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Departamento de Matemáticas, Instituto de Cálculo

FCEyN, Universidad de Buenos Aires and CONICET, Argentina

Abstract

In this paper, under a semiparametric partly linear regression model with fixed de-
sign, we introduce a family of robust procedures to select the bandwidth parameter.
The robust plug–in proposal is based on nonparametric robust estimates of the ν−th
derivatives and under mild conditions, it converges to the optimal bandwidth. A ro-
bust cross–validation bandwidth is also considered and the performance of the different
proposals is compared through a Monte Carlo study. We define an empirical influence
measure for data–driven bandwidth selectors and, through it, we study the sensitivity
of the data–driven bandwidth selectors. It appears that the robust selector compares
favorably to its classical competitor, despite the need to select a pilot bandwidth when
considering plug–in bandwidths. Moreover, the plug–in procedure seems to be less sen-
sitive than the cross–validation in particular, when introducing several outliers. When
combined with the three-step procedure proposed by Bianco and Boente (2004), the
robust selectors lead to robust data–driven estimates of both the regression function
and the regression parameter.
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1 Introduction

Partly linear models have become an important tool when modelling biometric data, since
they combine the flexibility of nonparametric models and the simple interpretation of the
linear ones. These models assume that we have a response yi ∈ IR and covariates or design
points (xt

i , ti)
t ∈ IRp+1 satisfying

yi = xt
i β + g(ti) + εi 1 ≤ i ≤ n , (1)

with the errors εi independent and independent of (xt
i , ti)

t. The semiparametric nature
of model (1) offers more flexibility than the standard linear model, when modelling a com-
plicated relationship between the reponse variable with one of the covariates. At the same
time, they keep a simple functional form with the other covariates avoiding the “curse of
dimensionality” existing in nonparametric regression.

In many situations, it seems reasonable to suppose that a relationship between the
covariates x and t exists, so as in Speckman (1988), Linton (1995) and Aneiros–Pérez and
Quintela del Rı́o (2002) we will assume that for 1 ≤ j ≤ p

xij = φj(ti) + ηij 1 ≤ i ≤ n (2)

where the errors ηij are independent. Moreover, the design points ti will be assumed to be
fixed.

Several authors have considered the semiparametric model (1). See, for instance, Denby
(1986), Rice (1986), Robinson (1988), Speckman (1988) and Härdle, Liang and Gao (2000)
among others.

All these estimators, as nonparametric estimators, depend on a smoothing parameter
that should be choosen by the practitioner. As it is well known, large bandwidths produce
estimators with small variance but high bias, while small values produce more wiggly curves.
This trade–off between bias and variance lead to several proposals to select the smoothing
parameter, such as cross-validation procedures and plug–in methods. Linton (1995), using
local polynomial regression estimators, obtained an asymptotic expression for the optimal
bandwidth in the sense that it minimizes a second order approximation of the mean square
error of the least squares estimate, β̂ls(h), of β. This expression depends on the regression
function we are estimating and on parameters which are unknown, such as the standard
deviation of the errors. More precisely, for any c ∈ IRp, let σ2 = σ2

ε c
tΣ−1

η c be the

asymptotic variance of U = ctn
1
2 (β̂ls(h)−β), and nMSE(h) = EU2/σ2 its standardized

mean square error. Then, when the smoothing procedure corresponds to local means, under
general conditions, that include that the design points are almost uniform design points,
i.e., {ti}ni=1 are fixed design points in [0, 1], 0 ≤ t1 ≤ . . . ≤ tn ≤ 1, such that t0 = 0 and
tn+1 = 1 and max1≤i≤n+1 |(ti − ti−1) − 1/n| = O(n−δ) for some δ > 1, we have that, for
ν ≥ 2,

MSE(h) = n−1{1 + (nh)−1A2 + o(n−2µ) + (n
1
2h2νA1 + o(n−µ))2} ,
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where µ = (4ν − 1)/(2(4ν + 1)), φ(ν)(t) = (φ(ν)
1 (t), . . . , φ(ν)

p (t))t, αν(K) =
∫
uνK(u)du,

K∗(u) = K ∗K(u) − 2K(u) and

A1 = α2
ν(K)(ν!)−2 σ−1 ctΣ−1

η

∫ 1

0
g(ν)(t)φ(ν)(t)dt A2 =

∫
K2

∗ (u)du .

Therefore, the optimal bandwidth in the sense of minimizing the asymptotic MSE(h), is
given by hopt = A0n

−π, with π = 2/(4ν + 1) and

A0 =
(
A2/(4νA1

2)
)π/2

=

{∫
K2

∗ (u)du/

[
4ν

(
σ−1ctΣ−1

η α2
ν(K)(ν!)−2

∫ 1

0
g(ν)(t)φ(ν)(t)dt

)2
]}π/2

.

(3)
Linton (1995) considered a plug–in approach to estimate the optimal bandwidth and showed
that it converges to the optimal one, while Aneiros–Pérez and Quintela del Rı́o (2002)
studied the case of dependent errors.

It is well known that, both in linear regression and in nonparametric regression, least
squares estimators can be seriously affected by anomalous data. The same statement holds
for partly linear models. To avoid that problem, Bianco and Boente (2004) considered a
three–step robust estimate for the regression parameter and the regression function. Besides,
for the nonparametric regression setting, i.e., when β = 0, the sensitivity of the classical
bandwidth selectors to anomalous data was discussed by several authors, such as, Leung,
Marriott and Wu (1993), Wang and Scott (1994), Boente, Fraiman and Meloche (1997),
Cantoni and Ronchetti (2001) and Leung (2005).

In this paper, we consider a robust plug–in selector for the bandwidth, under the partly
linear model (1) which converges to the optimal one and leads to robust data–driven esti-
mates of the regression function g and the regression parameter β. We derive an expression
analoguous to (3) for the optimal bandwidth of the three–step estimator introduced in
Bianco and Boente (2004). As for its linear relative, this expression will depend on the
derivatives of the functions g and φ. In Section 2, we review some of the proposals given
to estimate robustly the derivatives of the regression function under a nonparametric re-
gression model. The robust bandwidth selector for the partial linear model is introduced in
Section 3, where under mild conditions, consistency to the optimal bandwidth is established.
In Section 4, for small samples, the behavior of the classical approach and of the resistant
selectors is compared through a Monte Carlo study under normality and contamination.
Also, a robust cross–validation procedure is introduced and compared with the plug–in one.
Finally, in Section 5 an empirical influence measure for the plug–in bandwidth selector is
introduced. We use this measure to study the sensitivity of the plug–in selector on some
generated examples. All proofs are given in the Appendix.

2 Robust estimation of the derivative of order ν

In this section, we review some of the approaches given to provide robust estimator of the
ν−th derivative of the regression function under a fully nonparametric regression model.
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Let zi ∈ IR be independent observations such that

zi = ϕ(ti) + ui 1 ≤ i ≤ n , (4)

where the errors ui are independent and identically distributed with symmetric common
distribution F (·/σu) and 0 ≤ t1 ≤ . . . ≤ tn ≤ 1 are fixed design points.

Robust estimates for the first derivative of the regression function have been introduced
by Härdle and Gasser(1985), when the scale is known. Boente and Rodriguez (2006) dis-
cussed the estimation of higher derivatives. Their approach is analoguous to that given by
Boente, Fraiman and Meloche (1997) when ν = 2. On the other hand, a robust local poly-
nomial approach was introduced by Welsh (1996) and extended to the dependent setting
by Jiang and Mack (2001).

In order to define both classes of estimates, let us denote by Ψ(j) the j−th derivatives
of the score function Ψ while wni(t, h) and w

(ν)
ni (t, h) stand for the kernel weights used to

estimate the regression function and its ν−th derivative, respectively. More precisely, let
wni(t, h) and w(ν)

ni (t, h) be defined as

wni(t, h) = (nh)−1K0 ((t− ti)/h) , (5)

w
(ν)
ni (t, h) = (nhν+1)−1K(ν) ((t− ti)/h) , (6)

with h the bandwidth parameter, K0 : IR → IR a continuous integrable function with
compact support and

∫
K0(t)dt = 1 and K : IR→ IR is an integrable function differentiable

up to order ν with ν−th derivative K(ν).

2.1 The robust differentiation approach

When scale σu is known, Härdle and Gasser (1985) suggested to use as an estimate of
ϕ(ν)(t) the ratio σuB̂ν (t, σu, ϕ̂) [λ1,n(t, σu, ϕ̂)]−1, with ϕ̂(t) a preliminary robust estimate of
the regression function and

B̂ν (t, σ, ϕ) =
n∑

i=1

w
(ν)
ni (t, h)Ψ ((zi − ϕ(t))/σ) (7)

λj,n(t, σ, ϕ) =
n∑

i=1

wni(t, h)Ψ(j) ((zi − ϕ(t))/σ) . (8)

However, this estimate will be biased if ν > 2, since E
[
Ψ(j) (ui/σu)

]
are not equal to 0

for odd values of j (see Boente and Rodriguez (2006) for a discussion). More precisely, the
estimate of ϕ(ν)(t) introduced by Härdle and Gasser (1985) will converge to

ϕ(ν)(t) + (λ1(σu))−1σu
∑

3≤j≤ν

j:odd

(σju j!)
−1 λj(σu) Hj(ν, t) = ϕ(ν)(t) + (λ1(σu))−1σuCν (t, σu, ϕ)

instead of ϕ(ν)(t), where λj(σ) = EΨ(j) (u1/σ) and Hj(ν, t) = {[ϕ(u) − ϕ(t)]j}(ν)
∣∣∣
u=t

. To
correct the bias, Boente and Rodriguez (2006) introduced an estimator for Cν (t, σu, ϕ) as
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follows
Ĉν (t, σ, ϕ) =

∑

3≤j≤ν

j:odd

(j! σj)−1 λj,n(t, σ, ϕ) Ĥj(ν, t)

with Ĥj(ν, t) an estimate of Hj(ν, t). The robust estimator, ϕ̂(ν)
r (t, h), of the derivative of

order ν of the regression function ϕ is, then, defined as

ϕ̂
(ν)
r (t, h) = σ̂u [B̂ν (t, σ̂u, ϕ̂r) − Ĉν (t, σ̂u, ϕ̂r)]/λ1,n (t, σ̂u, ϕ̂r) . (9)

where σ̂u is a robust estimate of the residuals scale such as the robust Rice–type estimator,
i.e., σ̂u = 1

2 median
1≤i≤n

|zi − zi−1|, and ϕ̂r(·) = ϕ̂r(·, h0) denotes a kernel–based M−estimate

of the regression function with initial bandwidth h0, i.e., a solution of

n∑

i=1

wni(t, h0)Ψ ((zi − ϕ̂r(t, h0))/σ̂u) = 0 .

As mentioned in Boente and Rodriguez (2006), this procedure depends on the pilot
bandwidth h0 used to estimate ϕ̂r and on the preliminary estimates of the derivatives of ϕ(t)
up to order ν− 2, which obviously also involve a bandwidth choice, leading to ν− 1 choices
of pilot bandwidths to estimate the ν−th derivative of the regression function, denoted
hj , 0 ≤ j ≤ ν − 2. In order to guarantee the convergence of the preliminary estimates,
these bandwidths must satisfy hj → 0 and nh2j+1

j /log n → +∞. One possible choice for
them is to define data–driven bandwidths by robustifying and adapting the iterative scheme
proposed by Gasser, Kneip and Kohler (1991).

Under mild conditions, in Theorem 3.1 in Boente and Rodriguez (2006), it is shown that
if nhν+2 → ∞ and E(Ψ′(u1/σu)) 6= 0, sup

t∈[h,1−2h]
|ϕ̂(ν)

r (t, h) − ϕ(ν)(t)| a.s.−→ 0. The asymptotic

distribution of the estimates is also derived.

2.2 The robust polynomial approach

To estimate the derivatives of a regression function a different approach was considered by
Welsch (1996) who studied local quantile regression and local heteroscedastic M−regression
estimators. On the other hand, under an homoscesdatic regression model as in (4), Jiang
and Mack (2001) introduced a family of estimators for the regression function and their
derivatives based on a local M−regression approach that leads to pointwise consistent
and asymptotically normally distributed estimates even when the observations satisfy an
α−mixing condition. These estimates are defined as follows. Let ρ be an outlier resistant
function with bounded derivative Ψ and σ̂u a preliminary robust scale estimator. Jiang and
Mack (2001) propose to find aj to minimize

n∑

i=1

wni(t, h)ρ


(zi −

ν∑

j=0

aj(ti − t)j)/σ̂u
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Equivalently, the solution â(t) = (â0(t), ..., âν(t)) satisfy the local M−estimation equations:

n∑

i=1

wni(t, h)Ψ


(zi −

ν∑

j=0

âj(t)(ti − t)j)/σ̂u


 (ti − t)k = 0 k = 0, . . . , ν . (10)

The local M-type estimator of a(t) = (ϕ(t), ..., ϕ(ν)(t)/ν!) is the solution, â(t), to (10).
Therefore, the estimate of ϕ(ν)(t) can be defined as ϕ̂(ν)(t, h) = ν! âν(t). Under mild condi-
tions, if h→ 0 and nh2ν+1 → ∞ the estimates are pointwise consistent and asymptotically
normally distributed.

3 Resistant choice of the smoothing parameter

As is well known an important issue in any smoothing procedure is the choice of the smooth-
ing parameter. As mentioned in the Introduction, under a nonparametric regression model,
two commonly used approaches are cross–validation and plug–in. However, these procedures
may not be robust and their sensitivity to anomalous data was discussed by several authors,
including Leung, Marriott and Wu (1993), Wang and Scott (1994), Boente, Fraiman and
Meloche (1997), Cantoni and Ronchetti (2001) and Leung (2005). Wang and Scott (1994)
note that, in the presence of outliers, the least squares cross–validation function is nearly
constant on its whole domain and thus, essentially worthless for the purpose of choosing
a bandwidth. The robustness issue remains valid for the partly linear considered in this
paper. With a small bandwidth, a small number of outliers with similar values of ti could
easily drive the estimators of φ and φ0 and so, the final estimator of g, to dangerous levels.

In the following sections we will describe two data–driven bandwidth selectors. In Sec-
tion ??, we introduce a robust plug–in bandwidth that relies on an expansion for the mean
square error of the robust estimator of β. Besides, in Section 3.4, a robust bandwidth based
on the cross–validation principles is considered. We begin by reviewing the definition of the
three–step estimator introduced in Bianco and Boente (2004).

3.1 Preliminaries: Estimation of the regression parameter

Let {(yi,xit, ti)t}ni=1 be independent observations satisfying (1). We will assume that
εi ∼ F (·/σε) where F is symmetric and that xi and ti are nonparametrically related through
(2), so that the model can be written as

{
yi = xitβ + g(ti) + εi 1 ≤ i ≤ n,
xij = φj(ti) + ηij 1 ≤ j ≤ p,

(11)

with ηij independent and such that ηij ∼ Gj(·/ση, j) with Gj symmetric. From now on, we
will denote by φ0(t) = φ(t)tβ + g(t) and so, yi = φ0(ti) + ui with ui = ηt

i β + εi.

Without loss of generality, we will assume from now on that the fixed design points ti ∈
[0, 1] are such that 0 ≤ t1 ≤ . . . ≤ tn ≤ 1. Moreover, we will assume that assumption B.4 be-
low holds, i.e, the fixed design points are “almost”uniform, max1≤i≤n+1 |(ti − ti−1) − 1/n| =
O(n−δ) for some δ > 1.
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It is well known that, both in linear regression and in nonparametric regression, least
square estimators can be seriously affected by anomalous data. In partly linear models, the
least squares estimator of β, β̂ls can be obtained by minimizing

n∑

i=1

[
yi − φ̂0,ls(ti) −

(
xi − φ̂ls(ti)

)t
β

]2

, (12)

with φ̂0,ls and φ̂j,ls the linear kernel estimators of φ0(t) and φj(t), 1 ≤ j ≤ p, respectively.
As expected, these estimators are highly sensitive to outliers. To avoid this problem, Bianco
and Boente (2004) proposed a class of estimates based on a three step procedure with a
more resistant behavior under the partly linear model which can be described as follows:

Step 1: Estimate φ0(t) and φj(t), 1 ≤ j ≤ p through a robust smoothing, as local
M−type estimates. Let φ̂0,r and φ̂j,r denote the obtained estimates and φ̂r(t) =
(φ̂1,r(t), . . . , φ̂p,r(t))t.

Step 2: Estimate the regression parameter by applying a robust regression estimate
to the residuals r̂i = yi − φ̂0,r and η̂i = xi − φ̂r. Let β̂r denote an estimate of β.

Step 3: Define the estimate of the regression function g as ĝr(t) = φ̂0,r(t)−β̂
t
rφ̂r(t).

To make explicit the dependence on the bandwidth h, we will denote these estimates as
φ̂0,r(t, h), φ̂r(t, h), β̂r(h) and ĝr(t, h).

Theorem 2 in Bianco and Boente (2004) entails that, under mild conditions, when the
estimates of the regression parameter are defined through

n∑

i=1

ψ1

(
(r̂i − β̂r(h)

t
η̂i)/sn

)
w2 (‖η̂i‖) η̂i = 0, (13)

with sn a robust consistent estimate of σε, then
√
n

(
β̂r(h) − β

) D−→ N(0, σ2
εA

−1ΣA−1)
with

A = E
(
ψ′

1 (ε/σε)
)
E

(
w2 (‖η‖) η ηt

)
= E

(
ψ′

1 (ε/σε)
)
Σ1,η

Σ = E
(
ψ2

1 (ε/σε)
)
E

(
w2

2 (‖η‖) η ηt
)

= E
(
ψ2

1 (ε/σε)
)
Σ2,η .

Denote Σr,η = Σ−1
1,ηΣ2,ηΣ−1

1,η and V (ψ1) = [E (ψ′
1 (ε/σε))]

−2E
(
ψ2

1 (ε/σε)
)
. Thus, for

any c ∈ IRp, the asymptotic variance of Ur = ctn
1
2 (β̂r(h) − β), is given by σ2

r =
σ2
ε V (ψ1) ctΣr,η c.

3.2 Robust plug–in bandwidth selector

An important step to define a robust plug–in bandwidth is to obtain an asymptotic expan-
sion for MSEr(h) = n−1 EU2

r/σr
2. For the sake of simplicity, we will begin by fixing some
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notation. Let η∗ij = ση, jΨ(ηij/ση, j) /E (Ψ′ (η1j/ση, j)) and u∗i = σ0Ψ(ui/σ0) /EΨ′ (u1/σ0)
be the bounded modified residuals. Besides, denote vi = η∗t

i β − u∗i , D = EDψ2 (η) with
Dψ2 (u), the Jacobian matrix, with (i, j) element ∂

∂uj
ψ2(u)i and σ0 the scale of u. When

using local M−smoothers with score function Ψ, in the Appendix we derive an expression
for the MSEr(h) that will allow to obtain the optimal bandwidth for the robust estimator
of β solution of (13). Effectively, therein it is shown that, under mild conditions, for ν ≥ 2,

MSEr(h) = n−1
{
1 + (nh)−1Ar,2 + o(n−2µ) + (n

1
2h2νAr,1 + o(n−µ))2

}
, (14)

where

Ar,1 = α2
ν(K)/(ν!)2 σ−1

r c′Σ−1
1,ηE (Dψ2(η))

∫ 1

0
g(ν)(t)φ(ν)(t)dt

Ar,2 = σ2
ε/σ

2
r

{
κ1

∫
K2(u)du + κ2

∫
(K ∗K)2(u)du− 2κ3

∫
K(u)K ∗K(u)du

}
,

κ1 = σ−2
ε E

(
ψ′

1 (ε/σε)
)2 ctA−1Σ2,ηA−1c E

(
v2
2

)
+E (ψ1 (ε/σε))

2 E
(
ctA−1Dψ2 (η1) η∗

2

)2

+σ−2
ε cov

(
ψ′

1 (ε1/σε) v2 ctA−1ψ2 (η1) , ψ
′
1 (ε2/σε) v1 ctA−1ψ2 (η2)

)

+ 2σε−2E
(
ψ′

1 (ε1/σε)ψ1 (ε2/σε)u∗2 ctA−1ψ2 (η1) ctA−1Dψ2 (η2)η∗
1

)

κ2 = σ−2
ε

[
Eψ′

1 (ε/σε)
]2 {

cov
(
v1 ctA−1Dη∗

2, v2 ctA−1Dη∗
1

)
+ var

(
v1 ctA−1Dη∗

2

)}

κ3 = σ−2
ε E

[
ψ′

1 (ε/σε)
] {

cov
(
ψ′

1 (ε1/σε) v2 ctA−1ψ2 (η1) , v1 ctA−1Dη∗
2

)

+ cov
(
ψ′

1 (ε1/σε) v2 ctA−1ψ2 (η1) , v2 ctA−1Dη∗
1

)

− σε cov
(
ψ1 (ε1/σε) ctA−1Dψ2 (η1) η∗

2, v2 ctA−1Dη∗
2

)}

η∗ij = ση, jΨ(ηij/ση, j) /E
(
Ψ′ (η1j/ση, j)

)
ε∗i = σεΨ(εi/σε) /E

(
Ψ′ (ε1/σε)

)

u∗i = σ0Ψ(ui/σ0) /EΨ′ (u1/σ0) ,

with D = EDψ2 (η), vi = βtη∗
i − u∗i , σ0 the scale of u, αν(K) defined in the Introduction

and Dψ2 (u), the Jacobian matrix, with (i, j) element ∂
∂uj

ψ2(u)i. Therefore, the optimal
bandwidth in the sense of minimizing the asymptotic MSEr(h), is given by hr,opt =
Ar,0n

−π, with π = 2/4ν + 1 and

Ar,0 =
(
Ar,2/4νA2

r,1

)π/2
. (15)

Note that when using the least squares estimates defined in (12), we recover (3) from the
formula above.

Since the optimal bandwidth hr,opt depends on the unknown quantities σ2
ε , V (ψ1), Σ1,η,

Σ2,η, κ1 to κ3, g(ν)(t) and φ(ν)(t) robust estimates of them must be considered to define
a plug–in selector. To define the robust plug-in bandwidth selection method, we propose
to plug–in robust estimators of the derivative of orden ν, as defined in Section 2, into (15).
Therefore, a robust plug–in selector for the regression parameter under the partly linear
regression model (11), can be obtained as follows
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• Let s0 and sj be robust consistent estimates of the scales σ0 of u = ε+βtη and ση, j ,
respectively. Denote by φ̂j,r(t) and φ̂(ν)

j,r(t) preliminary robust consistent estimates of

the regression functions φj(t) and of its derivative φ(ν)
j (t), 0 ≤ j ≤ p, computed with

a pilot bandwidth h. As robust estimators of the derivatives φ(ν)
j (t), j = 0, . . . , p, one

can use either the robust differentiation or the robust polynomial approach, described
in Section 2.1 and 2.2, respectively.

Moreover, let β̂r and ĝr(t) be initial robust consistent estimators of β and g(t),

respectively. For instance, we can define ĝr(t) = φ̂0,r(t) − β̂
t
rφ̂r(t), as in Step 3.

• Define a robust estimator of g(ν)(t) as

ĝ
(ν)
r (t) = φ̂

(ν)
0,r(t) − β̂

t
rφ̂

(ν)
r (t) , (16)

where φ̂
(ν)
r (t) =

(
φ̂

(ν)
1,r(t), . . . , φ̂(ν)

p,r(t)
)t

.

• Denote by σ̂2
ε , V̂ (ψ1), Σ̂1,η, Σ̂2,η, D̂, κ̂`, 1 ≤ ` ≤ 3 robust consistent estimates of σ2

ε ,
V (ψ1), Σ1,η, Σ2,η, D = EDψ2 (η) and κ`, respectively, obtained using the empirical

distribution of the residuals ε̂i = yi − β̂
t
rxi − ĝr(ti) and η̂i = xi − φ̂r(ti). Define an

estimate of σ2
r as σ̂2

r = σ̂2
ε V̂ (ψ1)ctΣ̂r,η c.

• The robust bandwidth selector ĥr is defined as

ĥr = Âr,0n
−π with Âr,0 =

(
Âr,2/4νÂ2

r,1

)π/2
(17)

Âr,1 = α2
ν(K)(ν!)−2 σ̂−1

r ctΣ̂
−1
1,η D̂

∫ 1−h

h
ĝ
(ν)
r (t)φ̂

(ν)

r (t)dt (18)

Âr,2 = κ̂1

∫
K2(u)du+ κ̂2

∫
(K ∗K)2(u)du − 2κ̂3

∫
K(u)(K ∗K)(u)du (19)

In order to avoid numerical integrations, we can consider n−1
n∑

i=1

ĝ
(ν)
r (ti, h)φ̂

(ν)

r (ti, h)I[h,1−h](ti)

instead of
∫ 1−h

h
ĝ
(ν)
r (t, h)φ̂

(ν)

r (t, h)dt.

As estimates of the scale σ0 of u1 and ση, j of η1j , we can use M-estimates or the robust
Rice–type estimators defined as

s0 = median
1≤i≤n−1

|yi+1 − yi|/(0.6754
√

2) sj = median
1≤i≤n−1

|xi+1 j − xij |/(0.6754
√

2) , (20)

since, under model (11), we are dealing with homoscedastic errors.

As mentioned in Section 2, this procedure depends on the pilot bandwidth h0 used to
compute φ̂j,r(t, h0) and, when using the differentiation approach described in Section 2.1,
on the preliminary estimates of the derivatives of φj(t) up to order ν − 2, which obviously
also involve a choice for the smoothing parameter. As mentioned by Aneiros–Pérez and
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Quintela del Rı́o (2002), whatever method is used to estimate Ar,0 an additional smoothing
parameter has to be selected, and in this sense the plug–in method is not fully automatic.
A robust version of the iterative scheme proposed by Gasser, Kneip and Kohler (1991) may
also be considered. Three strategies for choosing the smoothing parameter using the plug–in
approach were discussed in Ruppert, Sheater and Wand (1995). These rules provide ready–
to–use plug–in bandwidth selectors for the local linear kernel estimate of the regression
function in a fully nonparametric regression model. A robust version of the three iterative
schemes proposed therein can be also adapted to the partly linear model (11) by using the
robust version of Mallow’s Cp introduced by Ronchetti and Staudte (1994) and the robust
estimates defined in Section 2. However, our simulation study suggests that, for partly
linear models, the final estimates of β may not be too sensitive to the choice of the pilot
bandwidth.

3.3 Consistency of the plug–in bandwidth selector

The purpose of this section is to show that under regularity conditions, the adaptive band-
width satisfies

ĥr/hopt
a.s.−→ 1 as n→ ∞ .

The asymptotic equivalence between the data–driven and the optimal bandwidth implies
that the robust estimates of the regression parameter β using ĥr are asymptotically equiva-
lent to those obtained using hr,opt. The proof of the asymptotic normality of the data–driven
robust regression estimates can be derived using similar arguments to those considered in
Boente, Fraiman and Meloche (1997) combined with the techniques used in Bianco and
Boente (2004).

In order to guarantee the convergence of adaptive bandwidth, we will need of the fol-
lowing assumptions:

A.1. The functions g(·), φ1(·), . . . , φp(·) have ν continuous derivatives on [0,1].

A.2. The initial estimators ĝ(t) = ĝr(t) and β̂ = β̂r satisfy β̂
a.s.−→ β and sup

t∈[0,1]
|ĝ(t) −

g(t)| a.s.−→ 0.

A.3. sup
t∈[h,1−2h]

|φ̂(ν)
j,r(t) − φ

(ν)
j (t)| a.s.−→ 0 for j = 0, 1, . . . , p.

A.4. sup
t∈[0,1]

|φ̂j,r(t) − φj(t)|
a.s.−→ 0 for j = 0, 1, . . . , p.

A.5. s0 and sj are strong consistent estimates of σ0 and ση, j, respectively.

Note that, under mild conditions, Theorem 3.1 in Boente and Rodriguez (2006) show
that A.3 holds when using the estimates defined through the differentiation approach given
by (9).

10



Theorem 3.1. Let ν ≥ 2. Assume that σ̂2
ε , V̂ (ψ1), Σ̂1,η, Σ̂2,η, D̂, κ̂`, 1 ≤ ` ≤ 3 are

consistent estimates of σ2
ε , V (ψ1), Σ1,η, Σ2,η, D and κ` respectively. Under A.1 to A.5,

if in addition E(Ψ′(u1/σ0)) 6= 0 and E(Ψ′(η1j/ση,j)) 6= 0, we have that,

ĥr/hr,opt
a.s.−→ 1 as n→ ∞ ,

where ĥr is defined through (17).

Remark 3.1. A similar result is obtained if we estimate
∫ 1−h

h
g(ν)(u)φ(ν)

1 (u)du through

n−1
n∑

i=1

ĝ(ν)(ti)φ̂
(ν)
1 (ti)I(h,1−h)(ti)

which was the procedure used in the simulation study to avoid the calculation of the numeric
integral.

The next Proposition provide conditions to obtain strongly consistent estimates of σ2
ε

and Σr,η. The following additional assumptions are needed.

B.1. {εi : 1 ≤ i ≤ n} is a sequence of i.i.d. random variables εi ∼ F (./σε). Moreover,
u1 = ε1 + βtη1 ∼ G0(./σ0) with G0 a symmetric distribution function.

B.2. For each 1 ≤ j ≤ p, {ηij : 1 ≤ i ≤ n} is a sequence of i.i.d. random variables such
that η1j ∼ Gj(./ση,j) with Gj a symmetric distribution function.

B.3. {εi} is independent of {ηi}.

B.4. {ti}ni=1 are fixed design points in [0, 1], 0 ≤ t1 ≤ . . . ≤ tn ≤ 1, such that t0 = 0 and
tn+1 = 1 and max

1≤i≤n+1
|(ti − ti−1) − 1/n| = O(n−δ) for some δ > 1.

B.5. a) ψ1 is an odd, bounded and twice continuously differentiable function with bounded
derivatives ψ′

1 and ψ′′
1 , such that ϕ1(t) = tψ′

1(t) and ϕ2(t) = tψ′′
1 (t) are bounded,

b) E
(
w2(‖η‖)‖η‖2

)
<∞ and Σ1,η is non–singular,

c) w2(u) = ψ2(u) u−1 > 0 is a bounded function, Lipschitz of order 1. Moreover, ψ2

is also a bounded and continuously differentiable function with bounded deriva-
tive ψ′

2 such that λ2(t) = tψ′
2(t) is bounded.

Proposition 3.1. Let ĝr(ti) and β̂r be initial estimators of g(t) and β satisfying A.2.

Denote for 1 ≤ i ≤ n, ε̂i = yi − β̂
t
xi − ĝr(ti). Let P̂n be the empirical measure of ε̂i and

P the probability measure related to the distribution of ε1.
Let σ2(·) be a continuous scale functional such that σ2(P ) = σ2

ε . Then, under B.1, B.2
and B.4, the estimate defined as σ̂2

ε = σ2(P̂n) is a strongly consistent estimate of σ2
ε .
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Moreover, if η̂i = xi− φ̂r(ti) with φ̂r satisfying A.4, and B.5 holds then, the estimates
defined through

V̂ (ψ1) =

[
n−1

n∑

i=1

ψ′
1 (ε̂i/σ̂ε)

]−2

n−1
n∑

i=1

ψ2
1 (ε̂i/σ̂ε)

Σ̂1,η = n−1
n∑

i=1

w2 (‖η̂i‖) η̂i η̂
t
i Σ̂2,η = n−1

n∑

i=1

w2
2 (‖η̂i‖) η̂i η̂

t
i

Σ̂r,η = Σ̂
−1
1,η Σ̂2,η Σ̂

−1
1,η D̂ = n−1

n∑

i=1

Dψ2 (η̂i)

are strongly consistent estimates of V (ψ1), Σ1,η, Σ2,η, Σr,η and D, respectively.

As a consequence of Proposition 3.1., we have that the estimate defined through σ̂ε =
τ1 mad1≤i≤n(yi−β̂(h0)txi− ĝr(ti, h0)) is a strongly consistent estimate of σ2

ε . The constant
τ1 is a standarizing constant choosen to ensure Fisher–consistency.

Using analogous arguments, it can be seen that A.4 entails that the estimates s0 and sj
defined in (20) satisfy A.5. A similar result can be obtained for the estimates of κ` defined
through the residuals, in the iterative process.

3.4 Robust cross–validation selector

For spline–based estimators, Cantoni and Ronchetti (2001) introduced a cross-validation
criterion to select the bandwidth parameter while robust cross–validation selectors for kernel
M−smoothers were considered by Leung, Marriott and Wu (1993), Wang and Scott (1994)
and Leung (2005), under a fully nonparametric regression model.

A robust cross-validation criterion similar to that considered by Bianco and Boente
(2007) for partly linear autoregression models can be defined. Let φ̂j,i(t, h) and φ̂0,i(t, h) be
the smoothers computed with bandwidth h using all the data except (yi,xi, ti). Denote by
ĝi(t, h) = φ̂0,i(t, h) − φ̂i(t, h)tβ̃r(h), by β̃r(h) the regression estimator obtained consider-
ing the residuals yi− φ̂0,i(ti, h) and xi− φ̂i(ti, h) and by ε̂i(h) = yi−

(
xt
i β̃r(h) + ĝi (ti, h)

)
.

Then, the classical least squares cross–validation method constructs an asymptotically op-
timal data–driven bandwidth and thus, adaptive data–driven estimators, by minimizing

Υ1(h) = n−1
n∑

i=1

(
yi −

{
xt
i β̃r(h) + ĝi (ti, h)

})2
w2 (ti) = n−1

n∑

i=1

ε̂ 2
i (h)w2 (ti) ,

where the weight function w protects against boundary effects. In the classical setting,
linear smoothers and least squares regression estimators are used, while if one tries to obtain
resistant procedures, local M−smoothers and robust regression estimators, as described in
Section 3.1 should be considered. However, as mentioned above, it is well known that when
there are outliers in the data, the least squares cross–validation criterion fails, even when
using robust estimators. Taking into account that the classical cross–validation criterion
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tries to measure both bias and variance, it would be sensible to introduce a new measure
that establishes a trade–off between robust measures of bias and variance. Let µn and
σn denote robust estimators of location and scale, respectively. A robust cross–validation
criterion can be defined by minimizing on h

Υ2(h) = µ2
n (ε̂i,w(h)) + σ2

n (ε̂i,w(h)) ,

where ε̂i,w(h) indicates that when computing the robust location and scale estimators each
residual ε̂i(h) is weighted according to w (ti). As location estimator, µn, one can consider
the median while σn can be taken as the bisquare a–scale estimator or the Huber τ−scale
estimator.

4 Monte Carlo Study

This section contains the results of a simulation study, in dimension p = 1, designed to
evaluate the performance, under a partly linear model, of the robust bandwidth selectors
defined in Section 3. For the plug–in bandwidth, we have used both the differentiation ap-
proach and the local polynomial approximation to estimate the derivatives of the regression
functions. The aims of this study are

• to compare the behavior of the bandwidth selectors and of the regression estimators
under contamination and under normal samples.

• to study the relationship between the bandwidth selection method and the initial
smoothing parameter, when considering plug–in bandwidths.

4.1 General Description

The simulation study was carried out in Splus. The S–code is available at
http://www.ic.fcen.uba.ar/

In the smoothing procedure, we have used the Gaussian kernel with standard deviation
0.25/0.675 = 0.37 such that the interquartile range is 0.5.

As mentioned in Section 3, in order to estimate the optimal bandwidth, using a plug–in
approach, we need initial estimators of the regression parameter and the regression function,
so that we can estimate the error’s variance and the derivatives of the function g and φ.

Plug–in Bandwidth: Initial estimators of the parameter and the regression function.
The behavior of the least squares estimates was compared with that obtained by smooth-
ing with a local M−estimate with bisquare score function, with constant 4.685, which
gives a 95% efficiency. As initial estimate in the iterative procedure to compute the local
M−estimate, we have considered the local median. Several choices for the initial band-
width from 0.25 to 0.45 were considered to study the dependence on the choice of the initial
bandwidth.
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As initial estimate for the regression parameter, we have considered a GM−estimate
defined by (13) with score function on the residuals ψ1(r) = ψh,c1(r) = max(−c1,min(r, c1)),
i.e, the Huber function, and weight function w2

w2(η) = W
[
((η − µη)/ση)

2
]

(21)

where W (t) = ψh,c2(t)/t. The tunning constants were chosen as c1 = 1.6 and c2 = χ1,0.975

while µη = median
1≤i≤n

(η̂i) and ση = mad
1≤i≤n

(η̂i)/0.6754 with η̂i = xi − φ̂r(ti).

Cross–validation selector
The performance of the plug–in bandwidth selector was also compared with that of the
cross-validation criterion described in Section 3.4. We have consider µn as the median and
σn as the Huber τ−scale estimator. For this preliminary study, the search for the bandwidth
parameter was performed searching, in a first step, over a grid of 16 points on the interval
[0.05, 0.8], and then, the search was refined around the minimum with a step of 0.01. So,
too small or too large bandwidths are not allowed in this procedure as we do in the plug–in
one.

Final estimators of the parameter and the regression function
Once the data–driven bandwidth was computed, the behavior of the least squares estimates
using the classical plug–in or the L2 cross–validation selector, was compared with that of
the three step estimators described in Section 3.1. The local M−estimate was computed
using the robust plug–in or the robust cross–validation bandwidth, respectively.

After smoothing the response variable y and the regression covariates x, the following
robust regression estimates of β were computed:

• the GM−estimates with Huber function with c1 = 1.6 on the residuals and with
weight function (21) on the covariates where c2 = χ1,0.975.

• the least trimmed with 33% trimmed observations, as introduced in Rousseeuw (1984).

We also computed two other estimators: the least median of squares estimator and a one–
step estimator based on it. The results are not reported here, since they are quite similar
to those obtained with the GM and the least trimmed estimators.

In all the tables and figures ls denotes the least squares estimate, gm and lts denote
the robust alternatives using the GM and the least trimmed estimates, respectively.

The performance of an estimate ĝ of g is measured using two measures:

MSE(ĝ) =
1
n

n∑

i=1

[ĝ(ti) − g(ti)]
2

MedSE(ĝ) = median
(
[ĝ(ti) − g(ti)]

2
)
.

Due to the expensive computing time of the cross–validation criterion, we performed
500 replications generating independent samples of size n = 100 according to the following
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model

yi = xi + 1 + 10t2i + εi 1 ≤ i ≤ n

xi = 1/log(5) exp{log(5)ti} + ηi 1 ≤ i ≤ n ,

where ti = (i− 0.5)/n. Thus, g(t) = 1− 10t2, β = 1 and φ(t) = 1/log(5) exp{log(5)t}. This
model was considered by Linton (1995) and corresponds to a ν = 2 degree of smoothness.
To isolate the comparison between the competitors from any border effect, data were in
fact generated at design points outside the interval [0, 1] as well.

The non–contaminated case, indicated by C0, correspond to (εi, ηi) i.i.d normal with
mean 0 and standard deviation 1.

C1 and C2 will denote the following two contaminations.

• C1: εi ∼ 0.9N(0, 1) + 0.1 C(0, 1), where C(0, σ) indicates the distribution Cauchy
centered in 0 with scale σ. This contamination corresponds to inflating the error
and thus, will affect the variance of the regression estimates. It will also affect the
performance of the plug–in bandwidth.

• C2: εi ∼ 0.9N(0, σ2) + 0.1 C(0, 1) independent and artificially 10 observations of the
carriers but not of the response variables, were modified to be equal to 20 at equally
spaced values of t. This case corresponds to introduce high–leverage points besides
inflating the errors. The aim of this contamination is to study changes in bias in the
estimation of the regression parameter and on the bandwidth selector.

The following tables summarize the results of the simulations.

Tables 1 to 3 give means and standard deviations for the estimates ĥ of the optimal
bandwidth using the differentiating, polynomial and cross–validation criteria, measured
through the summary measures of log

(
ĥ/hopt

)
. Note that for the regression functions

considered hopt equals 0.3581 for the classical least squares estimator while hopt = hr,opt =
0.3071 for the robust one. On the other hand, the asymptotically optimal bandwidth related
to the cross–validation criterion considered, was computed numerically and equals 0.226,
since it tries to fit not only the regression parameter but also the nonparametric component.

Table 4 give the mean and standard deviations for the regression estimates of β while
Tables 5 and 6 show the mean of MSE(ĝ) and the median of MedSE(ĝ) over the 500
replications, when using the differentiating approach. Similar results are obtained by the
other two methods and are not reported here. The bias of the regression estimators can be
easily computed as the difference between the mean and 1.

Finally, Figures 1 and 3 gives the boxplots of log
(
ĥ/hopt

)
for the classical and robust

data–driven bandwidths.

4.2 Simulation results

The simulation study confirms the inadequate behavior of the classical plug–in bandwidth
selector under contamination and in particular, how it increases the mean square error of
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the estimates of β.

Table 1 to 3 shows that under contamination the robust estimator of the bandwidth is
much more stable. Also, under C2, an increasing bias appears for the classical selector as
the pilot bandwidth increases, for both plug–in methods. Moreover, the best performances
under C0 are obtained for pilot bandwidths in the range of 0.38 to 0.45, both for the classical
and robust estimator.

Figure 1 shows better how the pilot bandwidth influences the bandwidth selector. It
explains also that the higher variability of the robust selector for normal errors, is not only
due to some large estimates of the optimal bandwidth but also, when the pilot increases, to
some very small bandwidth estimates, when considering the differentiation approach. It is
worth noticing, that when using the robust polynomial method, larger biases are obtained as
the pilot increases, but variability decreases in the same direction. On the other hand, Table
3 and Figure 3 show the advantage of the plug–in approach over robust cross–validation
since they provide bandwidths with lower variability under C0 and C1. On the other hand,
under C2 plug–in methods show a better performance than cross–validation both in bias
and variance while the plug–in bandwidth based on the differentiating approach shows a
better performance than that based on polynomials, particularly, for small bandwidth (see
also, Figure 3). This can be explained by the fact that the local M−regression approach
considered can have a low local breakdown point (see the discussion given in Chapter 4, in
Maronna, Martin and Yohai (2006)).

It is worth noticing that over the 500 replications, we get for the robust cross–validation
criteria 66, 53 and 38 times bandwidths smaller than 0.1, under C0, C1 and C2, respectively
while only 2 and 13 times bandwidths larger than 0.7 are obtained under C1 and C2,
respectively. On the other hand, for the least squares cross–validation criterion, 70 and 42
time bandwidths larger than 0.7 are obtained under C1 and C2, respectively. Besides, in
94, 46 and 27 of the 500 replications, we obtain bandwidths smaller than 0.1 under the
studied contamination schemes. This shows that the main problem with cross–validation is
its well–known problem of leading to small bandwidths. On the other hand, over the 500
replications the plug–in procedure with pilot 0.40 lead to no bandwidth estimates smaller
than 0.1 under C0, C1 and C2, respectively.

Table 4 confirms, as expected, the increased variance of the least squares estimate un-
der contamination and the better performance in bias under C2 of the lts estimators.
However, the lts estimators have a higher standard deviation under C1 and C2, than the
GM−estimator. Finally, it is worth noticing that the final regression estimate is quite stable
with respect to the pilot selection.

With respect to the estimation of the regression function Tables 5 and 6 show the better
performance of the GM−estimator which lead to almost the half MSE or MedSE than
the least trimmed estimator, even under contamination. Moreover, these measures seem to
be also quite stable with respect to the initial bandwidth. Moreover, a comparison between
Table 5 and and 6 allows to conclude that for some design points, ti, the classical estimator
does a bad job in estimating under contamination. Under normal errors, all estimators
perform similarly, however the GM−estimator is more efficient than the least trimmed
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estimator.

5 Empirical Influence of the Bandwidth Selector

One of the aims of a robust procedure is to produce estimates less sensitive to outliers than
the classical ones. The influence function is a measure of robustness with respect to single
outliers. Statistical diagnostics and graphical displays for detecting outliers can be built
based on empirical influence functions. In parametric models this topic is widely developed,
however, less attention has been given in the nonparametric literature. A smoothed func-
tional approach to nonparametric kernel estimators was introduced by Aı̈t Sahalia (1995)
and used by Tamine (2002) to define a smoothed influence function in nonparametric regres-
sion. However, this approach assumes that the bandwidth h is fixed and not data–driven.
On the other hand, Manchester (1996) introduced a graphical method to display sensi-
tivity of a scatter plot smoother. To measure the influence of outlying observations on
the bandwidth selector, we will follow an approach similar to that given by Manchester
(1996) and we will consider the finite–sample version of the influence function introduced
by Tukey (1977), called the empirical influence function. Given a data set {(ti,xi, yi)}1≤i≤n
which satisfies (11), let ĥn be a bandwidth selector based on this data set. Assume that
z = (t0,x0, y0) represents a contaminating point with t0 ∈ [0, 1] and denote ĥz the band-
width selector based on the augmented data set {(t1,x1, y1), . . . (tn,xn, yn), z}. In order to
detect if a contaminating point produces undersmoothing, i.e., bandwidths approaching to
0, we can define the empirical influence surface as

EIF(t0,x0, y0) = (n+ 1)
∣∣∣log

(
ĥz

)
− log

(
ĥn

)∣∣∣ . (22)

Since the range of t is the interval [0, 1] bandwidths approaching to 1 or larger than 1 lead
to oversmoothing and so are useless. The measure defined in (22) does not allow us to
visualize easily this type of breakdown, therefore we introduce another empirical influence
function

EIF1(t0,x0, y0) = (n+ 1)
∣∣∣log

(
ĥz/(1 − ĥz)

)
− log

(
ĥn/(1 − ĥn)

)∣∣∣ . (23)

A surface plot can be constructed for each value of t varying the values of (x, y) to see how
outliers and leverage points (x) affect the bandwidth at different places of the range of t.

As an example, we have generated, as in Section 4, a data set of size n = 100 following
the model

yi = xi + 1 + 10t2i + εi 1 ≤ i ≤ n

xi = 1/log(5) exp{log(5)ti} + ηi 1 ≤ i ≤ n ,

where ti = (i− 0.5)/n. The data set is shown in Figure 4 together with the nonparametric
component g and the regression function γ(t) = g(t) + βφ(t) in dashed and solid lines,
respectively. We have considered three values for t0, t0 = 0.10, 0.50 and 0.90. For each
of them we have computed EIF(t0, x, y) and EIF1(t0, x, y) over a grid of 1600 equispaced
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points in [−40, 40]× [−40, 40]. The resulting plots for t0 = 0.10 are given in Figures 5 and 6.
Similar plots are obtained for t0 = 0.50 and t0 = 0.90 are given in Figures 7 to 10. Figure 5
reveal the lack of robustness of the classical bandwidth. In particular, EIF1 is not plotted
for values near x = 40, since the bandwidth breaks–down giving values much larger than
one. For other values of t, the same happens if we consider a larger range of values for x
and y according to the point t. On the other hand, the empirical functions of the robust
bandwidth are bounded and they show that the most influential points correspond to those
having x between −3 and −1. Besides, large values of the empirical influence function are
also obtained when y takes values between 5 and 30. However, these points do not yield
to bandwidths in the boundary of the interval [0, 1]. In all cases, the initial bandwidth was
taken equal to 0.45 both for the differentiating approach and for the local polynomial one.
Similar results are obtained for other initial bandwidths.

An influential study can be performed by the inclusion of several outliers in the neigh-
borhood of the point t. For the robust plug–in bandwidth selectors, Figures 11 to 13 plot,
as a function of t, the effect of adding k outliers, z1, . . . , zk, when k = 1, 3, 5, 7, 9 and 11.
To be more precise, for a fixed point 0 < t < 1 and a fixed amount of k outliers, we have
added to the sample the points z` = (t`, 10, 10), 1 ≤ ` ≤ k, with t` = t + (2`− 1)/(2n)
if t + (2`− 1)/(2n) < 1 and t` = t − (2`− 1)/(2n), otherwise. This configuration was
choosen so that the outliers were inserted between adjacent pair of design points to increase
the impact on the estimator. The solid lines correspond to EIF(t, 10, 10) while the dashed
ones with empty circles to EIF1(t, 10, 10). For the cross-validation procedure the search
was made first in the interval [0.05, 2] with a step of 0.05 and then in the same interval,
around the local minimum with a step of 0.01, so that bandwidths smaller than 0.05 were
never choosen not allowing implosion of the bandwidths. However, it should be noted that
with the inclusion of more than 7 outliers, half of the times the obtained bandwidth was
0.05 showing the bad performance of the cross–validation criterion and explaining the large
values of EIF(t, 10, 10). As we can see, the robust selectors do not explode with this outlier
configuration, however, the bandwidth selector is sensitive to the inclusion of k = 11 outliers
at the boundary. Note that this amount of outliers represents locally more than 10% of con-
tamination. An exception is the robust local polynomial selector when including 7 outliers
that explodes at t = 0.255, giving a bandwidth larger than 1, due to the non–convergence
of the algorithm in 20 iterations. Note that, at the boundary, the effect of adding outliers
increases with the number of outliers. Moreover, the robust cross–validation procedure is
much more sensitive than the robust plug–in selectors, leading as mentioned before, to small
bandwidths when anomalous observations are present. On the other hand, the differentiat-
ing approach performs better than the polynomial one as the number of outliers increase.
Moreover, as it can be seen from the plots, the dashed lines with empty circles are over the
solid lines, showing that the main problem when introducing several outliers is that large
bandwidths can be obtained, leading to oversmoothing. The worst situation arises with the
robust plug–in selector based on the polynomial approach. Effectively, as shown in Figure
12, where when considering 7 outliers, the maximum of EIF1 equals 419.25 corresponding
to a bandwidth hz = 0.9734.

Our influential study shows that the robust procedures seem stable with the inclusion
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of one isolated outlier. However, even if they do not breakdown, they are quite sensitive
to the inclusion of several outliers in the neighborhood of a fixed point. Moreover, the
robust cross–validation criterion seems to perform worst than the robust plug–in procedures
introduced.

6 Concluding Remarks

Selection of the smoothing parameter is an important step in any nonparametric analysis,
even when robust estimates are used. The classical procedures based on least squares
cross–validation or on a plug–in rule turn out to be non–robust since they lead to over or
undersmoothing as noted for nonparametric regression by Leung, Marriott and Wu (1993),
Wang and Scott (1994), Boente, Fraiman and Meloche (1997), Cantoni and Ronchetti (2001)
and Leung (2005). The same conclusions hold under a partly linear regression model. Our
proposals tends to overcome the sensitivity of the classical selectors by considering robust
estimators of the derivatives of the regression function or a robust cross–validation criteria,
under a partly linear regression model.

The problem of defining the influence function of the smoothing parameter is still an
outstanding issue. We introduced an empirical influence measure that allows to evaluate
on a given data set the sensitivity of the bandwidth selector to anomalous data. It turns
out that, under a partly linear model, the classical plug–in bandwidth defined in Linton
(1995) is not robust, since it leads to unbounded empirical influence functions. On the
other hand, our proposals have bounded empirical influence even when introducing several
outliers. The best performance, in all cases, for the considered model and the studied
contaminations is attained by the plug–in rules, even they are all influenced by multiple
outliers. In particular, the differentiating approach lead to smaller influence functions than
that based on polynomials when dealing with more than one outlier.
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P Appendix: Proofs.

Proof (14). In order to derive (14), we need to assume that A.1, A.5, B.1 to B.5 and
that the score function Ψ defining the local M−smoothers satifies B.5 a).
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Note that φ̂0(t) is the solution of

(nh)−1
n∑

i=1

K ((ti − t)/h) Ψ
(
(yi − φ̂0(t))/σ0

)
= 0

then, using a Taylor’s expansion, we have that

φ̂0(t) = (nh)−1
n∑

i=1

K ((ti − t)/h) (φ0(ti) + u∗i ) +Op((nh)−1) .

Hence

φ̂0(t)−φ0(t) = (nh)−1
n∑

i=1

K ((ti − t)/h) φ0(ti)−φ0(t)+(nh)−1
n∑

i=1

K ((ti − t)/h) u∗i+Op((nh)
−1) .

Denote wij = (nh)−1K ((ti − tj)/h), u∗ = (u∗1, . . . , u
∗
n)

t and φ̂0 = (φ̂0(t1), . . . , φ̂0(tn))t

then φ̂0 − φ0 = (W − I)φ0 + Wu∗ +Op((nh)−1). In a similar way, we get that φ̂j − φj =
(W−I)φj+Wη∗(j)

+Op((nh)−1) with η∗(j)
= (η∗1j , . . . , η

∗
nj)

t. Denote η∗
i = (η∗i1, . . . , η

∗
ip)

t,
φ = (φ(t1), . . . ,φ(tn))t and φ(ti) = (φ1(ti), . . . , φp(ti))t.

Using the expansion in Bianco and Boente (2004), we get that n1/2(β̂r(h) − β) =
σεA−1L̂n(σε,β) + op(n−2µ) with µ = (4ν − 1)/(2(4ν + 1)) and L̂n(σε,β) =
n−1/2 ∑n

i=1 ψ1

(
(r̂i − ẑti β)/σε

)
w2(ẑi)ẑi.

Using a Taylor expansion, we have that L̂n(σ,β) = Ln(σ,β) +
∑3
i=1 Sin +Rn where Rn

has higher order than the other terms and

Ln(σε,β) = n−1/2
n∑

i=1

ψ1

(
(ri − zti β)/σε

)
ψ2 (ηi)

S1n = n−1/2
n∑

i=1

ψ1 (εi/σε)Dψ2 (ηi) (φ(ti) − φ̂(ti))

S2n = (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)ψ2 (ηi) (g(ti) − g∗(ti))

S3n = (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)Dψ2 (ηi) (φ(ti) − φ̂(ti))(g(ti) − g∗(ti))

with g∗(t) = φ̂0(t) − βtφ̂(t), Dψ2 (u) stands for the matrix with (i, j) element ∂
∂uj

ψ2(u)i.

Since the errors have symmetric distribution and ψ1 is odd we get that E(Ln(σε,β)) =
0. On the other hand, note that S1n can be written as S1n = n−1/2ΛηΛε where Λε =
(ψ1(ε1/σε), . . . , ψ1(εn/σε))t and Λη = (Dψ2 (η1)v1, . . . ,Dψ2 (ηn)vn) with vi the i−th row
of v = (I − W)φ − Wη∗ and η∗ the matrix with j−th column η∗(j)

. Thus, B.1 and B.3
entail that E(S1n) = 0.

20



A similar expression is obtained for S2n where ψ2(η) = (ψ2 (η1) , . . . , ψ2 (ηn))t

σε n
1
2S2n =

{
ψ2(η)tΛ′(I−W)φ0 − ψ2(η)tΛ′Wu∗ + ψ2(η)tΛ′Wη∗tβ − ψ2(η)tΛ′(I −W)φβ

}

= A1n +A2n +A3n +A4n

with Λ′ = diag(ψ′
1(ε1/σε), . . . , ψ

′
1(εn/σε)). It is easy to see that E(A1n) = E(A3n) = 0 since

the errors η have symmetric distribution and ψ2 is odd. On the other hand, E(A2n) = 0
since both ε and η have a symmetric distribution and ψ1 and ψ2 are odd functions. Finally,
it is easy to show that E(A4n) = O((nh2)−1/2).

Analogous arguments to those used in the classical setting allow to derive that

E(S3n) = n1/2h2ν α2
ν(K)σ−1

ε (ν!)−2E(ψ′
1(ε/σε))E (Dψ2(η))

∫ 1

0
g(ν)(t)φ(ν)(t)dt

+ O(n−µ) + o
(
n(1−4ν)/(2(4ν+1))

)

Then, if c 6= 0 we get that

n1/2E(ct(β̂r(h) − β)) = σεE(ctA−1L̂n(σε,β)) + op(n2ν)

= n1/2h2νctΣ−1
1,ηE (Dψ2(η))α2

ν(K)(ν!)−2
∫ 1

0
g(ν)(t)φ(ν)(t)dt + o(n−µ)

To conclude the proof, it is enough to obtain an expression for

var
(
n1/2ct(β̂r(h) − β)/σr

)
= σ2

ε /σ
2
rvar

(
ctA−1L̂n(σε,β)

)
+ op(n−2µ) .

Denote W(i) the i−th row of W. Let us consider the following expansion of L̂n(σε,β),
L̂n(σε,β) = Ln(σε,β) + bn + cn +Rn where,

bn = (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)ψ2 (ηi) (g(ti) − g̃(ti)) + n−1/2

n∑

i=1

ψ1 (εi/σε)Dψ2 (ηi) (φ(ti) − φ̃(ti))

− (σε
√
n)−1

n∑

i=1

ψ′
1 (ε1/σε) (g(ti) − g̃(ti))Dψ2 (ηi)W

(i)η∗

+ (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)W(i)(βtη∗ − u∗)Dψ2 (ηi) (φ(ti) − φ̃(ti))

+ (σε
√
n)−1

n∑

i=1

ψ′
1 (ε1/σε) (g(ti) − g̃(ti))Dψ2 (ηi) (φ(ti) − φ̃(ti))

cn = (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)W(i)(βtη∗ − u∗)ψ2 (ηi) − n−1/2

n∑

i=1

ψ1 (εi/σε)Dψ2 (ηi)W
(i)η∗

− (σε
√
n)−1

n∑

i=1

ψ′
1 (εi/σε)W(i)(βtη∗ − u∗)Dψ2 (ηi)W

(i)η∗
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φ̃ = (I−W)φ y g̃ = (I−W)g. With regard to var(ctA−1cn), we have that

V ar(ctA−1cn) = (h2n3)−1



κ1

∑

i

∑

j

K2 ((ti − tj)/h) + κ2

∑

i

∑

j

[(K ∗K) ((ti − tj)/h)]
2

− 2κ3

∑

i

∑

j

K ((ti − tj)/h) (K ∗K) ((ti − tj)/h)





Now
(
n2h

)−1 ∑
i

∑
jK

2((ti − tj)/h) →
∫
K2(u)du and arguing in an analogous way, with

the other sums we get that,

V ar(ctA−1cn) = (nh)−1
{
κ1

∫
K2(u)du+ κ2

∫
(K ∗K)2(u)du − 2κ3

∫
K(u)K ∗K(u)du

}

Similarly we get that E(cn) = 0, var(ctA−1bn) = O(n−µ) and cov(bn, cn) = 0 which
leads to

var
(
n1/2ct(β̂r(h) − β)/σr

)
= σ2

ε /σ
2
rvar

(
ctA−1L̂n(σε,β)

)
+ op(n−2µ)

= σ2
ε /σ

2
r(nh)−1

{
κ1

∫
K2(u)du+ κ2

∫
(K ∗K)2(u)du

−2κ3

∫
K(u)K ∗K(u)du

}
+ op(n−2µ) ,

concluding the proof.

Proof of Theorem 3.1. A6 entails that sup
t∈[h,1−2h]

|φ̂(ν)
j,r(t)−φ

(ν)
j (t)| a.s.−→ 0, for 0 ≤ j ≤ p.

Then, using (16), A.2 and since
∫ h
0 g

(ν)(t)φ(ν)
1 (t)dt+

∫ 1−h
h g(ν)(t)φ(ν)

1 (t)dt converge to 0, we
get that, for 1 ≤ j ≤ p

∫ 1−h

h
ĝ
(ν)
r (t, h)φ̂(ν)

1,r(t, h)dt−
∫ 1

0
g(ν)(t)φ(ν)

1 (t)dt a.s.−→ 0.

On the other hand, the strong consistency of σ̂2
ε , V̂ (ψ1), Σ̂1,η Σ̂2,η, D̂ and κ̂` entail the

desired result.

Proof of Proposition 3.1. Using the continuity of the functional σ2(·) and since the
Strong Law of Large Numbers entails that Π(Pn, P ) a.s.−→ 0, it will be enough to show that

Π(P̂n, Pn)
a.s.−→ 0 , (P.1)

where Π stands for the Prohorov distance.

To prove (P.1), it will be enough to show that for any bounded and continuous function
f , |E

P̂n
(f) − EPn(f)| a.s.−→ 0. Let C = C1 × C2 be such that P (C) > 1 − η/(4‖f‖∞) with

C1 = {‖x‖ < C1}, and C2 = {|y| < C2}, then

|E
P̂n

(f) −EPn(f)| ≤ n−1
n∑

i=1

|f(ε̂i) − f(εi))|IC(xi, yi) + 2‖f‖∞n−1
n∑

i=1

ICc(xi, yi)

≤ S1,n + S2,n .

22



The Strong Law of Large Numbers implies that there exists a set N1 such that P (N1) = 0

and for any w /∈ N1, n−1
n∑

i=1

ICc(xi, yi) → P ((x, y) ∈ Cc). Hence, for w /∈ N1 and n ≥ n1,

|S2,n| < η/2.

On the other hand, let U = {u : |u| ≤ C3} where C3 = C2 +C1(‖β‖+1)+‖g‖∞ +1. The
uniformly continuity of f on U entail that there exists δ > 0 such that for any u1, u2 ∈ U ,
|u1 − u2| < δ ⇒ |f(u1) − f(u2)| < η/2.

Using A.2 we get that there exists a set N2 such that P (N2) = 0 and for any w /∈ N2

and n ≥ n2 sup
t∈[0,1]

|ĝ(t) − g(t)| < min(1, δ/2) and |β̂ − β| < min (1, δ/(2C1)).

It is easy to see that yi − β̂
t
xi − ĝ(ti) ∈ U and yi −βtxi − g(ti) ∈ U , for n ≥ n2, when

(xi, yi) ∈ C. Then, for n ≥ n2 and i ∈ J = {i : (xi, yi) ∈ C}, we have that ε̂i, εi ∈ T and
|ε̂i − εi| < δ implying that |S1,n| < η/2. Thus, |E

F̂n
(f) − EFn(f)| < η if w /∈ N1 ∪ N2 and

n ≥ N = max(n1, n2), concluding the proof of (P.1).

The proof of the consistency of V̂ (ψ1), Σ̂1,η, Σ̂2,η and D̂ follows similar arguments as
those considered in the proof of Lemma 2 in Bianco and Boente (2004).
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[2] Aneiros-Pérez, G. and Quintela del Rı́o, G. (2002). Plug-in bandwidth choice in partial
linear regression models with autoregressive errors.J. Statist. Plann. Inference, 57, 23-
48.

[3] Bianco, A. and Boente, G. (2004). Robust estimators in semiparametric partly linear
regression models. J. Statist. Plann. Inference, 122, 229-252.

[4] Bianco, A. and Boente, G. (2007). Robust estimators under a semiparametric partly
linear autoregression model: Asymptotic behavior and bandwidth selection. J. Time
Series Anal., 28, 274-306.

[5] Boente, G. and Rodriguez, D. (2006). Robust estimators of high order derivatives of
regression functions. Statist. Probab. Lett., 76, 1335-1344.

[6] Boente, G., Fraiman, R. and Meloche, J. (1997). Robust plug-in bandwidth estimators
in nonparametric regression. J. Statist. Plann. Inference, 57, 109-142.

[7] Cantoni, E. and Ronchetti, E. (2001). Resistant selection of the smoothing parameter
for smoothing splines. Statistics and Computing, 11, 141-146.

[8] Denby, L. (1986). Smooth regression functions. Statistical Research Report 26, AT&T
Bell Laboratories, Murray Hill.

23
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initial bandwidth
0.25 0.30 0.35 0.38 0.40 0.43 0.45

classical estimator
Mean -0.2157 -0.1370 -0.1024 -0.0873 -0.0790 -0.0654 -0.0559 C0

SD 0.2578 0.2180 0.1891 0.1451 0.1306 0.1182 0.1129
Mean -0.1192 -0.0169 0.0419 0.0712 0.0904 0.0969 0.1126 C1

SD 0.2871 0.2547 0.2486 0.2576 0.2507 0.2305 0.2390
Mean 0.0716 0.1588 0.22501 0.2695 0.2993 0.34734 0.3799 C2

SD 0.2416 0.2619 0.2352 0.2437 0.2369 0.2466 0.2459
robust estimator

Mean -0.0957 -0.0024 0.0429 0.0719 0.0724 0.0802 0.0831 C0

SD 0.2716 0.2535 0.2394 0.2499 0.2245 0.2271 0.2198
Mean -0.0910 -0.0033 0.0435 0.0749 0.0901 0.0855 0.0921 C1

SD 0.2797 0.2561 0.2214 0.2419 0.2332 0.2077 0.2130
Mean -0.0269 0.0757 0.1252 0.1446 0.1515 0.1534 0.1509 C2

SD 0.2489 0.2686 0.2389 0.2324 0.2342 0.2200 0.2029

Table 1: Estimation of the optimal bandwidth. Summary measures of log
(
ĥ/hopt

)
using

the differentiation approach.

initial bandwidth
0.25 0.30 0.35 0.38 0.40 0.43 0.45

classical estimator
Mean -0.0303 0.0274 0.0156 0.0052 0.0007 -0.0030 -0.0049 C0

SD 0.2453 0.2003 0.1316 0.1000 0.0844 0.0731 0.0647
Mean 0.0015 0.1529 0.1564 0.1681 0.1602 0.1556 0.1534 C1

SD 0.2479 0.2728 0.2479 0.2639 0.2236 0.2072 0.1983
Mean 0.1183 0.2087 0.2898 0.3457 0.3787 0.4385 0.4489 C2

SD 0.2781 0.25501 0.2415 0.2568 0.2493 0.2949 0.2354
robust estimator

Mean 0.1169 0.1776 0.1658 0.1553 0.1499 0.1465 0.1441 C0

SD 0.2467 0.2182 0.1414 0.1094 0.0899 0.0815 0.0716
Mean 0.0615 0.1792 0.1813 0.1741 0.1605 0.1567 0.1522 C1

SD 0.2793 0.2194 0.1661 0.1226 0.1051 0.1050 0.0756
Mean -0.6489 -0.5021 -0.3376 -0.2235 -0.14284 -0.0222 0.0499 C2

SD 0.1517 0.16064 0.2115 0.2323 0.2372 0.2182 0.1946

Table 2: Estimation of the optimal bandwidth. Summary measures of log
(
ĥ/hopt

)
using

local polynomials.
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log

(
ĥ

hopt

)
β̂

LS GM LTS LS GM LTS
Mean -0.0964 -0.0967 -0.0876 0.9929 0.9973 0.9888 C0

SD 0.4587 0.5297 0.5639 0.1063 0.1927 0.1042
Mean 0.2484 0.0044 0.0440 0.932 0.9839 0.9826 C1

SD 0.5381 0.5236 0.5454 1.1457 0.1903 0.1134
Mean 0.3881 0.2592 0.3387 0.0565 0.9341 0.8912 C2

SD 0.5615 0.5906 0.5711 0.5007 0.2883 0.1216

Table 3: Estimation of the optimal bandwidth and of the regression parameter β under C0,
C1 and C2, using cross–validation.

initial bandwidth
0.25 0.30 0.35 0.38 0.40 0.43 0.45

mean 0.9827 0.9823 0.9868 0.9819 0.9816 0.9811 0.9807 LS
sd 0.1109 0.1032 0.1005 0.1017 0.1016 0.1015 0.1014

mean 0.9905 0.9922 0.9957 0.9891 0.9901 0.9856 0.9842 LTS C0

sd 0.2171 0.2193 0.2212 0.2241 0.2121 0.2184 0.2138
mean 0.9841 0.9825 0.9869 0.9787 0.9804 0.9792 0.9796 GM

sd 0.1059 0.1043 0.1035 0.1053 0.1037 0.1054 0.1044
mean 0.8492 0.8507 0.8215 0.8443 0.8617 0.8512 0.8499 LS

sd 1.5911 1.5819 1.9095 1.9312 1.7182 1.7076 1.5221
mean 0.9939 0.991 1.0125 1.003 0.9935 0.9877 0.9818 LTS C1

sd 0.2149 0.2176 0.2027 0.2054 0.2063 0.2107 0.2135
mean 0.9792 0.9781 0.9921 0.9866 0.9842 0.9809 0.9756 GM

sd 0.1156 0.1134 0.1069 0.1071 0.1108 0.1132 0.1124
mean 0.0555 0.0561 0.0562 0.0562 0.0562 0.0562 0.056 LS

sd 0.4103 0.4155 0.4211 0.4243 0.4264 0.4293 0.4311
mean 0.9525 0.9395 0.9492 0.9537 0.9472 0.9553 0.9527 LTS C2

sd 0.2726 0.2874 0.2682 0.2618 0.2699 0.2677 0.2693
mean 0.8957 0.8894 0.8901 0.8892 0.8883 0.8885 0.8891 GM

sd 0.1181 0.122 0.1183 0.119 0.1194 0.1179 0.1178

Table 4: Estimation of the regression parameter β under C0, C1 and C2 when using the
differentiating approach.

initial bandwidth
0.25 0.30 0.35 0.38 0.40 0.43 0.45

LS 0.0985 0.0979 0.1045 0.0954 0.0951 0.0955 0.0961 C0

LTS 0.206 0.2168 0.2279 0.2389 0.2138 0.217 0.2112
GM 0.0963 0.099 0.1044 0.1068 0.1022 0.1055 0.102
LS 23.6493 18.6363 22.3226 21.3261 17.7332 18.1118 15.3747 C1

LTS 0.222 0.2257 0.2262 0.2291 0.2332 0.2185 0.2203
GM 0.1186 0.1175 0.1209 0.1291 0.129 0.1193 0.1176
LS 28.5969 24.3241 21.7866 20.6437 19.9367 18.9953 18.3776 C2

LTS 0.2926 0.3098 0.2841 0.2841 0.2915 0.2955 0.2938
GM 0.1163 0.1212 0.1138 0.1128 0.1157 0.1151 0.1124

Table 5: Estimation of the regression function g. Mean of MSE(ĝ) when using the differ-
entiating approach
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initial bandwidth
0.25 0.30 0.35 0.38 0.40 0.43 0.45

LS 0.0385 0.0368 0.0371 0.0344 0.0359 0.037 0.0373 C0

LTS 0.0591 0.0598 0.0714 0.0623 0.058 0.062 0.0623
GM 0.036 0.0364 0.0413 0.0372 0.0372 0.038 0.0379
LS 0.0875 0.0891 0.1271 0.1225 0.1054 0.0973 0.0941 C1

LTS 0.0718 0.0699 0.0881 0.0735 0.073 0.0734 0.0672
GM 0.0449 0.0439 0.0471 0.0483 0.0491 0.045 0.0415
LS 1.2196 1.164 1.1079 1.0822 1.0454 1.0293 0.9688 C2

LTS 0.0699 0.0697 0.0659 0.0701 0.0691 0.0677 0.0714
GM 0.0466 0.044 0.0452 0.0463 0.0455 0.0458 0.0463

Table 6: Estimation of the regression regression function g. Median of MedSE(ĝ) when
using the differentiating approach.

MSE(ĝ) MedSE(ĝ)
LS GM LTS LS GM LTS

C0 0.099 0.1848 0.1005 0.0392 0.0599 0.0405
C1 9.698 0.1963 0.1209 0.0863 0.0692 0.0468
C2 18.5513 0.3477 0.1203 1.3116 0.0857 0.0493

Table 7: Estimation of the regression regression function g. Mean of MSE(ĝ) and median
of MedSE(ĝ) when using the cross-validation.
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Figure 1: Boxplots of log
(
ĥ/hopt

)
using the differentiating approach.
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using the robust local polynomials.
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Figure 3: Boxplots of log
(
ĥ/hopt

)
for the robust data–driven bandwidths (a) and (b) plug–

in bandwidths with initial bandwidth 0.4 (a) using the differentiating approach (b) using
the local polynomial method and (c) robust cross–validation bandwidths.
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solid line corresponds to φ(t).

30



(a1) (a2)

-40

-20

 0

20

40

x

-40

-20

 0

20

40

y

 0
50

10
0

15
0

20
0

25
0

 t=0.10 

 Classical Plug-in Bandwidth 

-40

-20

 0

20

40

x

-40

-20

 0

20

40

y

 0
10

0
20

0
30

0
40

0
50

0
60

0

 t=0.10 

 Classical Plug-in Bandwidth 

(b1) (b2)

-40

-20

 0

20

40

x

-40

-20

 0

20

40

y

 0
50

10
0

15
0

20
0

25
0  t=0.10 

  Classical Plug-in Bandwidth: Local Polinomial 

-40

-20

 0

20

40

x

-40

-20

 0

20

40

y

 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

 t=0.10 

 Classical Plug-in Bandwidth 

Figure 5: EIF (0.10, x, y) and EIF1(0.10, x, y) for the classical bandwidth selector, using the differentiating approach, ((a1)
and (a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 6: EIF (0.10, x, y) and EIF1(0.10, x, y) for the robust bandwidth selector, using the differentiating approach, ((a1) and
(a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 7: EIF (0.50, x, y) and EIF1(0.50, x, y) for the classical bandwidth selector, using the differentiating approach, ((a1)
and (a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 8: EIF (0.50, x, y) and EIF1(0.50, x, y) for the robust bandwidth selector, using the differentiating approach, ((a1) and
(a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 9: EIF (0.90, x, y) and EIF1(0.90, x, y) for the classical bandwidth selector, using the differentiating approach, ((a1)
and (a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 10: EIF (0.90, x, y) and EIF1(0.90, x, y) for the robust bandwidth selector, using the differentiating approach, ((a1)
and (a2), respectively) and using the local polynomial approach, ((b1) and (b2), respectively).
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Figure 11: The solid lines correspond to EIF (t, 10, 10) while the dashed lines (− · −) with
empty circles to EIF1(t, 10, 10) for the robust plug–in selector based on the differentiating
approach.
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Figure 12: The solid lines correspond to EIF (t, 10, 10) while the dashed lines (− · −) with
empty circles to EIF1(t, 10, 10) for the robust plug–in selector based on the the robust local
polynomial approach.
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Figure 13: The solid lines correspond to EIF (t, 10, 10) while the dashed lines (− · −) with
empty circles to EIF1(t, 10, 10) for the robust cross–validation selector.
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