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Abstract

In this paper, robust estimates for the derivatives of order v of the regression function
are considered. This estimator extend the proposals given when v = 1,2. Uniform
consistency, which allows to construct a robust data—driven bandwidth, is established.
Besides, the robust estimates introduced are asymptotically normally distributed and
their asymptotic efficiency is that of the related M —location estimators.
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1 Introduction

The estimation of derivatives from noisy data has been studied by several authors. For
random carriers, Schuster and Yakowitz (1979) showed the uniform convergence of the
estimates derived from kernel weights while Sarda and Vieu (1988) considered the case of
dependent observations. For fixed design, Gasser and Miiller (1984) and Gasser et al. (1985)
studied estimators based on kernel weights which are linear in the response variables.

As it is well known, nonparametric regression estimators depend on a smoothing pa-
rameter that should be choosen by the practitioner. Large bandwidths produce regression
estimators with small variance but high bias, while small values produce more wiggly curves.
This trade—off between bias and variance lead to several proposals to select the smoothing
parameter, such as cross-validation procedures and plug—in methods. The optimum band-
width is defined as the value that minimizes the integrated mean square error. Obviously,
this optimum bandwidth depends on both the regression function and the kernel K. More
precisely, if the regression function ¢ has continuous derivatives up to order v and a kernel
of at least the same order is considered in the estimation procedure, the optimal bandwidth
depends on ¢*). Therefore, the popular plug-in procedure to select a bandwidth estimates
the unknown quantities in the expression for the optimal bandwidth, in particular, it sub-
stitutes ®) by its estimate. Therefore, estimates of the derivatives can also be used to
provide adaptive selectors for the smoothing parameter.

It is well known that in nonparametric regression least squares estimators can be se-
riously affected by anomalous data. As was noted by Hardle and Gasser (1985) linear
estimates of the derivatives are much more sensitive to single outliers than the estimates of
the regression function. Hérdle and Gasser (1985) considered an homoscedastic regression
model and proposed kernel M—estimators to estimate nonparametrically the first derivative
of the regression function. They heuristically extend their proposal to higher order deriva-
tives. However, if v > 2, their extension introduces a bias in the estimation that should be
corrected. Our proposal solves this problem.

The sensitivity of the classical bandwidth selectors to anomalous data was discussed by
several authors, such as, Leung, Marrot and Wu (1993), Wang and Scott (1994), Boente,
Fraiman and Meloche (1997) and Cantoni and Ronchetti (2001). Hérdle and Gasser (1984)
(for fixed designs) and Hall and Jones (1990) (for random designs) studied approximations
to the bias and variance of local M—estimates and considered the mean square error of a local
M-estimate, obtaining the optimal bandwidth for it. Therefore, our procedure also allows
to construct robust data—driven bandwidths for the regression function that will converge
to the optimal one. This entails that the final robust regression estimator will have the
same asymptotic distribution as the one defined using the optimal smoothing parameter.

This paper is organized as follows. In Section 2, we propose robust estimators for the
derivatives of the regression function under a nonparametric regression model with fixed
designs. Uniform consitency is derived in Section 3. All proofs are given in the Appendix.



2 Robust estimation of the derivative of order v

In this section, we will introduce a robust estimator of the derivative of order v which
generalizes the proposal considered, when v = 2, by Boente, Fraiman and Meloche (1997).
On the other hand, our proposal corrects the bias of the estimates considered by Héardle
and Gasser (1985), when v > 2.

Let y; € IR be independent observations such that
yi=p(t)+u  1<i<n, (1)

where the errors u; are independent and identically distributed with symmetric common
distribution F(-/o,) and 0 < t; < ... <t, <1 are fixed design points.

As mentioned in the Introduction, robust estimates for the first derivative of the re-
gression function have been studied by Hérdle and Gasser (1985), when the scale is known.
These authors also discussed the estimation of higher derivatives by formally differentiating
the equation defining the local M —estimator and then, ignoring residual terms. However,
even if these arguments lead to asymptotically unbiased estimators of the second order
derivatives of ¢, when v > 2 an asymptotic bias is present and should be corrected. Our
proposal corrects this bias by introducing a term involving estimates of the derivatives up
to the order v — 2. As mentioned above, when v = 2, Boente, Fraiman and Meloche (1997)
considered kernel-based estimates for the second derivative of the regression function to
provide a robust bandwidth selector in the nonparametric regression setting.

In order to define the estimates, let us denote by ¥\) the j—th derivatives of the score
function v while wy,;(¢,h) and wg;) (t,h) stand for the kernel weights used to estimate the

regression function and its v—th derivative, respectively. More precisely, let wy,;(t,h) and
wg) (t,h) be defined as

1 t—t;
wpi(t,h) = EK@ ( - ) , (2)
. 1 N (t—ti
wﬁn)(ﬂ h) = WK( ) ( A ) ; (3)

with h the bandwidth parameter, Ky : IR — IR a continuous integrable function with
compact support and [ Ko(t)dt = 1 and K : IR — IR is an integrable function differentiable
up to order v with v—th derivative K*) that satisfies the conditions to be stated below.
Note that two different kernels can be used in (2) and (3). Also, Gasser and Miiller weights,
as in Hérdle and Gasser (1985) can be considered and a kernel K, of order (v,k) with
k > v + 2 either both even or both odd, as defined by Gasser, Miiller and Mammitzsch
(1984) can be used in (3). However, according to Lemma 1 in Gasser and Miiller (1984), a
kernel of order (v, k) equals the derivative of order v of a function K with bounded support
[—7,7] satistying KU)(—7) = KU(r) =0for 0<j<v—1, [K(t)dt =1, [/ K(t)du = 0,
for1 <j<k—-v—1and [tFVK(t)dt = (—1)"(k—v)!3/k! with 3 # 0. Assuming that the
scale o, is known, Hérdle and Gasser (1985) suggested to use

iwg)(t, h) (L‘ﬁ(t)) lzn: was(t, W)V (%—7@(15))1
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as an estimate of ¢)(t) where $(t) is a preliminary robust estimate of the regression
function. However, as mentioned above this estimate will be biased if v > 2. In order to
correct the bias, define

Bitog) = Dt mw (L20) )
=1

g

~ 1 ~

Cy (t7 g, 90) = Z N A7 )‘jm(tv g, 90) Hj(”? t) (5)
a<i<v 1" 9
jrodd

where
Ajn(t,o,0) = zn:wm(t,h)qp(j) (L‘P(ﬂ) ©
i=1

Hj(v, 1) {lp(w) — (P} (7)

u=t

and H; j(v,t) is an estimate of H;(v,t). The term B, is the numerator of the estimate
1ntroduced by Hérdle and Gasser (1985) while C,, is related to the correction term needed
to deal with the bias appearing in their estimation procedure.

Lemma P.1 shows that for j > 3, H;(v,t) depends continuously only on the derivatives
of p(t) of order lower or equal to ¥—2 and thus, it can be estimated plugging—in estimators of
the derivatives of ¢ up to order v —2 in the expression of H;. It also allows to calculate eas-
ily H;. For instance, using that Ha(1,t) = 0, Ha(2,t) = 2 [V (¢)]2, H3(3,t) = 6 [oW) (1))
and Ho(3,t) = 6 o () @) (t), we easily obtain Hz(4,t) = 36 [o™M(¢)]?0®(t). There-
fore, in order to estimate the 4—th derivative of ¢, we only need preliminary estimates
of the regression function and of its first and second derivatives. In general, if H;(v,t) =
D;(eM(t),...,p# 2 (t)), we can define H;(v,t) = &;(1(1),..., 302 (1)), Where o\
denote preliminary estimates of o).

Remark 2.1. Note also that for any Z C [0, 1] such that sup | Jnax |0k (t)—pr(t)| — 0,
te

we have that sup [®;(p1n, ..., 0v—2n) — Pj(¢1,...,0v—2)] — 0. In particular, if we have
tel

uniform strongly consistent estimates of ¢¥), for 1 < k < v — 2 then Hj(u, t) — H;(v,t)
uniformly on 7.

Let 7, be a robust estimate of the residuals scale such as the robust Rice-type estimator,
ie, 0, = 3 med1an lyi — yi—1|, and Pr(:) = @r(-,ho) a kernel-based M—estimate of the

regression functlon with initial bandwidth hg, i.e., a solution of

Zwm (t, ho)t (w) =0.

Oy



then, defined as

2 n) =

The robust estimator, cﬁg )

(t,h), of the derivative of order v of the regression function ¢ is,

EI/ (t7 3u7 @R) - C\’V (t7 3U7 @R)
Alm (t7 81“ @R)

Gu . (8)

This procedure depends on the pilot bandwidth hg used to estimate pr and on the
preliminary estimates of the derivatives of ¢(t) up to order v — 2, which obviously also
involve a choice for the smoothing parameter.

For instance, when v = 4 we have that a robust estimator of the fourth derivative of the

(4)

regression function, @’ (t, h), is given by

_fﬁR(t) >

Gu {iwiﬁ? (t, h) (yi
=1

Oy

_%M{l }A@ Zwmth ( @R(t))}

where @R(t) = @R(t h0)7

3

Consistency

Zwm (t,h)y (i())

20
0@ (t), respectively. It is worthwhile noticing, that the estimate considered by Héardle and
Gasser (1985), involves only the first term of the numerator, while the second one is the
one which corrects its asymptotic bias.

Ou

and @g) (t) denote preliminary estimates of (1) (t) and

Under regularity conditions, Boente, Fraiman and Meloche (1997) showed that the robust
estimates of the second derivatives of regression function converges to the second derivatives
of regression function. In this section, we will consider the following assumptions to derive

the weak consistency of the estimates cﬁg ) (t,h) defined in (8).

C.1.

C.2.
C.3.
C.4.

{ti}1~ are fixed design points in [0,1], 0 < ¢; < ... < ¢, < 1, such that to = 0 and

t =1 and max
n+1 1<i<

i<n4+1

(ti —ti1) — %‘ = O(n=°%) for some § > 1.

{u; : 1 <i < n} are ii.d. random variables such that u; ~ F(./0,), F symmetric.

The function ¢(-) has v continuous derivatives on [0,1].

a) K() is a function with support [—1, 1], v—th differentiable. K(-) is a continuous
function with support [—1,1].

b)fKO Ydu =1, [ K(u)du =1, KW (1) = KW(-1)=0for 0 <j <v—1.

c) K™ and K are Lipschitz function of order one.

For1<k<v-—2,

sup

te[h,1—2h)

"ﬁg:)(t) - Sp(k) (t)] %0, as n — oc.



C.6. The initial estimators @R (t) satisfy
~ a.s.
a) sup |pr(t) —p(t)] — 0asn — oo .
0,1

b) There exists ¢y > 0 such that

iP < sup  |@r(t) — (t)] > eoh> < 00 .
n=1

te[h,1—2h)

C.7. lim

C.8. 1 : R — R is an odd, strictly increasing, bounded and continuous function such that
tlim P(t) =a > 0.
—00

C.9. v is (v + 1)-th differentiable. Moreover, for any 1 < ¢ < v + 1, , the ¢-th derivative
»® and vy(t) = t O (t) are bounded.

C.10. The estimator o, de o, satisfy o, L% g, if n— oco.

Theorem 3.1. Under C.1 to C.10, if n°~1h**! — 0o, nh*t2 — co and Eyp™) <ﬂ> #0,
Ou
we have that

sup \@ﬁ)(t, h) — SO(V)(t)! 250 as n— oo.
telh,1—2h]

Remark 3.1. Note that if v > 2 and C.7 holds then n h*+2 — co. Moreover, using similar
arguments as those considered in Theorem 2 from Hérdle and Luckhaus (1984), it is easy
to show that C.6 holds for the kernel M—smoother.

4 Asymptotic Normality

Under regularity conditions, Hérdle and Gasser (1985) showed that the robust estimates
of the first derivative of regression function is asymptotically normally distributed. In this
section, we will consider the following assumptions to derive the asmptotic distribution of
the estimates @gj) (t,h) defined in (8).

N.1. a) K(-) is a function with support [—1, 1], k—th differentiable with k& > v + 2.
b) [K(u)du =1, KW(1) = KU (=1) =0for 0 < j <v—1, [w/K(u)du = 0 for
1<j<k—v—1, [ub"K()du = (-1)" E326 £ 0.

¢) Ko() is a continuous function with support [—1,1]. [ Ko(u)du = 1 and for some
¢ > 2 it holds [uw/Ko(u)du =0 for 1 <j < ¢, [u’Ko(u)du # 0.

c) K™ and K are Lipschitz function of order one.



N.2. The function ¢ is r—th differentiable with r = max(k,£), k > v + 2 and () is
continuous at t.

N.3. Forl1<s<v-—2, \@g)(t) — o)) 25 0 and Vnh2v+1 (ﬁj(u,t) — Hj(v, t)) 250.
N.4. The initial estimators @g(t) satisfy vnh (pr(t) — ¢(t)) = Op(1).

N.5. The estimator &, de o, satisfy 7, L, o0

N.6. lim nh? ! = 400, lim nh?*t1 =0, lim nh?T2*! = 0.
n—oo n—oo

n—oo

Remark 4.1. Lemma 1 in Gasser and Miiller (1984) shows that assumption N.1 entails
that [u*K®) (u)du = and [ v’ K® (u)du = (—1)"v!. Assumption N.5 is fulfilled if 5, is
the robust Rice-type estimator while N.4 is satisfied when @gr(-) = @r(-, h).

Theorem 4.1. Under C.1, C.2, C.8, C.9 and N.1 to N.6 if in addition 1 is continuously
differentiable up to order v + ¢ and Ey® (ﬂ) # 0, we have that

u

Ey? (2
1 (K(u)(U))2 du] E%(l)((;i?)

Ou

VAl () (1,) - 9(0) 2 N | 0,3 | [

-1

It is worthnoticing that Theorem 4.1 entails that the robust estimators introduced will
have the same asymptotic efficiency as the location M —estimators defined through the score
function .

5 Concluding Remarks

Selection of the smoothing parameter is an important step in any nonparametric analysis,
even when robust estimates are used. The classical procedures based on least squares
cross—validation or on a plug—in rule turn out to be non—-robust since they lead to over or
undersmoothing as noted for nonparametric regression by Leung, Marrot and Wu (1993),
Wang and Scott (1994), Boente, Fraiman and Meloche (1997) and Cantoni and Ronchetti
(2001). For any robust smoother $g(t, h), the optimal bandwidth hgptv is defined as the
value of h minimizing the integrated mean square error curve

MISER(h) = E/Ol (@r(t, h) — @(t))? dt.

According to Hérdle and Gasser (1984), if the function has v > 2 continuous derivatives

and a kernel, K, of order v is used to estimate ¢(t), hgpt is related to the optimal band-

1
width for the classical estimates, hopt, through the relation hgpt = hoptV 21, where

7



-1
V = Ev? (0_ > [E2¢(1 (0_ ﬂ gives the efficiency of the local M—-estimate and

(WO (K a2 T
h — n2u+1
opt (21/022 (K,) T (pW)

where C(K,) = [ K2(t)dt, Co(K,) = [u” K,(u)du and T(f) = [y f?(u) du. Therefore, a
robust bandw1dth selector, h, based on the estimates defined in Sectlon 2 can be constructed.
This robust bandwidth selector tends to overcome the well known sensitivity of the classical
selectors.

o~

Theorem 3.1 entails that 22, 1 and so the the data—driven is asymptotic equivalent

h
hgpt
to the optimal bandwidth. Theorems 3.1 and 3.2 from Boente, Fraiman and Meloche (1997)
allow us to conclude that the kernel based M-estimates of ¢ obtained using a plug—in band-

)

width selector, E based on @’ will be consistent. Moreover, it will be asymptotically equiv-

alent to the kernel based M—estimates obtained using the optimal bandwidth, hopt? based on
a v—th degree of smoothness, in the sense, that (n hopt)1/2 [@R(t, hgpt) Pr(t, h)} 250.

This asymptotically equivalence, entails that, (n hg )1/2 {ch(t h) —p(t )} is asymptotically
normally distributed.

Our proposal for the derivatives of the regression function can therefore be used to pro-
vide a data—driven bandwidth selector. It also corrects the bias of the estimates considered
by Hérdle and Gasser (1985), when v > 2. It is worth noticing that a ready-to—use robust
plug—in bandwidth selector can be defined by using a robust version of the iterative schemes
proposed discussed in Ruppert, Sheater and Wand (1995).

P Appendix: Proofs.

Lemma P.1.  For any fixed t and j > 2, let vj(u) = [p(u) — ¢(t))’. Then we have that
fork > j, v (k) (t) = Hj(k,t) depends only on p®)(t) with £ < k — 1. Moreover, if j > 3, and
k>j,v ]( )( t) depends only on o) (t) with £ < k — 2.

PROOF. Since ng) (1) = ¢ (u), we have that

k
W) = <vj_1<u>v1<u>><k>=2<k ) o () 017 ).

[
~

Using that v1(¢t) = 0 and v;_;(t) = 0, and that v;’,(t) = 0, for j > 3, we get

k—
< ) eF (1) for j>2

Z < ) o*) (1) for j>3



and thus, the result follows.

In order to prove Theorem 3.1, we will need the following lemmas. From now on, denote
by Z = [h,1 — 2h].

Lemma P.2. If C.1, C.3 and C.4 hold and, in addition, lim nh**t? = +oco0 and

nli_)ngoné Lprtl — 400, we have that
1 &Ko (=t
@) Jim sup | 3 KO () <o
1 v t—t;
b) lim su K(”)( ) t; / KW (u)(t — uh)du| = 0.
()n—mtér) h"“é N (p(ti) — )

PrOOF. The proof follows the same steps as in Lemma A.1 from Boente, Fraiman and
Meloche (1997). (a) Note first that C.4 entails that

h
Using C.1 we have that, for some C' > 0 there exists ng such that for n > ng, nh > C and
C
|tn, — 1] < —, and so, for ¢t € [h, 1 — 2h],
n

1 t—u
/K(”)( )du:O for te[h,1—hl. (P.1)
0

1 t—
/t KW <Tu>du:0 Vn >ng . (P.2)

Denote by M, the Lipschitz constant for K *) and by & an intermediate point t;_; < & < t;.
Then, from (P.1) and (P.2), we get
u) du

1 & t—t; 1 & t—t; 1 Lt t—
- (v) t N (v) vty _ (v)

1 |1 t—t; t—&
= —— |- K(V)< 2) —n(t; — t;_ K(u)< z>}
Ryl n;{ 3 n(t; —ti—1) 0
M, 1&-[ti—& 1 &) (6
S P +nhy+1Z (—h |11t~ o)
M, .
< Rz sup]t —tic1| + [|E oo —— (ti — ti1)
M, C ” 0o(1)
- ’I’Lh’/+2 +HK( )HOOW

and the result follows.
(b) As in (a), using that K*) has compact support on [—1, 1], we have that

T o (t—u Y
W/o KU( h ) h”/ KO uhplt = uh)d




On the other hand, the boundness of ¢ and (a) imply that,

S KO (S5 et

et - ey [ KO () el

C
As in (a), let ng be such that for n > ng, nh > C and 1 — ¢, < . Then, using analogous

sup — 0.

tel

Thus, it remains to show that

nhu—l—l ZK (

sup — 0.

tel

arguments as those considered in (a), we get that for n > ng

1 & t—t; 1 1 t—u
_24 (v) v Ny (v)
‘ b1 2 (5 st = g [ 1 (552 et
t;

= # i {K(”) (%) ot =n | KY) (_Tu> sO(U)dU} -
o / KO (154) el

b3 {0 (55 - (5) )

C
+||K Y ||ooH‘:0HooW .

IN

+

which concludes the proof using that K*) and ¢ are bounded Lipschitz functions. O
Using similar arguments, we obtain the following Lemma.

Lemma P.3. If C.1, C.3 and C.4 hold and if, in addition, nlinolonh2 = +o00 and

lin;o ndIpt = 400, we have that
n P 1
sup Z o (S5~ [ iKatwiraal — 0, p=1,2
tel n —1 -1
_ 1
tex (=) - [ KO @ 0. p=12
tel ’I’Lh h -1

Lemma P.4. Let {y; : i > 1} be a sequence of i.i.d random variables. Assume that 7
is a continuously differentiable and bounded function such that v(t) = tn/'(t) is bounded.
Then, under C.1, C.4, C.7, for any bounded continuous function m : [0,1] — IR, we have
that for any compact set C C IR

nh’”rl Z (

a) sup sup
teZ oeC




a.s.

—0.

b) sup sup
teZ oeC

>t (S o [ () - (1)

PROOF. We will only prove a), since the proof of b) follows similarly. Denote S, (t,0) =
1 t—t; i i .
7Sy ;K(”) ( . ) m(t;)Vie withV; , = o [77 (y;) — En (y;)] It is enough to show
that supsup S, (t, o) =2 0.
teZ oeC

Since 7 is bounded and C is a compact set, we have that for some fixed constant M,
|Vio| < M, for all o € C. Thus, using that m is bounded and

%z: {K(V) (’f ;lt’)r - /_11[K<”>(u)]2du

Bernstein’s inequality implies that, for some positive constant «, we have that for n > ng

sup — 0

tel

supsup P(|S,(t,0)| > €) < 9e—onh T (P.3)
teZ oeC

Denote 7 = [0,1] x C and B,(a,b) the ball of radius r and center (a,b) € 7. Then,
for any v > v + 2 there exist (a1,b1),...,(ag, b)) € T with £ = £, = O(h™7) such that
¢

T C U B (a;,b;). For the sake of notation simplicity, let B; stand for By (a;,b;), then,we

i=1
have that
supsup [Sp(t,0)] < max sup |[Sn(t,0) — Sp(aj,bj)| + max |S,(aj,b;)] . (P.4)
teZ o€eC 1<5<t(t,0)eB; 1<5<l

Using that m, n, v and K® are bounded functions and that K*) is Lipschitz, straigh-
forward calculations lead to |Sy(t, o) — Sn(aj,b;)| < Ath7~W+2) for (t,0) € B, for some
positive constant A;, which entails that for n > n;

max sup |Sp(t,0) — Snp(a;,bi)| <e. P.5
e, S0 [5a(6:0) = a3 ()

Finally, (P.3), (P.4) and (P.5) entail that, for n > max{ni,no},

P(supsup |S,(t,0)] > 2¢) < P< max |Sy(aj,b;)| > e) < 20, e~onh*
teT oeC 1<j<tn

< Ch™Vp~%n < C (nh)™" n)—0n ,

where, from C.7, §, = nh?**!'/logn — oo. Taking v = v + 3, and since 6, — oo and
nh — oo we have that for n > ngs, (nh)”7 < 1 and v — ad,, < —2. Hence, for n > ln<1§1<xg(ni),
_Z_

n
P(supsup |Sn(t,0)| > 2€) < Cn~2, which shows that ZP(Supsup|Sn(t,a)| > 2¢) < 00
teZ oeC i=1 teZ oeC

concluding the proof. []

11



Remark P.1. It is worthwhile noticing that Lemma P.2 and Lemma P .4 entail that under
the conditions stated therein,

sup | 2 K (S5) (0000 = 0 g [ KO0 (elt =) = (0]~ 0
sup sup nhuHZK(” (557 ot — wle) n (%) - B (%)H 5 0.

1 ,
Moreover, if we denote vj(u) = (p(u)—¢(t))’ using that % / KW (u) [t — uh) — o)) du =
-1

1 1
/ K(u)fuj(-'/) (t — uh) and / K(u)v](-u) (t —uh) — fuj(-'/) (t) = Hj(v,t), we get
-1 -1

oup |~ 3K (18 ott) — o(0Y - 0] — 0
s s s 26 (5) 600 ot () = 0 () ] 25 o

Lemma P.5. Under C.1 to C.10, if n®~'h**t! — oo as n — oo, we have that for any
compact set C C IR

Yi — (P(t)) W) . )\j(a) ' a.s. . (v)
(a) ilelg ilé}c) E 1 w <70 e () A1 (o) E =r Hj(v,t)| = 0, withw,, (t, h)
= s
j:o

and H; defined in (3) and (7), respectively and \;(o) = EyU) (ﬂ>
(b) sup | Ajn(t, Gu, BR) — Aj(0w)| == 0, where ;. (t, 0, ) is defined in (6).
tel

PROOF: (a) A Taylor expansion of order v gives

Zwmth ( ) ZS]nta 1R(ta)

where

Sinltio) = %Z W (100 () ot - (o)}

v) (Wi + & v) [ Ui v
Raltio) = Do) [p0 (U8 —p) (U] o) — o)
P o o
with [&] < [o(ti) — @ (t)]. ,
Using the oddness of 1) and C.2, we get that E(x)U)(u;)) = 0 for j even. Therefore, Lemma

P.4 entail that supsup |Sj,(t,0)| <> 0 for j even.
teZ oeC

12



Let C; and Cy be the Lipschitz constants of 1*) and ¢, respectively. Then, since €] <
lo(ti) — o(t)] < Colti —t|, and K has compact support on [—1, 1], we get

, 1 ¢ t—1 vy (Wit & vy (Wi Y
szz )< . )’W()(T)—T/)()(—)Ht—m

v+1 n v+1 n
ClC 1 ZK(V < )‘|t_tz|y+1 ClC hiz

o nhvtl o nh —

o ()| e

1
with the compactness of C, allow to conclude that supsup —|R,(t,0)| 2% 0 using that

teT ocC 07
lim A =0.
n—oo

[ Rn(t, 0]

IN

IN

) ﬂ)‘
ko (28]

— 0, which together

Lemma P.3 entails that sup | —
tel

nh

To conclude the proof of (a), it remains to show that

a.s.

1
) supsup S (,0) — ~ B0 (2] o 1)] £ 0
teZ ocC g o
1 i a.s. .. .
ii) supsup |Sjn(t,0) — — 2 YIC) (ﬂ) Hj(y,t)‘ —> 0, when j is odd and 7 > 3.
teT ocC 03! o

i) Lemma P.4 implies that

i 2 () [o (%) - ot (22)] e -] 2

thus, it will be enough to show that

sup sup
teZ oeC

o KO () [t — (0] - (0] 0, (P

i=1

which follows from Lemma P.2, the fact that o*) is Lipschitz and the equality

1
hy/ KW (u)o(t — uh)du /_lK(u)cp(”)(t—uh)du

ii) Again, using Lemma P.4 we have that

wl e [0 (%) = B ()] o) - w0}

sup sup Z 250,

teZ oeC i=1

and so, as in i), it will be enough to show that,

n

sup - wl (1, h)p(ts) — (8)) — Hi(v,t)
tel |j=1

— 0,

which follows from Remark P.1.
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(b) From Lemma P.4, we get supsup |\; . (t, 7, () — A;j ()| == 0. Thus, in order to obtain
teZ oeC
(b), from C.10 and the continuity of \;(¢), it remains to show that sup |\;,(t, Gu, @) —
tel
)‘jJL(tu aua @R)’ ﬁ 0.

Using that ¢() is a Lipschitz function, we obtain

SN . 1 ; N
[Njn(t, Gu, BR) — Ajn(t, 0w, 0)| < = 19U || BR(E) — (2)] o > |K

which implies the desired result using C.6, C.10 and the fact that
n 1
— Ko(u)|du
L (5

PROOF OF THEOREM 3.1 Let N (t,5,, $r) = By (t,6u, $r)—C (£, 60, Pr) =™ ()M 10 (t, Fu, PR)
and note that

sup |2 (8, h) = oM ()] = sup M a(t, 30, )7 N (¢, 50, F1)|
tel tel

sup — 0.0

tel

< {inf Mt 50 Gr)[Y ! sup |V (1,54, 8r)| -
tel teT

Since 1nf M (t, Gu, PR)| > }Ew (ul)’—sup
Ou tel

AMn(t, 0w, PR) — 1/1(1 (u )} from Lemma
Oy

S.

P.5(b), C.10 and the fact that Ey) (u1 ) + 0, it will be enough to show that sup |N (¢, 5., Pr) | <
Ou teT
0. According to Lemma P.5, if C denotes the closure of a neighborhood of ¢, it suffices to

show that

o 3ol [o (A=20) -0 (220 20 e
igg!ﬁj(y,t)—flj(y,t)\ 22500 (P.8)

Since H;(v,t) = ®;(eM(t),...,p#=2(t)) and ﬁj(y, t) = @,;(pN(1),..., " 2(t)), using
C.5 and the uniform continuity of ®;, we get (P.8). In order to prove (P.7) using a Taylor’s
expansion of order v, as in Lemma P.5 (a), we obtain that

S ult e hy (2O =S (U0 ) 3 s+ R
i=1 i=1 =1 :

where |¢7,,| < |o(t) — @r ()] and

Sin(t;0) = [p(t) = Gr(Y Xn: (& Ry (TW))

i=1
Ritio) = [pt) - G 3wl (t.h) [wm (%@in)_w (y—Tw(ﬂ)] |
i=1



u1 + p(u) — o)

Let m;(u,0) = EyU) ( ) Lemmas P.2(a) and P.4 together with C6

1 o o

and the equality h”‘j/ KW (u) m;(t — uh,0) = / KW (u) mg- ])(t — wh,o) imply
—1 -1

that supsup |57, (t,,0)| 22, 0. Therefore, the proof will be concluded if we show that

teZ oeC
supsup |R(t,0)| <5 0. Let C; and Cy denote the Lipschitz constants for 1) (t) and (),

teZ oeC
respectively. Then, we have
t—1;
h

o) — Gr(®)]” 1 -

AR o) < Cililt) - Pr(t)] LRI
1=1

which together with Lemma P.3 and C.6 conclude the proof.d

PROOF OF THEOREM 4.1. Denote

To(o,m) = Va2t {o B, (t,0,m) = C, (t,0,m)] = o™ ()\1 () }

T, (o,m) = Vnh?+tl {0 [B,, (t,o,m) —C, (t,0, m)} — 90(”) (t) A1 (t, 0, m)}

with C, (t,0,m) = E j'% \j(o) Hj(v,t) and \j(0) = BEyl) <ﬂ) As in Lemma P.5.,
lo o
3<i<v
j:odd

it is easy to derive that A1, (t,5u, Pr) L2, A1(oy). Thus, it will be enough to show that,
~ 1 2
70 00) 2 N (0,02 [ [K0)] dupe? (2)).
-1 Ou

The Central Limit Theorem and the expansion for the bias given in Gasser and Miiller
(1984) together with the fact that nh?**1 — 0 entail that

1 2
Ty (0w, @) 2+ N (o,ag / (K ()] duy? (ﬂ» .
—1 Oy
Therefore, the proof will be completed if we show that T, n(Gu, PR) — Tn(ow, ) 2, 0. Note
that T),(0y, Pr) — Tn(ow, ) = Vnh2*+t1{Sy, + Sa,, + S + San + S5}, where

Sln = 8u.§,/(t, Gu, (,/D\R) - O'uéu(ty Ou,s QO)
1 1 o~ 1 77
Son = Z = |:ﬁ)\jn(t70'ua SDR) - ?)‘jn(tv Ou, (10):| Hj(V’ t)
3<j<v j Oy u
J:odd
1

-1 [)\jn(ta Ou, 90) - )‘j (Uu)] ﬁj(V7 t)

S?m - Z ;

3<ji<v jlow
J:odd
1
Sin = Z G g1
3<j<v J:O0u
J:odd

Son = V() A1n(t, 3u, Br) — M (0w)) -

)‘j(au)[ﬁj(y7 t) - Hj(”? t)]
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It follows inmediately that N.3 entails that vVnh2v+1Sy, - 0

Therefore to obtain the desired result, it remains to show that

a) Vnh2t (N, (t, 0u, @) — Aj(ou)) L,0for1<j<v,jodd,

— [ 1 1
b) nh2v+1 Aj_l)‘jn(tv 3u7 @R) - ?Ajn(to-ua (10)] L’ 0 for 3 < J < v, J 0dd7
U Ou
and

C) \/W [auél/(ta a'ua @R) - O-uéu(t7 Tu, (‘D)i| L) 0-

a) We have that
Njn(ts ou, 0) — Nj(ow) = iwni(t h) [ (y, p(t ) EyV) (yi —Uﬁp(t))]

+ Zwm (t,h)Eyp) <yl pl(t ) EypU) <ﬂ)

=1 o
- Zzn;wm(t, h)zji + Zz;wm'(t’ h) [E¢(j) <U1 - 90(21'“) - SO(t)) - By (Z_iﬂ
+ lZwm (t,h) —1 By ( >

=1 Tu

= Aln + A2n + A?m

The Central Limit Theorem entail that,
vnh Z Wy (t, h)zj,i 2) N(O, ‘/;2)
i=1
which entails that vnh2+t1A4;, -2 0, since h — 0. On the other hand, denoting

my(v) = B {T,Z)(j) (Ul +¢(v) — 90(’5)) e <ﬂ)]

Ou Ou

straightforward calculations similar to those given in Lemma P.2 show that,

Zwm (t, h)m;(t h/ <t—u> mj(u)du

=1

vVnh2v+1

— 0

In particular, if m;(v) =1 we obtain that vVnh?+1A4s, — 0. Using that
Vnh2vtl— / (t — u) m;j(u)du = Vnh?+1 / w)m;(t — uh)du
— (—1)l\/nh2”+1hl/ ulK(u)mS-l)(g)du = (—l)anh2V+1+2l/ ulK(u)mS-l)(f)du
0 0
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and N.3 we obtain that vnh2+t1+2l Ay, — 0, which concludes the proof of a). Using that
Hj(v,t) 2 Hj(v,t) we get that vnh2+1Ss, - 0 and Vnh2+1S5, 2 0.

b) The Mean Value Theorem, N.4 and straighforward calculations allow to derive that
Vih2 4 (b, Gu, @R) = Ajn(t G, 9)] == 0
Thus, to show b) and therefore that vVnh?*+1Sy, 2,0 it will be enough to

——— 1 N 1
nh?+1 3]'_1 )‘]n(ta Ou, (10) - F)‘]n(tu Ou, (10):| L 0
Denote (
~ " _ — o(t;) " N2
N (L. o) = ()@ (M)Z ()@ <_2>
J()O-) ;w(v)w o ;w(7)¢ o
Then, using that E@) %) = 0 for all o, a tightness argument similar to that used in
Boente and Fraiman (1990) allow to show that
1~ 1 -~
Vnh2v+l T Ajn(t,0y) — 1 )\jn(t,au)] 2.0.

On the other hand, using a Taylor’s expansion of order two and IN.3 straightforward calcu-
lations entail that,

VAR [R0(t,52) = Apa(t )| 2 0.
VAT (R0t 3.) = Aju(ts 7as )| 0.

which concludes the proof of b).
¢) It only remanins to show c¢) which entails that vnh2+15;, - 0. First note that

~ ~ 1 n — U ’ T ~
But50 o) — Bultsoug) = = S KO (S50 (B2 o) - o)
=1

Ou

1 & t—t
- ) N NS _ 2
tom K (557) v€)erte) - v(0)
= Aln+A2n
with

" ) — 2; - (v) t—1
sl < 0ol () = 00 e 3K (57|

Hence, Lemma P.3 and P4 toghether with N.4 entail that
VRl B (t, 54, 1) — Bu(t,6u, )| == 0.
Thus, it wil be enough to show that,
Vnh?vtl {E,,(t,&u, ©)G, — By(t, 00, gp)au} 250

which follows similarly to b) using that nh?*1 — 0 to deal with the bias term. [J
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