1
j! σj

λj,n(t, σ, ϕ) Ĥj(ν, t) (5)

where

λj,n(t, σ, ϕ) =
n∑

i=1

wni(t, h)ψ(j)
(
yi − ϕ(t)

σ

)
(6)

Hj(ν, t) = {[ϕ(u) − ϕ(t)]j}(ν)
∣∣∣
u=t

(7)

and Ĥj(ν, t) is an estimate of Hj(ν, t). The term B̂ν is the numerator of the estimate
introduced by Härdle and Gasser (1985) while Ĉν is related to the correction term needed
to deal with the bias appearing in their estimation procedure.

Lemma P.1 shows that for j ≥ 3, Hj(ν, t) depends continuously only on the derivatives
of ϕ(t) of order lower or equal to ν−2 and thus, it can be estimated plugging–in estimators of
the derivatives of ϕ up to order ν−2 in the expression of Hj. It also allows to calculate eas-
ily Hj. For instance, using that H2(1, t) = 0, H2(2, t) = 2 [ϕ(1)(t)]2, H3(3, t) = 6 [ϕ(1)(t)]3

and H2(3, t) = 6 ϕ(1)(t) ϕ(2)(t), we easily obtain H3(4, t) = 36 [ϕ(1)(t)]2ϕ(2)(t). There-
fore, in order to estimate the 4−th derivative of ϕ, we only need preliminary estimates
of the regression function and of its first and second derivatives. In general, if Hj(ν, t) =
Φj(ϕ(1)(t), . . . , ϕ(ν−2)(t)), we can define Ĥj(ν, t) = Φj(ϕ̂(1)(t), . . . , ϕ̂(ν−2)(t)), where ϕ̂(j)

denote preliminary estimates of ϕ(j).

Remark 2.1. Note also that for any I ⊂ [0, 1] such that sup
t∈I

max
1≤k≤ν−2

|ϕk,n(t)−ϕk(t)| → 0,

we have that sup
t∈I

|Φj(ϕ1,n, . . . , ϕν−2, n) − Φj(ϕ1, . . . , ϕν−2)| → 0. In particular, if we have

uniform strongly consistent estimates of ϕ(k), for 1 ≤ k ≤ ν − 2 then Ĥj(ν, t) → Hj(ν, t)
uniformly on I.

Let σ̂u be a robust estimate of the residuals scale such as the robust Rice–type estimator,
i.e., σ̂u = 1

2 median
1≤i≤n

|yi − yi−1|, and ϕ̂r(·) = ϕ̂r(·, h0) a kernel–based M–estimate of the

regression function with initial bandwidth h0, i.e., a solution of

n∑

i=1

wni(t, h0)ψ
(
yi − ϕ̂r(t, h0)

σ̂u

)
= 0 .
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The robust estimator, ϕ̂(ν)
r (t, h), of the derivative of order ν of the regression function ϕ is,

then, defined as

ϕ̂
(ν)
r (t, h) =

B̂ν (t, σ̂u, ϕ̂r) − Ĉν (t, σ̂u, ϕ̂r)
λ1,n (t, σ̂u, ϕ̂r)

σ̂u . (8)

This procedure depends on the pilot bandwidth h0 used to estimate ϕ̂r and on the
preliminary estimates of the derivatives of ϕ(t) up to order ν − 2, which obviously also
involve a choice for the smoothing parameter.

For instance, when ν = 4 we have that a robust estimator of the fourth derivative of the
regression function, ϕ̂(4)

r (t, h), is given by

σ̂u

{
n∑

i=1

w
(4)
ni (t, h)ψ

(
yi − ϕ̂r(t)

σ̂u

)
− 6
σ̂3

u

[
ϕ̂

(1)
r (t)

]2
ϕ̂

(2)
r (t)

n∑

i=1

wni(t, h)ψ(3)
(
yi − ϕ̂r(t)

σ̂u

)}

n∑

i=1

wni(t, h)ψ(1)
(
yi − ϕ̂r(t)

σ̂u

) ,

where ϕ̂r(t) = ϕ̂r(t, h0), ϕ̂
(1)
r (t) and ϕ̂

(2)
r (t) denote preliminary estimates of ϕ(1)(t) and

ϕ(2)(t), respectively. It is worthwhile noticing, that the estimate considered by Härdle and
Gasser (1985), involves only the first term of the numerator, while the second one is the
one which corrects its asymptotic bias.

3 Consistency

Under regularity conditions, Boente, Fraiman and Meloche (1997) showed that the robust
estimates of the second derivatives of regression function converges to the second derivatives
of regression function. In this section, we will consider the following assumptions to derive
the weak consistency of the estimates ϕ̂(ν)

r (t, h) defined in (8).

C.1. {ti}n
i=1 are fixed design points in [0, 1], 0 ≤ t1 ≤ . . . ≤ tn ≤ 1, such that t0 = 0 and

tn+1 = 1 and max
1≤i≤n+1

∣∣∣∣(ti − ti−1) −
1
n

∣∣∣∣ = O(n−δ) for some δ > 1.

C.2. {ui : 1 ≤ i ≤ n} are i.i.d. random variables such that ui ∼ F (./σu), F symmetric.

C.3. The function ϕ(·) has ν continuous derivatives on [0,1].

C.4. a) K(·) is a function with support [−1, 1], ν−th differentiable. K0(·) is a continuous
function with support [−1, 1].

b)
∫
K0(u)du = 1,

∫
K(u)du = 1, K(j)(1) = K(j)(−1) = 0 for 0 ≤ j ≤ ν − 1.

c) K(ν) and K0 are Lipschitz function of order one.

C.5. For 1 ≤ k ≤ ν − 2, sup
t∈[h,1−2h]

|ϕ̂(k)
r (t) − ϕ(k)(t)| a.s.−→ 0, as n→ ∞.
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C.6. The initial estimators ϕ̂r(t) satisfy
a) sup

t∈[0,1]
|ϕ̂r(t) − ϕ(t)| a.s.−→ 0 as n→ ∞ .

b) There exists ε0 > 0 such that

∞∑

n=1

P

(
sup

t∈[h,1−2h]
|ϕ̂r(t) − ϕ(t)| > ε0 h

)
<∞ .

C.7. lim
n→∞

nh2ν+1

log n
= +∞, lim

n→∞
h = 0.

C.8. ψ : R → R is an odd, strictly increasing, bounded and continuous function such that
lim
t→∞

ψ(t) = a > 0.

C.9. ψ is (ν + 1)-th differentiable. Moreover, for any 1 ≤ ` ≤ ν + 1, , the `-th derivative
ψ(`) and υ`(t) = t ψ(`)(t) are bounded.

C.10. The estimator σ̂u de σu satisfy σ̂u
a.s.−→ σu if n→ ∞.

Theorem 3.1. Under C.1 to C.10, if nδ−1hν+1 → ∞, nhν+2 → ∞ and Eψ(1)

(
u1

σu

)
6= 0,

we have that

sup
t∈[h,1−2h]

|ϕ̂(ν)
r (t, h) − ϕ(ν)(t)| a.s.−→ 0 as n→ ∞.

Remark 3.1. Note that if ν ≥ 2 and C.7 holds then nhν+2 → ∞. Moreover, using similar
arguments as those considered in Theorem 2 from Härdle and Luckhaus (1984), it is easy
to show that C.6 holds for the kernel M–smoother.

4 Asymptotic Normality

Under regularity conditions, Härdle and Gasser (1985) showed that the robust estimates
of the first derivative of regression function is asymptotically normally distributed. In this
section, we will consider the following assumptions to derive the asmptotic distribution of
the estimates ϕ̂(ν)

r (t, h) defined in (8).

N.1. a) K(·) is a function with support [−1, 1], k−th differentiable with k ≥ ν + 2.

b)
∫
K(u)du = 1, K(j)(1) = K(j)(−1) = 0 for 0 ≤ j ≤ ν − 1,

∫
ujK(u)du = 0 for

1 ≤ j ≤ k − ν − 1,
∫
uk−νK(u)du = (−1)ν (k−ν)!

k! β 6= 0.

c) K0(·) is a continuous function with support [−1, 1].
∫
K0(u)du = 1 and for some

` ≥ 2 it holds
∫
ujK0(u)du = 0 for 1 ≤ j ≤ `,

∫
u`K0(u)du 6= 0.

c) K(ν) and K0 are Lipschitz function of order one.
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N.2. The function ϕ is r−th differentiable with r = max(k, `), k ≥ ν + 2 and ϕ(r) is
continuous at t.

N.3. For 1 ≤ s ≤ ν − 2, |ϕ̂(s)
r (t) − ϕ(s)(t)| p−→ 0 and

√
nh2ν+1

(
Ĥj(ν, t) −Hj(ν, t)

)
p−→ 0.

N.4. The initial estimators ϕ̂r(t) satisfy
√
nh (ϕ̂r(t) − ϕ(t)) = Op(1).

N.5. The estimator σ̂u de σu satisfy σ̂u
p−→ σu.

N.6. lim
n→∞

nh2ν+1 = +∞, lim
n→∞

nh2k+1 = 0, lim
n→∞

nh2`+2ν+1 = 0.

Remark 4.1. Lemma 1 in Gasser and Müller (1984) shows that assumption N.1 entails
that

∫
ukK(ν)(u)du = β and

∫
uνK(ν)(u)du = (−1)νν!. Assumption N.5 is fulfilled if σ̂u is

the robust Rice–type estimator while N.4 is satisfied when ϕ̂r(·) = ϕ̂r(·, h).

Theorem 4.1. Under C.1, C.2, C.8, C.9 and N.1 to N.6 if in addition ψ is continuously

differentiable up to order ν + ` and Eψ(1)

(
u1

σu

)
6= 0, we have that

√
nh2ν+1

(
ϕ̂

(ν)
r (t, h) − ϕ(ν)(t)

) D−→ N


0, σ2

u

[∫ 1

−1

(
K(ν)(u)

)2
du

] Eψ2

(
u1

σu

)

E2ψ(1)

(
u1

σu

)


 .

It is worthnoticing that Theorem 4.1 entails that the robust estimators introduced will
have the same asymptotic efficiency as the location M−estimators defined through the score
function ψ.

5 Concluding Remarks

Selection of the smoothing parameter is an important step in any nonparametric analysis,
even when robust estimates are used. The classical procedures based on least squares
cross–validation or on a plug–in rule turn out to be non–robust since they lead to over or
undersmoothing as noted for nonparametric regression by Leung, Marrot and Wu (1993),
Wang and Scott (1994), Boente, Fraiman and Meloche (1997) and Cantoni and Ronchetti
(2001). For any robust smoother ϕ̂r(t, h), the optimal bandwidth hropt, is defined as the
value of h minimizing the integrated mean square error curve

MISER(h) = E

∫ 1

0
(ϕ̂r(t, h) − ϕ(t))2 dt.

According to Härdle and Gasser (1984), if the function has ν ≥ 2 continuous derivatives
and a kernel, Kν , of order ν is used to estimate ϕ(t), hropt is related to the optimal band-

width for the classical estimates, hopt, through the relation hropt = hoptV
1

2ν+1 , where
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V = Eψ2

(
u1

σu

)[
E2ψ(1)

(
u1

σu

)]−1

gives the efficiency of the local M–estimate and

hopt = n
1

2ν+1

(
(ν!)2 C1 (Kν) σ2

u

2νC2
2 (Kν) T

(
ϕ(ν)

)
) 1

2ν+1

where C1(Kν) =
∫
K2

ν (t) dt, C2(Kν) =
∫
uν Kν(u) du and T (f) =

∫ 1
0 f

2(u) du. Therefore, a
robust bandwidth selector, ĥ, based on the estimates defined in Section 2 can be constructed.
This robust bandwidth selector tends to overcome the well known sensitivity of the classical
selectors.

Theorem 3.1 entails that
ĥ

hropt

a.s.−→ 1 and so the the data–driven is asymptotic equivalent

to the optimal bandwidth. Theorems 3.1 and 3.2 from Boente, Fraiman and Meloche (1997)
allow us to conclude that the kernel based M–estimates of ϕ obtained using a plug–in band-
width selector, ĥ, based on ϕ̂(ν)

r will be consistent. Moreover, it will be asymptotically equiv-
alent to the kernel based M–estimates obtained using the optimal bandwidth, hropt, based on

a ν−th degree of smoothness, in the sense, that (nhropt)
1/2
[
ϕ̂r(t, hropt) − ϕ̂r(t, ĥ)

]
p−→ 0.

This asymptotically equivalence, entails that, (nhropt)
1/2
[
ϕ̂r(t, ĥ) − ϕ(t)

]
is asymptotically

normally distributed.

Our proposal for the derivatives of the regression function can therefore be used to pro-
vide a data–driven bandwidth selector. It also corrects the bias of the estimates considered
by Härdle and Gasser (1985), when ν > 2. It is worth noticing that a ready–to–use robust
plug–in bandwidth selector can be defined by using a robust version of the iterative schemes
proposed discussed in Ruppert, Sheater and Wand (1995).

P Appendix: Proofs.

Lemma P.1. For any fixed t and j ≥ 2, let vj(u) = [ϕ(u) − ϕ(t)]j . Then we have that

for k ≥ j, v
(k)
j (t) = Hj(k, t) depends only on ϕ(`)(t) with ` ≤ k− 1. Moreover, if j ≥ 3, and

k ≥ j, v
(k)
j (t) depends only on ϕ(`)(t) with ` ≤ k − 2.

Proof. Since v(k)
1 (u) = ϕ(k)(u), we have that

v
(k)
j (u) = (vj−1(u)v1(u))(k) =

k∑

r=0

(
k
r

)
v
(r)
j−1(u) v

(k−r)
1 (u) .

Using that v1(t) = 0 and vj−1(t) = 0, and that v(1)
j−1(t) = 0, for j ≥ 3, we get

v
(k)
j (t) =





k−1∑

r=1

(
k
r

)
v
(r)
j−1(t)ϕ

(k−r)(t) for j ≥ 2

k−1∑

r=2

(
k
r

)
v
(r)
j−1(t)ϕ

(k−r)(t) for j ≥ 3
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and thus, the result follows.

In order to prove Theorem 3.1, we will need the following lemmas. From now on, denote
by I = [h, 1 − 2h].

Lemma P.2. If C.1, C.3 and C.4 hold and, in addition, lim
n→∞

nhν+2 = +∞ and

lim
n→∞

nδ−1hν+1 = +∞, we have that

(a) lim
n→∞

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)∣∣∣∣∣ = 0.

(b) lim
n→∞

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
(ϕ(ti) − ϕ(t)) − 1

hν

∫ 1

−1
K(ν)(u)ϕ(t − uh)du

∣∣∣∣∣ = 0.

Proof. The proof follows the same steps as in Lemma A.1 from Boente, Fraiman and
Meloche (1997). (a) Note first that C.4 entails that

∫ 1

0
K(ν)

(
t− u

h

)
du = 0 for t ∈ [h, 1 − h]. (P.1)

Using C.1 we have that, for some C > 0 there exists n0 such that for n ≥ n0, nh > C and

|tn − 1| ≤ C

n
, and so, for t ∈ [h, 1 − 2h],

∫ 1

tn
K(ν)

(
t− u

h

)
du = 0 ∀n ≥ n0 . (P.2)

Denote byMν the Lipschitz constant for K(ν) and by ξi an intermediate point ti−1 ≤ ξi ≤ ti.
Then, from (P.1) and (P.2), we get
∣∣∣∣∣

1
nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)∣∣∣∣∣ =

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
− 1
hν+1

n∑

i=1

∫ ti

ti−1

K(ν)
(
t− u

h

)
du

∣∣∣∣∣

=
1

hν+1

∣∣∣∣∣
1
n

n∑

i=1

{
K(ν)

(
t− ti
h

)
− n(ti − ti−1)K(ν)

(
t− ξi
h

)}∣∣∣∣∣

≤ Mν

hν+1

1
n

n∑

i=1

∣∣∣∣
ti − ξi
h

∣∣∣∣+
1

nhν+1

n∑

i=1

∣∣∣∣K
(ν)
(
t− ξi
h

)∣∣∣∣ |1 − n(ti − ti−1)|

≤ Mν

hν+2
sup

i
|ti − ti−1| + ||K(ν)||∞

1
hν+1

n∑

i=1

∣∣∣∣
1
n
− (ti − ti−1)

∣∣∣∣

≤ Mν C

nhν+2
+ ‖K(ν)‖∞

O(1)
hν+1nδ−1

and the result follows.
(b) As in (a), using that K(ν) has compact support on [−1, 1], we have that

1
hν+1

∫ 1

0
K(ν)

(
t− u

h

)
ϕ(u)du =

1
hν

∫ 1

−1
K(ν)(u)ϕ(t − uh)du .
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On the other hand, the boundness of ϕ and (a) imply that,

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
ϕ(t)

∣∣∣∣∣→ 0 .

Thus, it remains to show that

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
ϕ(ti) −

1
hν+1

∫ 1

0
K(ν)

(
t− u

h

)
ϕ(u)du

∣∣∣∣∣→ 0 .

As in (a), let n0 be such that for n ≥ n0, nh > C and 1 − tn ≤ C

nδ
. Then, using analogous

arguments as those considered in (a), we get that for n ≥ n0

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
ϕ(ti) −

1
hν+1

∫ 1

0
K(ν)

(
t− u

h

)
ϕ(u)du

∣∣∣∣∣

=

∣∣∣∣∣
1

nhν+1

n∑

i=1

{
K(ν)

(
t− ti
h

)
ϕ(ti) − n

∫ ti

ti−1

K(ν)
(
t− u

h

)
ϕ(u)du

}
−

− 1
hν+1

∫ 1

tn
K(ν)

(
t− u

h

)
ϕ(u)du

∣∣∣∣

≤
∣∣∣∣∣

1
nhν+1

n∑

i=1

{
K(ν)

(
t− ti
h

)
ϕ(ti) − n(ti − ti−1)K(ν)

(
t− ξi
h

)
ϕ(ξi)

}∣∣∣∣∣+

+‖K(ν)‖∞‖ϕ‖∞
C

nδ hν+1
.

which concludes the proof using that K(ν) and ϕ are bounded Lipschitz functions.

Using similar arguments, we obtain the following Lemma.

Lemma P.3. If C.1, C.3 and C.4 hold and if, in addition, lim
n→∞

nh2 = +∞ and

lim
n→∞

nδ−1h1 = +∞, we have that

sup
t∈I

∣∣∣∣∣
1
nh

n∑

i=1

∣∣∣∣K0

(
t− ti
h

)p∣∣∣∣−
∫ 1

−1
|K0(u)|pdu

∣∣∣∣∣→ 0, p = 1, 2

sup
t∈I

∣∣∣∣∣
1
nh

n∑

i=1

∣∣∣∣K(ν)
(
t− ti
h

)p∣∣∣∣−
∫ 1

−1
|K(ν)(u)|pdu

∣∣∣∣∣→ 0, p = 1, 2.

Lemma P.4. Let {yi : i ≥ 1} be a sequence of i.i.d random variables. Assume that η
is a continuously differentiable and bounded function such that υ(t) = t η′(t) is bounded.
Then, under C.1, C.4, C.7, for any bounded continuous function m : [0, 1] → IR, we have
that for any compact set C ⊂ IR+

a) sup
t∈I

sup
σ∈C

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
m(ti)

[
η

(
yi

σ

)
−Eη

(
yi

σ

)]∣∣∣∣∣
a.s.−→ 0 .
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b) sup
t∈I

sup
σ∈C

∣∣∣∣∣
1
nh

n∑

i=1

K0

(
t− ti
h

)
m(ti)

[
η

(
yi

σ

)
−Eη

(
yi

σ

)]∣∣∣∣∣
a.s.−→ 0 .

Proof. We will only prove a), since the proof of b) follows similarly. Denote Sn(t, σ) =
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
m(ti)Vi,σ with Vi,σ = σ

[
η

(
yi

σ

)
−Eη

(
yi

σ

)]
. It is enough to show

that sup
t∈I

sup
σ∈C

Sn(t, σ) a.s.−→ 0.

Since η is bounded and C is a compact set, we have that for some fixed constant M ,
|Vi,σ| < M , for all σ ∈ C. Thus, using that m is bounded and

sup
t∈I

∣∣∣∣∣
1
nh

n∑

i=1

[
K(ν)

(
t− ti
h

)]2
−
∫ 1

−1
[K(ν)(u)]2du

∣∣∣∣∣→ 0

Bernstein’s inequality implies that, for some positive constant α, we have that for n ≥ n0

sup
t∈I

sup
σ∈C

P (|Sn(t, σ)| > ε) ≤ 2e−αnh2ν+1
. (P.3)

Denote T = [0, 1] × C and Br(a, b) the ball of radius r and center (a, b) ∈ T . Then,
for any γ > ν + 2 there exist (a1, b1), . . . , (a`, b`) ∈ T with ` = `n = O(h−γ) such that

T ⊂
⋃̀

i=1

Bhγ (ai, bi). For the sake of notation simplicity, let Bi stand for Bhγ (ai, bi), then,we

have that

sup
t∈I

sup
σ∈C

|Sn(t, σ)| ≤ max
1≤j≤`

sup
(t,σ)∈Bj

|Sn(t, σ) − Sn(aj , bj)| + max
1≤j≤l

|Sn(aj , bj)| . (P.4)

Using that m, η, υ and K(ν) are bounded functions and that K(ν) is Lipschitz, straigh-
forward calculations lead to |Sn(t, σ) − Sn(aj , bj)| ≤ A1h

γ−(ν+2) for (t, σ) ∈ Bj, for some
positive constant A1, which entails that for n ≥ n1

max
1≤j≤`

sup
(t,σ)∈Bj

|Sn(t, σ) − Sn(aj , bj)| ≤ ε . (P.5)

Finally, (P.3), (P.4) and (P.5) entail that, for n ≥ max{n1, n0},

P (sup
t∈I

sup
σ∈C

|Sn(t, σ)| > 2ε) ≤ P

(
max

1≤j≤`n

|Sn(aj , bj)| ≥ ε

)
≤ 2`n e−αnh2ν+1

≤ Ch−γn−αδn ≤ C (nh)−γ nγ−αδn ,

where, from C.7, δn = nh2ν+1/ log n → ∞. Taking γ = ν + 3, and since δn → ∞ and
nh→ ∞ we have that for n ≥ n3, (nh)−γ < 1 and γ−αδn < −2. Hence, for n ≥ max

1≤i≤3
(ni),

P (sup
t∈I

sup
σ∈C

|Sn(t, σ)| > 2ε) ≤ Cn−2, which shows that
n∑

i=1

P (sup
t∈I

sup
σ∈C

|Sn(t, σ)| > 2ε) < ∞

concluding the proof.
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Remark P.1. It is worthwhile noticing that Lemma P.2 and Lemma P.4 entail that under
the conditions stated therein,

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
(ϕ(ti) − ϕ(t))j − 1

hν

∫ 1

−1
K(ν)(u)(ϕ(t − uh) − ϕ(t))jdu

∣∣∣∣∣ → 0

sup
t∈I

sup
σ∈C

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
(ϕ(ti) − ϕ(t))j

[
η

(
yi

σ

)
−Eη

(
yi

σ

)]∣∣∣∣∣
a.s.−→ 0 .

Moreover, if we denote vj(u) = (ϕ(u)−ϕ(t))j using that
1
hν

∫ 1

−1
K(ν)(u) [ϕ(t− uh) − ϕ(t)]j du =

∫ 1

−1
K(u)v(ν)

j (t− uh) and
∫ 1

−1
K(u)v(ν)

j (t− uh) → v
(ν)
j (t) = Hj(ν, t), we get

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
(ϕ(ti) − ϕ(t))j −Hj(ν, t)

∣∣∣∣∣ → 0

sup
t∈I

sup
σ∈C

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
(ϕ(ti) − ϕ(t))jη

(
yi

σ

)
−Eη

(
Z1

σ

)
Hj(ν, t)

∣∣∣∣∣
a.s.−→ 0 .

Lemma P.5. Under C.1 to C.10, if nδ−1hν+1 → ∞ as n → ∞, we have that for any
compact set C ⊂ IR+

(a) sup
t∈I

sup
σ∈C

∣∣∣∣∣∣∣∣

n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ(t)

σ

)
− ϕ(ν)(t)λ1(σ) −

∑

3≤j≤ν

j:odd

λj(σ)
σj j!

Hj(ν, t)

∣∣∣∣∣∣∣∣

a.s.−→ 0, with w
(ν)
ni (t, h)

and Hj defined in (3) and (7), respectively and λj(σ) = Eψ(j)

(
u1

σ

)
.

(b) sup
t∈I

|λj,n(t, σ̂u, ϕ̂r) − λj(σu)| a.s.−→ 0, where λj,n(t, σ, ϕ) is defined in (6).

Proof: (a) A Taylor expansion of order ν gives

n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ(t)

σ

)
=

ν∑

j=0

Sjn(t, σ) +
1

σν ν!
Rn(t, σ)

where

Sjn(t, σ) =
1

σj j!

n∑

i=1

w
(ν)
ni (t, h)ψ(j)

(
ui

σ

)
[ϕ(ti) − ϕ(t)]j

Rn(t, σ) =
n∑

i=1

w
(ν)
ni (t, h)

[
ψ(ν)

(
ui + ξi
σ

)
− ψ(ν)

(
ui

σ

)]
[ϕ(ti) − ϕ(t)]ν

with |ξi| ≤ |ϕ(ti) − ϕ(t)|.
Using the oddness of ψ and C.2, we get that E(ψ(j)(u1)) = 0 for j even. Therefore, Lemma
P.4 entail that sup

t∈I
sup
σ∈C

|Sjn(t, σ)| a.s.−→ 0 for j even.
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Let C1 and C2 be the Lipschitz constants of ψ(ν) and ϕ, respectively. Then, since |ξi| ≤
|ϕ(ti) − ϕ(t)| ≤ C2|ti − t|, and K has compact support on [−1, 1], we get

|Rn(t, σ)| ≤ Cν
2

1
nhν+1

n∑

i=1

∣∣∣∣K
(ν)
(
t− ti
h

)∣∣∣∣ |ψ
(ν)
(
ui + ξi
σ

)
− ψ(ν)

(
ui

σ

)
||t− ti|ν

≤ C1 C
ν+1
2

σ

1
nhν+1

n∑

i=1

∣∣∣∣K
(ν)
(
t− ti
h

)∣∣∣∣ |t− ti|ν+1 ≤ C1 C
ν+1
2

σ
h

1
nh

n∑

i=1

∣∣∣∣K
(ν)
(
t− ti
h

)∣∣∣∣ .

Lemma P.3 entails that sup
t∈I

∣∣∣∣∣
1
nh

n∑

i=1

∣∣∣∣K
(ν)
(
t− ti
h

)∣∣∣∣−
∫ 1

−1
|K(ν)(u)|du

∣∣∣∣∣→ 0, which together

with the compactness of C, allow to conclude that sup
t∈I

sup
σ∈C

1
σν

|Rn(t, σ)| a.s.−→ 0 using that

lim
n→∞

h = 0.

To conclude the proof of (a), it remains to show that

i) sup
t∈I

sup
σ∈C

∣∣∣∣S1n(t, σ) − 1
σ
Eψ(1)

(
u1

σ

)
ϕ(ν)(t)

∣∣∣∣
a.s.−→ 0

ii) sup
t∈I

sup
σ∈C

∣∣∣∣Sjn(t, σ) − 1
σjj!

Eψ(j)
(
u1

σ

)
Hj(ν, t)

∣∣∣∣
a.s.−→ 0, when j is odd and j ≥ 3.

i) Lemma P.4 implies that

sup
t∈I

sup
σ∈C

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)[
ψ(1)

(
ui

σ

)
−Eψ(1)

(
u1

σ

)]
[ϕ(ti) − ϕ(t)]

∣∣∣∣∣
a.s.−→ 0 ,

thus, it will be enough to show that

sup
t∈I

∣∣∣∣∣
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
[ϕ(ti) − ϕ(t)] − ϕ(ν)(t)

∣∣∣∣∣→ 0 , (P.6)

which follows from Lemma P.2, the fact that ϕ(ν) is Lipschitz and the equality

1
hν

∫ 1

−1
K(ν)(u)ϕ(t− uh)du =

∫ 1

−1
K(u)ϕ(ν)(t− uh)du .

ii) Again, using Lemma P.4 we have that

sup
t∈I

sup
σ∈C

∣∣∣∣∣
n∑

i=1

w
(ν)
ni (t, h)

[
ψ(1)

(
ui

σ

)
−Eψ(1)

(
u1

σ

)]
[ϕ(ti) − ϕ(t)]j

∣∣∣∣∣
a.s.−→ 0 ,

and so, as in i), it will be enough to show that,

sup
t∈I

∣∣∣∣∣
n∑

i=1

w
(ν)
ni (t, h)[ϕ(ti) − ϕ(t)]j −Hj(ν, t)

∣∣∣∣∣→ 0 ,

which follows from Remark P.1.
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(b) From Lemma P.4, we get sup
t∈I

sup
σ∈C

|λj,n(t, σ, ϕ(t))−λj(σ)| a.s.−→ 0. Thus, in order to obtain

(b), from C.10 and the continuity of λj(σ), it remains to show that sup
t∈I

|λj,n(t, σ̂u, ϕ) −

λj,n(t, σ̂u, ϕ̂r)| a.s.−→ 0.

Using that ψ(j) is a Lipschitz function, we obtain

|λj,n(t, σ̂u, ϕ̂r) − λj,n(t, σ̂u, ϕ)| ≤ 1
σ̂u

‖ψ(j+1)‖∞|ϕ̂r(t) − ϕ(t)| 1
nh

n∑

i=1

∣∣∣∣K0

(
t− ti
h

)∣∣∣∣ ,

which implies the desired result using C.6, C.10 and the fact that

sup
t∈I

∣∣∣∣∣
1
nh

n∑

i=1

∣∣∣∣K0

(
t− ti
h

)∣∣∣∣−
∫ 1

−1
|K0(u)|du

∣∣∣∣∣→ 0.

Proof of Theorem 3.1 Let N̂ (t, σ̂u, ϕ̂r) = B̂ν (t, σ̂u, ϕ̂r)−Ĉν (t, σ̂u, ϕ̂r)−ϕ(ν)(t)λ1,n(t, σ̂u, ϕ̂r)
and note that

sup
t∈I

∣∣∣ϕ̂(ν)
r (t, h) − ϕ(ν)(t)

∣∣∣ = sup
t∈I

|λ1,n(t, σ̂u, ϕ̂r)|−1
∣∣∣N̂ (t, σ̂u, ϕ̂r)

∣∣∣

≤ {inf
t∈I

|λ1,n(t, σ̂u, ϕ̂r)|}−1 sup
t∈I

∣∣∣N̂ (t, σ̂u, ϕ̂r)
∣∣∣ .

Since inf
t∈I

|λ1,n(t, σ̂u, ϕ̂r)| ≥
∣∣∣∣Eψ(1)

(
u1

σ̂u

)∣∣∣∣−sup
t∈I

∣∣∣∣λ1,n(t, σ̂u, ϕ̂r) −Eψ(1)
(
u1

σ̂u

)∣∣∣∣, from Lemma

P.5(b), C.10 and the fact that Eψ(1)

(
u1

σu

)
6= 0, it will be enough to show that sup

t∈I
|N̂ (t, σ̂u, ϕ̂r) | a.s.−→

0. According to Lemma P.5, if C denotes the closure of a neighborhood of σu, it suffices to
show that

sup
t∈I

sup
σ∈C

∣∣∣∣∣
n∑

i=1

w
(ν)
ni (t, h)

[
ψ

(
yi − ϕ̂r(t)

σ

)
− ψ

(
yi − ϕ(t)

σ

)]∣∣∣∣∣
a.s.−→ 0 (P.7)

sup
t∈I

|Ĥj(ν, t) −Hj(ν, t)|
a.s.−→ 0 (P.8)

Since Hj(ν, t) = Φj(ϕ(1)(t), . . . , ϕ(ν−2)(t)) and Ĥj(ν, t) = Φj(ϕ̂(1)(t), . . . , ϕ̂(ν−2)(t)), using
C.5 and the uniform continuity of Φj, we get (P.8). In order to prove (P.7) using a Taylor’s
expansion of order ν, as in Lemma P.5 (a), we obtain that
n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ̂r(t)

σ

)
=

n∑

i=1

w
(ν)
ni (t, h)ψ

(
yi − ϕ(t)

σ

)
+

ν∑

j=1

1
σj j!

S∗
jn(t) +

1
σν ν!

R∗
n(t)

where |ξ∗i,n| ≤ |ϕ(t) − ϕ̂r(t)| and

S∗
jn(t, σ) = [ϕ(t) − ϕ̂r(t)]j

n∑

i=1

w
(ν)
ni (t, h)ψ(j)

(
yi − ϕ(t)

σ

)

R∗
n(t, σ) = [ϕ(t) − ϕ̂r(t)]ν

n∑

i=1

w
(ν)
ni (t, h)

[
ψ(ν)

(
yi + ξ∗i,n

σ

)
− ψ(ν)

(
yi − ϕ(t)

σ

)]
.
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Let mj(u, σ) = Eψ(j)

(
u1 + ϕ(u) − ϕ(t)

σ

)
. Lemmas P.2(a) and P.4 together with C6

and the equality
1

hν−j

∫ 1

−1
K(ν)(u)mj(t − uh, σ) =

∫ 1

−1
K(j)(u)m(ν−j)

j (t − uh, σ) imply

that sup
t∈I

sup
σ∈C

|S∗
jn(t, , σ)| a.s.−→ 0. Therefore, the proof will be concluded if we show that

sup
t∈I

sup
σ∈C

|R∗
n(t, σ)| a.s.−→ 0. Let C1 and C2 denote the Lipschitz constants for ψ(ν)(t) and ϕ(t),

respectively. Then, we have

σ|R∗
n(t, σ)| ≤ C1|ϕ(t) − ϕ̂r(t)| |ϕ(t) − ϕ̂r(t)|ν

hν

1
nh

n∑

i=1

∣∣∣∣K
(ν)
(
t− ti
h

)∣∣∣∣

which together with Lemma P.3 and C.6 conclude the proof.

Proof of Theorem 4.1. Denote

Tn (σ,m) =
√
nh2ν+1

{
σ
[
B̂ν (t, σ,m) − Cν (t, σ,m)

]
− ϕ(ν)(t)λ1 (σ)

}

T̂n (σ,m) =
√
nh2ν+1

{
σ
[
B̂ν (t, σ,m) − Ĉν (t, σ,m)

]
− ϕ(ν)(t)λ1,n (t, σ,m)

}

with Cν (t, σ,m) =
∑

3≤j≤ν

j:odd

1
j! σj

λj(σ) Hj(ν, t) and λj(σ) = Eψ(j)

(
u1

σ

)
. As in Lemma P.5.,

it is easy to derive that λ1n(t, σ̂u, ϕ̂r)
p−→ λ1(σu). Thus, it will be enough to show that,

T̂ (σ̂u, ϕ̂r) D−→ N

(
0, σ2

u

∫ 1

−1

[
K(ν)(u)

]2
duEψ2

(
u1

σu

))
.

The Central Limit Theorem and the expansion for the bias given in Gasser and Müller
(1984) together with the fact that nh2k+1 → 0 entail that

Tn(σu, ϕ) D−→ N

(
0, σ2

u

∫ 1

−1

[
K(ν)(u)

]2
duEψ2

(
u1

σu

))
.

Therefore, the proof will be completed if we show that T̂n(σ̂u, ϕ̂r) − Tn(σu, ϕ)
p−→ 0. Note

that T̂n(σ̂u, ϕ̂r) − Tn(σu, ϕ) =
√
nh2ν+1{S1n + S2n + S3n + S4n + S5n}, where

S1n = σ̂uB̂ν(t, σ̂u, ϕ̂r) − σuB̂ν(t, σu, ϕ)

S2n =
∑

3≤j≤ν
j:odd

1
j!

[
1

σ̂j−1
u

λjn(t, σ̂u, ϕ̂r) − 1

σj−1
u

λjn(t, σu, ϕ)
]
Ĥj(ν, t)

S3n =
∑

3≤j≤ν
j:odd

1
j!σj−1

u

[λjn(t, σu, ϕ) − λj(σu)] Ĥj(ν, t)

S4n =
∑

3≤j≤ν
j:odd

1
j!σj−1

u

λj(σu)[Ĥj(ν, t) −Hj(ν, t)]

S5n = ϕ̂
(ν)
r (t)(λ1n(t, σ̂u, ϕ̂r) − λ1(σu)) .
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It follows inmediately that N.3 entails that
√
nh2ν+1S4n

p−→ 0

Therefore to obtain the desired result, it remains to show that

a)
√
nh2ν+1(λjn(t, σu, ϕ) − λj(σu)) p−→ 0 for 1 ≤ j ≤ ν, j odd,

b)
√
nh2ν+1

[
1

σ̂j−1
u

λjn(t, σ̂u, ϕ̂r) − 1
σj−1

u

λjn(t, σu, ϕ)
]

p−→ 0 for 3 ≤ j ≤ ν, j odd,

and

c)
√
nh2ν+1

[
σ̂uB̂ν(t, σ̂u, ϕ̂r) − σuB̂ν(t, σu, ϕ)

]
p−→ 0.

a) We have that

λjn(t, σu, ϕ) − λj(σu) =
n∑

i=1

wni(t, h)
[
ψ(j)

(
yi − ϕ(t)

σu

)
−Eψ(j)

(
yi − ϕ(t)

σu

)]

+
n∑

i=1

wni(t, h)Eψ(j)
(
yi − ϕ(t)

σu

)
−Eψ(j)

(
u1

σu

)

=
n∑

i=1

wni(t, h)zj,i +
n∑

i=1

wni(t, h)
[
Eψ(j)

(
u1 + ϕ(ti) − ϕ(t)

σu

)
−Eψ(j)

(
u1

σu

)]

+

[
n∑

i=1

wni(t, h) − 1

]
Eψ(j)

(
u1

σu

)

= A1n +A2n +A3n

The Central Limit Theorem entail that,

√
nh

n∑

i=1

wni(t, h)zj,i
D−→ N(0, V 2

j )

which entails that
√
nh2ν+1A1n

p−→ 0, since h→ 0. On the other hand, denoting

mj(v) = E

[
ψ(j)

(
u1 + ϕ(v) − ϕ(t)

σu

)
− ψ(j)

(
u1

σu

)]

straightforward calculations similar to those given in Lemma P.2 show that,

√
nh2ν+1

∣∣∣∣∣
n∑

i=1

wni(t, h)mj(ti) −
1
h

∫ 1

0
K

(
t− u

h

)
mj(u)du

∣∣∣∣∣→ 0

In particular, if mj(v) = 1 we obtain that
√
nh2ν+1A3n → 0. Using that

√
nh2ν+1

1
h

∫ 1

0
K

(
t− u

h

)
mj(u)du =

√
nh2ν+1

∫ 1

0
K(u)mj(t− uh)du

= (−1)l
√
nh2ν+1hl

∫ 1

0
ulK(u)m(l)

j (ξ)du = (−1)l
√
nh2ν+1+2l

∫ 1

0
ulK(u)m(l)

j (ξ)du
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and N.3 we obtain that
√
nh2ν+1+2lA2n → 0, which concludes the proof of a). Using that

Ĥj(ν, t)
p−→ Hj(ν, t) we get that

√
nh2ν+1S3n

p−→ 0 and
√
nh2ν+1S5n

p−→ 0.

b) The Mean Value Theorem, N.4 and straighforward calculations allow to derive that
√
nh2ν+1 [λjn(t, σ̂u, ϕ̂r) − λjn(t, σ̂u, ϕ)]

p−→ 0

Thus, to show b) and therefore that
√
nh2ν+1S2n

p−→ 0 it will be enough to
√
nh2ν+1

[
1

σ̂j−1
u

λjn(t, σ̂u, ϕ) − 1

σj−1
u

λjn(t, σu, ϕ)
]

p−→ 0

Denote

λ̂jn(t, σ) =
n∑

i=1

wni(t, h)ψ(j)
(
yi − ϕ(ti)

σ

)
=

n∑

i=1

wni(t, h)ψ(j)
(
ui

σ

)
.

Then, using that Eψ(j)

(
u1

σ

)
= 0 for all σ, a tightness argument similar to that used in

Boente and Fraiman (1990) allow to show that
√
nh2ν+1

[
1

σ̂j−1
u

λ̂jn(t, σ̂u) − 1
σj−1

u

λ̂jn(t, σu)
]

p−→ 0.

On the other hand, using a Taylor’s expansion of order two and N.3 straightforward calcu-
lations entail that, √

nh2ν+1
[
λ̂jn(t, σ̂u) − λjn(t, σ̂u, ϕ)

]
p−→ 0.

√
nh2ν+1

[
λ̂jn(t, σu) − λjn(t, σu, ϕ)

]
p−→ 0.

which concludes the proof of b).

c) It only remanins to show c) which entails that
√
nh2ν+1S1n

p−→ 0. First note that

B̂ν(t, σ̂u, ϕ̂r) − B̂ν(t, σ̂u, ϕ) =
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
ψ′
(
yi − ϕ(t)

σ̂u

)
[ϕ̂r(t) − ϕ(t)]

+
1

nhν+1

n∑

i=1

K(ν)
(
t− ti
h

)
ψ′′(ξi)[ϕ̂r(t) − ϕ(t)]2

= A1n +A2n

with

|A2n| ≤ ‖ψ′′‖∞[ϕ̂r(t) − ϕ(t)]2
1

nhν+1

n∑

i=1

∣∣∣∣K(ν)
(
t− ti
h

)∣∣∣∣

Hence, Lemma P.3 and P.4 toghether with N.4 entail that√
nh2ν+1

[
B̂ν(t, σ̂u, ϕ̂r) − B̂ν(t, σ̂u, ϕ)

]
p−→ 0.

Thus, it wil be enough to show that,
√
nh2ν+1

[
B̂ν(t, σ̂u, ϕ)σ̂u − B̂ν(t, σu, ϕ)σu

]
p−→ 0

which follows similarly to b) using that nh2ν+1 → 0 to deal with the bias term.
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