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1 Introduction

Assume that we are dealing with independent observations from k independent samples in IRp with
location parameter µi and scatter matrix Σi. It is usual in multivariate analysis to treat the scatter
matrices Σ1, . . ., Σk as unrelated if an overall test of equality tell us that they are not identical. As
mentioned in Flury (1988) “In contrast to the univariate situation, inequality is not just inequality - there
are indeed many ways in which covariance matrices can differ”. To avoid this problem he considered the
following general relations among scatter matrices

• Level 1. All scatter matrices Σi are equal.

• Level 2. The matrices are proportional to each other, i.e., Σi = ρiΣ1, for 2 ≤ i ≤ k.

• Level 3. The matrices satisfy a cpc model, i.e., Σi = βΛiβ
t, 1 ≤ i ≤ k.

• Level 4. Σi are arbitrary scatter matrices.

The number of parameters for each level is p(p + 1)/2, k−1+p(p + 1)/2, kp+p(p − 1)/2 and k p(p + 1)/2,
respectively. Therefore, the difference between the number of parameters in level 1 and 4 is (k−1)p(p+1)/2
which is, generally, bad in practice, specially when we are dealing with a large number of populations.
This question suggested the decomposition of the log–likelihood ratio statistics for equality of covariance
matrices, according to his hierarchy, described in Flury (1988).

It is well known that likelihood ratio test are in most situations, affected by anomalous observations.
A robust statistic to test equality against proportionality was studied by Boente and Orellana (2004).
On the other hand, an approximate test, based on eigenprojections, for testing the hypothesis that
the subspaces spanned by the first q principal components of several different covariances matrices are
identical, was derived by Schott (1991) who also considered a plug–in version of his test by using the
M−estimator proposed by Tyler (1987).

In this paper, we go further and we will deal with the hypothesis involving level 2 versus level 3 and
level 3 versus the hierarchically lower model given in level 4. An approach based on estimators of the
eigenvalues under a cpc model is considered to test the first hypothesis, while the second one is tested
using a robustified version of the log–likelihood statistic. We also define a robust plug–in log–likelihood
statistic to test proportionality against cpc.

This paper is organized as follows. In Section 2, we introduce the criterion for testing cpc against
arbitrary scatter matrices and we derive its asymptotic behavior under the null hypothesis. In Section
3, we consider the test statistics for proportionality versus cpc while in Section 4 the partial influence
functions of all test statistics is derived. Finally, the conclusions of a simulation study are given in Section
5 and a real example is studied in Section 6. Proofs are given in the Appendix.

2 Testing CPC against arbitrary scatter matrices

Let us assume that (xij)1≤j≤ni,1≤i≤k are independent observations from k independent samples in IRp

with location parameter µi and scatter matrix Σi. Let N =
k∑

i=1

ni, τi =
ni

N
and Xi = (xi1, . . . ,xini).
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A basic common structure, described as level 3 in the Introduction, assumes that the k covariance
matrices have different eigenvalues but identical eigenvectors, i.e.,

Σi = βΛiβ
t , 1 ≤ i ≤ k , (1)

where Λi are diagonal matrices, β is the orthogonal matrix of the common eigenvectors and Σi is the
covariance matrix of the i−th population. Model (1) was proposed in Flury (1984) and became known
as the Common Principal Components (cpc) model. The maximum likelihood estimators of β and Λi,
assuming multivariate normality of the original variables, are derived in Flury (1984).

The hierarchy of test statisitcs discussed in Flury (1988) includes to test level 3 against level 4, i.e,

Hcpc : Σi = βΛiβ
t , for 1 ≤ i ≤ k

versus
H1 : Σi are arbitrary positive definite scatter matrices , 1 ≤ i ≤ k .

The classical log–likelihood test statistic to test this hypothesis is given by

Tml,cpc =
k∑

i=1

ni log




det
(
Λ̂i,ml

)

det (Si)


 ,

where Λ̂i,ml is the diagonal matrix of the eigenvalues estimated under Hcpc and Si is the sample
covariance matrix.

The idea beyond this statistic is that, under Hcpc, it should be expected that β̂
t
mlSiβ̂ml will

be aproximately a diagonal matrix where β̂ml are the maximum likelihood estimators of the common
directions. This idea can be used to robustify the test statistic by plugging–in independent robust affine
equivariant scatter estimates, Vi, into the log–likelihood ratio. Hence, the robust statistic can be defined
as

Tcpc =
k∑

i=1

ni log




det
(

diag
(

β̂
t
Viβ̂

))

det
(

β̂
t
Viβ̂

)


 =

k∑

i=1

ni log




det
(
Λ̂i

)

det (Vi)


 ,

where now β̂ and Λ̂i = diag
(

β̂
t
Viβ̂

)
are, respectively, the plug–in estimators of the common directions

and of the eigenvalue matrices Λi related to the scatter estimates Vi.

A standard framework to derive the asymptotic behavior in robust principal component analysis is to
assume that the estimators of the scatter matrix are asymptotically normally distributed and spherically
invariant. For that reason, and since the samples of the k populations are independent, we will assume,
throughout this paper, that for 1 ≤ i ≤ k, the estimators, Vi, of the scatter matrix Σi are independent
and satisfy the following assumption

A1.
√

ni (Vi −Σi)
D−→ Zi where Zi has a multivariate normal distribution with zero mean and covari-

ance matrix Ξi such that

Ξi = σ1 (I + Kpp) (Σi ⊗Σi) + σ2 vec (Σi) vec (Σi)
t , (2)

with Kpp the p2 × p2 block matrix with the (l,m)−block equal to a p × p matrix with a 1 at entry
(l,m) and 0 everywhere else.
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where, from now on, when dealing with random matrices Zn
D−→ Z means that vec (Zn) D−→ vec (Z).

Remark 1. It is well known that, for elliptically distributed observations, MCD, M, S and τ−estimators
are asymptotically normally distributed and spherically invariant. If the k populations have ellipsoidal
distributions that only differ on their scatter matrix and if the same robust scatter estimate is considered
for each population, these estimators will satisfy A1 (see, Tyler, 1982). Explicit forms for the constants
σ1 and σ2 are given in Tyler (1982), for M–estimators, and in Lopuhaä (1991), for S and τ−estimators.

Implicitely, we are thus assuming that all the scatter estimates are related to the same functional
V and that all the populations have the same elliptical distribution except for changes in the scatter
matrices so that A1 will hold.

Theorem 1. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples
with location parameter µi and scatter matrix Σi. Assume that Hcpc holds, i.e., Σi = βΛiβ

t =
βdiag(λi1, . . . , λip)βt and that λ11 > . . . > λ1p, ni = τiN with 0 < τi < 1 fixed numbers such that
k∑

i=1

τi = 1.

Let Vi be robust affine equivariant estimates of the scatter matrices Σi, satisfying A1. Let us consider
the plug–in estimates of the common axes and their size given by

Λ̂i = diag

(
β̂
t
Viβ̂

)
(3)

β̂
t
m

[
k∑

i=1

ni
λ̂im − λ̂ij

λ̂imλ̂ij

Vi

]
β̂j = 0 for m 6= j (4)

β̂
t
mβ̂j = δmj . (5)

Then, we have that Tcpc
D−→ σ1χ2

(k−1)p(p−1)
2

.

It is woth noticing that, under normality, the asymptotic distribution of the test statistic is that of
the classical log–likelihood test, except for a multiplicative constant which is related to the efficiencies of
the off–diagonal elements of the scatter estimates considered.

3 Testing proportionality against CPC

The proportionality model is more restrictive that the cpc model and assumes that the scatter matrices
are equal up to a proportionality constant, i.e.,

Σi = ρiΣ1 , for 2 ≤ i ≤ k . (6)

In this section, we will provide two statistics for testing level 2 versus level 3, i.e.,

Hprop : Σi = ρiΣ1 , for 2 ≤ i ≤ k versus Hcpc : Σi = βΛiβ
t , 1 ≤ i ≤ k .

Let cij =
λij

λi1
, and ci = (ci2, . . . , cip)

t, then under Hprop cij = c1j , for all i and j. On the other hand, if

Hcpc holds, cij = c1j for all i and j entail that Hprop is true. The first test statistic will be based on
robust estimators of the eigenvalues of the matrices Σi assuming that the cpc model holds.
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Let Λ̂i be the plug–in estimators of the eigenvalues matrix Λi related to robust scatter estimators Vi,
defined in (3).

In this case, it is well known (see Boente and Orellana, 2001 and Boente, Pires and Rodrigues, 2002)
that the estimators of the eigenvalues are asymptotically normally distributed and their asymptotic
variances and covariances denoted asvar and ascov, respectively, are

ascov
(
λ̂`j , λ̂im

)
= 0 for ` 6= i

asvar
(
λ̂ij

)
=

1
τi

(2σ1 + σ2)λ2
ij , 1 ≤ j ≤ p (7)

ascov
(
λ̂ij , λ̂im

)
=

1
τi

σ2λijλim for m 6= j .

A natural estimate of cij is ĉij =
λ̂ij

λ̂i1

. The statistic to test Hprop versus Hcpc based on ĉij is a

Wald–type statistic and is defined by

Wprop = N vec
(
D̂
)t

Σ̂
−1

D̂ vec
(
D̂
)

where

D̂ = (ĉ2 − ĉ1, . . . , ĉk − ĉ1)

Σ̂
D̂

= B̂1 ⊗
{

1
τ1

11t
}

+ diag
(

1
τ2

B̂2, . . . ,
1
τk

B̂k

)

B̂i = 2σ1

(
ĉiĉti + diag

(
ĉ 2
i2, . . . , ĉ

2
ip

))
.

The following Theorem gives its asymptotic distribution under the null hypothesis.

Theorem 2. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples with
location parameter µi and scatter matrix Σi = βΛiβ

t = βdiag(λi1, . . . , λip)βt. Assume that Hprop
holds, that the eigenvalues of the first population satify λ1 > . . . > λp and that ni = τiN with 0 < τi < 1

fixed numbers such that
k∑

i=1

τi = 1.

Let Vi be robust affine equivariant estimates of the scatter matrices Σi, satisfying A1. Let us consider
the plug–in estimates of the common axes and their size defined through (3) to (5). Then, we have that

Wprop
D−→ χ2

(k−1)(p−1).

Another possibility to test Hprop against Hcpc is to use a robust plug–in version of the log–likelihood
statistic, i.e.,

k∑

i=1

ni log




det
(
ρ̂idiag

(
λ̂1, . . . , λ̂p

))

det
(

diag
(

β̂
t
Viβ̂

))




where Vi are independent robust affine equivariant scatter estimates, β̂ are the plug–in estimators of
the common directions related to the scatter estimates Vi, ρ̂i and λ̂j are the plug–in estimators of the
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proportionality constants and of the eigenvalues of the first population related to Vi, as defined in Boente
and Orellana (2004) and also studied in Boente, Critchley and Orellana (2004). However, the asymptotic
distribution of this statistic cannot be easily derived. Instead, the eigenvalues of the first population
and the proportionality constants should be estimated related to the prior estimation of the common
direction. Thus, we will consider the statistic defined through

Tprop =
k∑

i=1

ni log




det
(
ρ̂idiag

(
λ̂1, . . . , λ̂p

))

det
(
diag

(
λ̂i1, . . . , λ̂ip

))


 ,

where λ̂ij = β̂
t
j Viβ̂j are defined in (3) and ρ̂i and λ̂j solve the following equations

ρ̂i =
1
p

p∑

j=1

λ̂ij

λ̂j

2 ≤ i ≤ k (8)

λ̂j =
1
N

k∑

i=1

ni

ρ̂i
λ̂ij 1 ≤ j ≤ p . (9)

Theorem 3. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples with
location parameter µi and scatter matrix Σi = βΛiβ

t = βdiag(λi1, . . . , λip)βt. Assume that Hprop
holds, that the eigenvalues of the first population satify λ1 > . . . > λp and that ni = τiN with 0 < τi < 1

fixed numbers such that
k∑

i=1

τi = 1. Let Vi be robust affine equivariant estimates of the scatter matrices

Σi, satisfying A1. Let us consider the plug–in estimates of the common axes and their size defined by
(3) to (5) and the related estimates of the proportionality constants and their size solution of (8) and (9).

Then, we have that Tprop
D−→ σ1χ2

(k−1)(p−1).

4 Partial Influence Functions

Denote by F the product measure, F = F1 × . . . × Fk. Partial influence functions of a functional T (F ),
introduced in Pires and Branco (2002), are then defined as

PIFi0(x, T, F ) = lim
ε→0

T (Fε,x, i0) − T (F )
ε

,

where Fε,x,i0 = F1 × . . . × Fi0−1 × Fi0,ε,x × Fi0+1 × . . . × Fk and Fi,ε,x = (1 − ε)Fi + εδx.

In this Section, we will derive the partial influence functions of the functionals related to the test
statistics defined in the previous Sections.

Let Vi(G) be a Fisher–consistent scatter functional such that Vi(Fi) = Σi. Denote by λj (V`(F )) the
eigenvalues of V`(F ) and by βV(F ) and λV,`j the plug–in functionals related to the scatter functionals
V(F ) = (V1(F1), . . . ,Vk(Fk)), i.e., the solution of

diag
{
βV(F )tVi(Fi)βV(F )

}
= ΛV,i(F ) (10)

βV,m(F )t
{

k∑

i=1

τi
λV,im(F ) − λV,ij(F )
λV,im(F )λV,ij(F )

Vi(Fi)

}
βV,j(F ) = 0 for m 6= j (11)

βV,m(F )tβV,j(F ) = δmj . (12)
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The test functional related to the statistic used to test Hcpc versus H1 is given by

TV,cpc(F ) =
k∑

`=1

τ`

p∑

j=1

log (λV,`j(F )) − log (λj (V`(F`))) ,

while those related to Tprop and Wprop are respectively defined through

TV,prop(F ) =
k∑

`=1

τ`

p∑

j=1

log (ρV,`(F )λV,j(F )) − log (λV,`j(F )) ,

WV,prop(F ) = vec (D(F ))t Σ−1
D (F )vec (D(F ))

where λV,ij is defined through (10) to (12) and

ρV,i(F ) =
1
p

p∑

j=1

λV,ij

λV,j(F )
i = 2, . . . , k

λV,j(F ) =
k∑

i=1

τi
λV,ij(F )
ρV,i(F )

1 ≤ j ≤ p

D(F ) = (c2(F ) − c1(F ), . . . , ck(F ) − c1(F )) = (D2(F ), . . . ,Dk(F ))

ΣD(F ) = B1(F ) ⊗
{

1
τ1

11t
}

+ diag
(

1
τ2

B2(F ), . . . ,
1
τk

Bk(F )
)

Bi(F ) = 2σ1

(
ci(F )ci(F )t + diag

(
c 2
i2(F ), . . . , c 2

ip(F )
))

cij(F ) =
λV,ij(F )
λV,i1(F )

ci(F ) = (ci2(F ), . . . , cip(F ))t .

It is easy to see that, since Vi(Fi) = Σi, under Hcpc, PIFi(x, TV,cpc, F ) = 0 while under Hprop,
PIFi(x, TV,prop, F ) = 0 and PIFi(x,WV,prop, F ) are also equal to 0. So, as in Hampel et al. (1986), we
consider as test statistics SV,cpc(F ) = TV,cpc(F )

1
2 , SV,prop(F ) = TV,prop(F )

1
2 and RV,prop(F ) =

WV,prop(F )
1
2 . As for the linear model, using that TV,cpc(F ) = 0, it is easy to see that

PIFi(x, SV,cpc, F ) =

(
1
2

∂2

∂ε2
TV,cpc(Fε,x, i)

∣∣∣
ε=0

) 1
2

and similarly for SV,prop(F ) and RV,prop(F ).

The following Theorem gives the values of the partial influence functions of the test statistic SV,cpc(F ).

Theorem 4. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi. Denote by β1, . . . ,βp, λi1, . . . , λip

the common eigenvectors and the eigenvalues of Σi, i.e., assume that Hcpc : Σi = βΛiβ
t , for 1 ≤ i ≤ k

holds. Assume that the influence function IF (x,Vi, Fi) and ∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

exist and that λ11 > . . . >

λ1p. Then, the partial influence functions of SV,cpc are given by

PIFi(x, SV,cpc, F )2 = τ2
i

p∑

j=1

∑

m 6=j

A2
mj

[
βt

j IF (x,Vi, Fi)βm

]2 (λij − λim)2

λ2
ijλ

2
im

k∑

`=1

τ`
λ`m − λ`j

λ`j
+
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+τi

p∑

j=1

∑

m 6=j

[
βt

j IF (x,Vi, Fi) βm

]2 1
λ2

ijλim (λij − λim)

[
2τiAmj (λim − λij)

2 − λijλim

]
(13)

= τi

p∑

j=1

∑

m>j

[
βt

j IF (x,Vi, Fi) βm

]2

λimλij

[
1 − Amj τi

(λij − λim)2

λijλim

]
, (14)

where Amj =

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1

.

Remark 2. In the particular case of a proportional model, i.e., if Λi = ρiΛ1 and we denote λj = λ1j we
have that

PIFi(x, SV,cpc, F )2 =
τi(1 − τi)

ρ2
i

p∑

j=1

∑

m>j

[
βt

j IF (x,Vi, Fi) βm

]2 1
λjλm

.

Note that the partial influence functions of the test statistic are unbounded if the scatter matrices have
unbounded influence functions. The behaviour of the partial influence function of the test statistic will be
analogous to that described for the principal components by Croux & Haesbroeck (2000). For instance,
in dimension 2, the largest values of the partial influence function are obtained along the bisectors.

The expression (14) allows to see easily that the right hand term is positive.

The following theorems state the partial influence functions of the functionals related to the test
statistics used to test Hprop against Hcpc.

Theorem 5. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi. Denote by β1, . . . ,βp, λi1, . . . , λip

the common eigenvectors and the eigenvalues of Σi, i.e., assume that Hprop : Σi = ρiβΛ1β
t , for 1 ≤

i ≤ k holds with ρ1 = 1. Assume that the influence function IF (x,Vi, Fi) and ∂2

∂ε2 Vi(Fi,ε,x)
∣∣∣
ε=0

exist and

that λ1 > . . . > λp. Then, the partial influence functions of RV,prop are given by

PIFi(x, RV,prop, F )2 = vec [PIFi(x,D, F )]t Σ−1
D vec [PIFi(x,D, F )] (15)

where

PIFi(x,Di, F ) =
1

λi1

[
Ji − βt

1 IF(x,Vi, Fi)β1 ci

]
i 6= 1 (16)

PIF1(x,Di, F ) = − 1
λ11

[
J1 − βt

1 IF(x,V1, F1)β1 c1

]
(17)

Ji =
(
βt

2 IF(x,Vi, Fi)β2, . . . ,β
t
p IF(x,Vi, Fi)βp

)t
.

The following Theorem, whose proof follows easily using the same arguments as above, gives the
values of the partial influence functions of SV,prop(F ).

Theorem 6. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi. Denote by β1, . . . ,βp, λi1, . . . , λip

the common eigenvectors and the eigenvalues of Σi, i.e., assume that Hprop : Σi = ρiβΛ1β
t , for 1 ≤
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i ≤ k holds with ρ1 = 1. Assume that the influence function IF (x,Vi, Fi) and ∂2

∂ε2 Vi(Fi,ε,x)
∣∣∣
ε=0

exist

and that λ1 > . . . > λp. Moreover, assume that the influence function IF (x,Vi, Fi) and ∂2

∂ε2 Vi(Fi,ε,x)
∣∣∣
ε=0

exist and that λ1 > . . . > λp. Then, under Hprop, the partial influence functions of SV,prop are given
by

PIFi(x, SV,prop, F )2 =
τi (1 − τi)

2ρ2
i

{
ζi −

1
p
γ2

i

}
, (18)

where

ζi =
p∑

j=1

[
βt

j IF (x,Vi, Fi) βj

]2

λ2
j

γi =
p∑

j=1

βt
j IF (x,Vi, Fi)βj

λj
.

Note that Cauchy–Schwartz inequality imply that ζip ≥ γ2
i and thus, PIFi(x, SV,prop, F ) is well

defined.

Remark 3. It is worth noticing that
k∑

i=1

1
τi

E
(
PIFi(x, SV,cpc, F )2

)
= σ1

p(p − 1)(k − 1)
2

k∑

i=1

1
τi

E
(
PIFi(x, SV,prop, F )2

)
= σ1(p − 1)(k − 1)

as expected.

Figures 1 to 3 give the plots of the partial influence function PIF1 of the three functionals when p = 2
at F = F1 ×F2 with F1 = N (0,diag(2, 1)) and F2 = N (0, 4 diag(2, 1)), respectively. We have considered
as scatter matrices estimators the sample covariance matrix and the Donoho–Stahel estimator using as
weight function the Huber’s function with constant

√
χ2

p(0.95) = 2.4477. The univariate location and
scale functionals are the median and the mad, median of the absolute deviations with respect to the
median. An expression for the influence function of the Donoho–Stahel scatter functional can be found
in Gervini (2002).

In all cases, the shape of the partial influence functions of the robust estimates is comparable to that
of their classical relatives at the center of the distribution, while the influence at points further away is
downweighted for the robust estimates while it is much more larger for the classical ones. However, it
should be noticed that the robust functionals have a discontinuity at 0, due to the discontinuity of the
influence function of the Donoho–Stahel scatter functional. On the other hand, as mentioned in Remark
2, for the PIFi(x, SV,cpc, F ) the largest values of the partial influence function are obtained along the
bisectors while the largest values of PIFi(x, RV,prop, F ) and PIFi(x, SV,prop, F ) are attained along the
axis, except for (0, 0).

5 Monte Carlo study

5.1 Testing Hcpc against arbitrary scatter matrices

We performed a simulation study in dimension p = 4 to compare Tml,cpc, i.e., the log–likelihood test
statistic and Tcpc with the Donoho(1982)–Stahel(1981) estimator, indicated with thick and dashed lines
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in the plots respectively. The Donoho–Stahel scatter estimator (DS estimator) was computed using the
Huber weights with tunning constant

√
χ2

p(0.95) = 3.0803 and as univariate location and scale estimators,
the sample median and the mad, median of the absolute deviations with respect to the median. Note
that for the classical test σ1 = 1 when the observations are normally distributed. Then, to provide fair
comparisons, the value of σ1 was numerically computed for the Donoho–Stahel estimator in p = 4, under
normality, and it result equal to 1.0246.

We have considered two populations with Σ1 = diag(16, 8, 2, 1),

Σ2 = 4 Σ1 +




0 0 0 0
0 0 0 A
0 0 0 0
0 A 0 0




and A = 0, 3, 6 and 9.

In all models, we performed 500 replications generating two independent samples of size ni = n = 100.

The results for normal data sets will be indicated by C0, while C1, C2 and C3 will denote the following
contaminations.

• C1: xi1, . . . ,xin are i.i.d. 0.9N(0,Σi) + 0.1N(0, 9Σi).

• C2: x11, . . . ,x1n are i.i.d. 0.9N(0,Σ1) + 0.1N(0, 9Σ1) and x21, . . . ,x2n are i.i.d. 0.9N(0,Σ2) +
0.1N(µ2,Σ2) with µ2 = e4 − 100e2. The aim of this contamination is to see how the bias of
parameter estimates affects the level of the test.

• C3: x11, . . . ,x1n are i.i.d. 0.9N(0,Σ1) + 0.1N(µ1,Σ1) with µ1 = 300Σ1/2
1 e4 and x21, . . . ,x2n are

i.i.d. 0.9N(0,Σ2) + 0.1N(µ2, 4Σ1) with µ2 = 2µ1. The aim of this contamination is to breakdown
the power of the test for large values of A.

To summarize the results, we evaluated the power of the test, with fixed size α = 5%, by computing the
percentage of rejections, over the replications. Fig. 4 displays these results as a function of A.

The performance of Tcpc with the DS estimator is similar to that of Tml,cpc under normality, but it
is better under contamination. Both the power and the size of the classical test can be seriously affected.

5.2 Testing Hprop against Hcpc

We performed a simulation study in dimension 4 to compare the behavior of the Wald type statistics
computed with the sample covariance matrices, Wml,cpc, and with the Donoho–Stahel estimator, Wcpc,
plotted with thick and dashed lines in the figures, respectively. We have considered two populations with
Σ1 = diag(16, 8, 2, 1),

Σ2 = 4 Σ1 +




16 A 0 0 0
0 8 A 0 0
0 0 2 A 0
0 0 0 0




and A = 0, 1.5, 3, 4.5, 6, 9 and 15.
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In all models, we performed 500 replications generating two independent samples of size ni = n = 100.
As in the previous Section, we show the results for normal data sets (C0), for C1 and C3 and also for the
following contamination

• C4: x11, . . . ,x1n are i.i.d.N(0,Σ1) and x21, . . . ,x2n are i.i.d. 0.9N(0,Σ2)+0.1N(0,Σ3) with Σ3 =
diag(160, 80, 20, 145)t .

To summarize the results we evaluated the power of the test, with fixed size α = 5%, by computing
again the percentage of rejections, over the replications, for both statistics. Fig. 5 displays these results
as a function of A.

The performance of the Wprop with the DS estimator is similar to the one of Wml,prop under
normality, but it is better under contamination. The same behavior is observed with the plug–in test
statistic Tprop and Tml,prop which are plotted in Fig. 6. However, it should be noticed that the rate of
convergence, under the null hypothesis, of the log–likelihood test seems to be slower since the frequency
of rejection is 0.0820 againts 0.030 for the Wald test statistic. For the robust ones, the frequencies are
0.1020 and 0.0380, respectively. With both type of statistics, the size of the classical test can be seriously
affected under the contaminations considered. Note that the power of the classical test is highly sensitive
to the contamination C4, while that computed with the Donoho–Stahel estimator shows some sensitivity
for lower alternatives but recovers its performance as A increases. Under this contamination the robust
plug–in statistic performs much better than the Wald–type one. Contamination C4 also breakdown the
level for all methods. It is worth noticing that contamination C4 is a difficult one to be detected by the
robust procedure since it corresponds to mild outliers showing that more research should be done in this
direction to avoid this effect.

6 Example

The following example shows that, similar problems to those described when estimating the principal
components, arise when testing a cpc model by introducing a few atypical data.

We have considered the data on the petal and sepal width of two species of Iris, Iris versicolor and
Iris virginica, given in Fisher (1936) and studied in Boente and Orellana (2001). The log–likelihood test
statistic assuming normality for Hcpc against arbitrary scatter matrices has a value of 1.7463 that gives
a p−value of 18.63%, not rejecting the null hypothesis. In order to show the effect of a small number of
outliers we modified four data points in Iris versicolor and three data points in Iris virginica as shown
in Figure 1 in Boente and Orellana (2001). The value of the test statistic is now 4.7880 and so the null
hypothesis is now rejected at level 5%. Moreover, the p−value is 2.86%.

In order to solve the problems observed with the maximum likelihood procedure, we have considered
the test statistic described in Section 2 computed with the Donoho–Stahel estimator. As in the Monte
Carlo study, the value of σ1 was set equal to 1.0241 for the robust scale estimator while σ1 = 1 for the
sample covariance matrix. The test statistic for the original data is now 2.6485 while for the modified one
is 2.2012 giving as p−values 10.78% and 14.26%, respectively. This shows that, when using the robust
procedure, the introduced outliers do not change the decision.

When testing Hprop against Hcpc, we get a different situation: the classical and the robust proce-
dures lead to different conclusions. The p−values for the Wald–type test based on the sample covariance
matrices are 11.98% and 6.90% for the original and modified data sets, while for that based on the
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Donoho–Stahel statistics we get 3.52% and 2.19%, respectively. The results given in Table 1 in Boente
and Orellana (2001), make us suspect from the non–validity of Hprop. Thus, we may suspect that the
result obtained for the classical test could be distorted by some masked outlier or by a small number of
data points. We thus performed the log–likelihood tests obtaining as p−value 3.36% and 1.19% for the
classical and robust procedure, respectively, for the original data set. Note that this results are consistent
with the result obtained for the robust Wald proposal.

In summary, using the robust tests we would conclude that level 3 is adequate (with or without the
outliers), while when using the classical tests the conclusions would be different (indicating level 4 when
the outliers are present) and depending on the the test statistic used to decide between levels 2 and 3.

7 Final Comments

If in multivariate analysis involving k independent populations the assumption of equality of scatter ma-
trices is not adequate, problems may arise because of an excessive number of parameters if we estimate
the scatter matrices separately for each population. Such problems can often be avoided if the different
covariance matrices exhibit some common structure. The common principal components model, intro-
duced by Flury (1984), generalizes equality by allowing the matrices to have different eigenvalues but
identical eigenvectors. This explains why it is often of interest to decide on the equality of their scatter
matrices or on how they can differ. Moreover, since multivariate outliers are very difficult to detect, it is
important to use robust procedures to take these decisions.

In this paper, we have considered the four level hierarchy of relations between scatter matrices intro-
duced by Flury (1988) and we have proposed several robust tests to decide between level 2 (proportional
model), level 3 (cpc model) and level 4 (arbitrary matrices) of that system. We have derived the as-
ymptotic distribution of each test statistic under the corresponding null hypothesis. As in the classical
case, this distribution is, in every case, a chi-square distribution (or a multiple of it) with a number of
degrees of freedom equal to the difference between the number of parameters in the appropriate levels.
The multiplicative constant is related to the asymptotic efficiencies of the common eigenvectors, which
are the efficiencies of the off–diagonal elements of the scatter estimates considered. We have also obtained
the partial influence functions of the test statistics which show how contaminating observations affect the
test statistics.

A small simulation study complements the theoretical results obtained. It shows first that, for the
number of observations considered, the desired level is almost attained when using the asymptotic dis-
tribution. It also shows that the loss of power of the robust procedure for non contaminated samples is
negligible when compared to the classical procedure. Finally, it is obvious from the results given, that
contamination of the samples can destroy both the level and the power of the classical versions of the
tests, whereas the robust tests still lead to reliable results. A real example also illustrates some of these
aspects.
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8 Appendix

Proof of Theorem 1. Without loss of generality, we can assume that, under Hcpc, β = Ip, i.e,
Σi = Λi = diag(λi1, . . . , λip).

First of all, note that Ẑi =
√

N (Vi −Λi)
D−→ Zi where Zi ∼ N

(
0,

1
τi

Ξi

)
, with Ξi = σ1 (I + Kpp) (Λi⊗

Λi)+σ2 vec (Λi) vec (Λi)
t. Note that when dealing with the maximum likelihood estimators, and when

G = N(0, Ip), σ2 = 0 and σ1 = 1, i.e., Ẑi,ml =
√

N (Si −Λi)
D−→ Z̃i where Z̃i ∼ N

(
0,

1
τi

(I + Kpp) (Λi ⊗Λi)
)

.

Denote by Ûi =
√

N

(
β̂
t
Viβ̂ −Λi

)
. We will show that Ûi are asymptotically normally distributed.

The proof follows similar steps as those given in Theorem 2 in Boente and Orellana (2001). Denote ej the

j-th vector of the canonical basis and f̂j =
(
f̂j1, . . . , f̂jp

)t
, with f̂jj =

√
N
(
β̂jj − 1

)
and f̂js =

√
Nβ̂sj .

Then, using that f̂jj = op(1) and that f̂js = Op(1), for s 6= j, straighforward calculations lead to that

Ûi,ss =
√

N

(
β̂
t
s Viβ̂s − λis

)
= Ẑi,ss + op(1)

Ûi,sj =
√

N β̂
t
s Viβ̂j = Ẑi,sj + λisf̂js + λij f̂sj + op(1) .

Note that as in the proof of Theorem 2 in Boente and Orellana (2001), f̂ = vec
(
f̂1, . . . , f̂p

)
can be written

as f̂ = B−1d̂ + op(1), with B a non–singular matrix and d̂ with his first p(p + 1)/2 rows equal to 0 and
his last rows equal to vec(Ŵ) where Ŵ = (ŵsj)1≤s<j≤p

ŵsj = −ŵjs =
k∑

i=1

τi
λij − λis

λijλis
Ẑi,sj for s 6= j .

The non–singular matrix B is related to the system of equations

fjs + fsj = θjs for 1 ≤ s ≤ j ≤ p

etj Ajsfs + ets Ajsfj = νjs for 1 ≤ s < j ≤ p

where Ajs =
k∑

i=1

τi
λij − λis

λijλis
Λi, with solution given by

fjj =
θjj

2
for 1 ≤ j ≤ p

fjs = θjs − fsj = −
νjs − θjs

k∑

`=1

τ`
λ`j − λ`s

λ`s

k∑

`=1

τ`
(λ`j − λ`s)

2

λ`jλ`s

for 1 ≤ s < j ≤ p .
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which implies that

f̂jj = op(1) for 1 ≤ m ≤ p

f̂js = −f̂sj + op(1) = − ŵjs

k∑

`=1

τ`
(λ`j − λ`s)

2

λ`jλ`s

+ op(1) =

k∑

`=1

τ`
λ`j − λ`s

λ`jλ`s
Ẑ`,sj

k∑

`=1

τ`
(λ`j − λ`s)

2

λ`jλ`s

+ op(1) for 1 ≤ s < j ≤ p .

Putting the above expansions together we get that

Ûi,ss = Ẑi,ss + op(1) (19)

Ûi,sj = Ẑi,sj +
λis − λij

k∑

`=1

τ`
(λ`j − λ`s)

2

λ`jλ`s

k∑

`=1

τ`
λ`j − λ`s

λ`jλ`s
Ẑ`,sj + op(1) 1 ≤ s < j ≤ p , (20)

which shows that Ûi =
√

N

(
β̂
t
Viβ̂ −Λi

)
are jointly asymptotically normally distributed.

In Muirhead and Waternaux (1980), it is shown that given a sample of size n and a scatter statistic
S = Σ+n− 1

2 Z with Z an asymptotically normally distributed matrix, under H04 : Σ = diag (σ11, . . . , σpp)

the test statistic −2 log ∆4 with ∆
2
n
4 = det (S)

[ p∏

i=1

sii

]−1

can be expanded as

−2 log ∆4 = n log
(

det (diag (S))
det (S)

)
=

∑

1≤i<j≤p

z2
ij

σiiσjj
+ Op(n− 1

2 )

This expansion can be applied to each term in Tcpc, since Hcpc holds and we have assumed β = Ip.
Therefore, using that ni = τiN with 0 < τi < 1 fixed numbers, we have that for 1 ≤ i ≤ k

ni log




det
(

diag
(

β̂
t
Viβ̂

))

det
(

β̂
t
Viβ̂

)


 = τi

∑

1≤s<j≤p

Û2
i,sj

σi,ssσi,jj
+ Op(N− 1

2 ) ,

which entails that

Tcpc =
k∑

i=1

τi

∑

1≤s<j≤p

[
Ûi,sj

]2 1
λisλij

+ Op(N− 1
2 )

since Σi = Λi.

Therefore, the asymptotic behavior of Tcpc depends on the asymptotic distribution of Ũ =
(
Ûi,sj

)
1≤i≤k

1≤s<j≤p

and therefore using (20) on that of Ŷi =
(
Ẑi,sj

)
1≤s<j≤p

, 1 ≤ i ≤ k. Note that Ŷi are independent and

asymptotically normally distributed.

Denote Yi =
(
Z̃i,sj

)
1≤s<j≤p

with Z̃i ∼ N

(
0,

1
τi

(I + Kpp) (Λi ⊗Λi)
)

independent for 1 ≤ i ≤ k.

Then, Ŷi
D−→ σ

1
2
1 Yi.
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This implies that the asymptotic distribution of Tcpc is that of

T1 = σ1

k∑

i=1

τi

∑

1≤s<j≤p

[Ui,sj]
2 1

λisλij

with

Ui,sj = Z̃i,sj +
λis − λij

k∑

`=1

τ`
(λ`j − λ`s)

2

λ`jλ`s

k∑

`=1

τ`
λ`j − λ`s

λ`jλ`s
Z̃`,sj 1 ≤ s < j ≤ p ,

The distribution of T1
σ1

is the distribution of the likelihood ratio test for normal populations, since the
above expansions hold in this particular case.

Therefore, Tcpc has asymptotic distribution σ1χ2
(k−1)p(p−1)

2

.

Proof of Theorem 2. From the equality

ĉij − cij =
λ̂ij − λij

λ̂i1

− λij

λ̂i1λi1

(
λ̂i1 − λi1

)

we get easily,

ascov (ĉij , ĉis) =
1

λ2
i1

[
ascov

(
λ̂ij , λ̂is

)
− λij

λi1
ascov

(
λ̂i1, λ̂is

)
− λis

λi1
ascov

(
λ̂i1, λ̂ij

)
+

λijλis

λ2
i1

asvar
(
λ̂i1

)]

and thus, replacing by the expressions given in (7), we obtain

ascov (ĉij , ĉis) = 2σ1
1
τi

λijλis

λ2
i1

for j 6= s

asvar (ĉij) = 4σ1
1
τi

λ2
ij

λ2
i1

Therefore, we have that under Hcpc
√

N (ĉi − ci)
D−→ N

(
0, 2σ1

1
τi

(
cicti + diag

(
c2
i2, . . . , c

2
ip

)))
and

asymptotically independent for different i which entails that, under Hcpc

√
N (ĉi − ci − (ĉ1 − c1))

D−→ N

(
0, 2σ1

[
1
τi

(
cicti + diag

(
c2
i2, . . . , c

2
ip

))
+

1
τ1

(
c1ct1 + diag

(
c2
12, . . . , c

2
1p

))])

and so under Hprop

√
N (ĉi − ĉ1)

D−→ N

(
0, 2σ1

[
1
τi

+
1
τ1

] (
c1ct1 + diag

(
c2
12, . . . , c

2
1p

)))

Denote B1 = 2σ1

(
c1ct1 + diag

(
c2
12, . . . , c

2
1p

))
, C = (c1, . . . , ck) and Ĉ = (ĉ1, . . . , ĉk). Using the

asymptotic independence of the columns of Ĉ and that ascov (ĉi − ĉ1, ĉ` − ĉ1) = asvar (ĉ1) = 1
τ1

B1,
we get that under Hprop,

√
ND̂ D−→ N

(
0,Σ

D̂
= B1 ⊗

{
1
τ1

11t
}

+ diag
(

1
τ2

B2, . . . ,
1
τk

Bk

))
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where Bi = 2σ1

(
cicti + diag

(
c2
i2, . . . , c

2
ip

))
.

The matrix Σ̂
D̂

is a consistent estimate of Σ
D̂

. Therefore, from the above discussion we have that,

under Hprop, Wprop
D−→ χ2

(p−1)(k−1).

Proof of Theorem 3. As in Theorem 1, without loss of generality, we can assume that, under Hprop,
β = Ip, i.e, Σi = Λi = ρidiag(λ1, . . . , λp).

Notice that Ẑi =
√

N (Vi −Λi)
D−→ Zi where Zi ∼ N

(
0,

1
τi

Ξi

)
, with Ξi = σ1 (I + Kpp) (Λi ⊗

Λi) + σ2 vec (Λi) vec (Λi)
t. Moreover, from the proof of Theorem 1, Ûi =

√
N

(
β̂
t
Viβ̂ −Λi

)
is

asymptotically normally distributed and satisfies that

Ûi,ss =
√

N

(
β̂
t
s Viβ̂s − λis

)
= Ẑi,ss + op(1) .

Using a Taylor’s expansion of order 2 and since the eigenvalue and the proportionality constant
estimators are asymptotically normally distributed, we get

log
(
λ̂ij

)
− log

(
ρ̂iλ̂j

)
=

1
ρ̂iλ̂j

(
λ̂ij − ρ̂iλ̂j

)
− 1

2ρ̂2
i λ̂

2
j

(
λ̂ij − ρ̂iλ̂j

)2
+ op

(
N−1

)
.

Then, we get

Tprop = −
k∑

i=1

ni

p∑

j=1

log
(
λ̂ij

)
− log

(
ρ̂iλ̂j

)

= −
k∑

i=1

ni

p∑

j=1

1
ρ̂iλ̂j

(
λ̂ij − ρ̂iλ̂j

)
+

k∑

i=1

ni

p∑

j=1

1
2ρ̂2

i λ̂
2
j

(
λ̂ij − ρ̂iλ̂j

)2
+ op (1)

= −
k∑

i=1

ni

p∑

j=1

(
λ̂ij

ρ̂iλ̂j

− 1

)
+

k∑

i=1

ni

p∑

j=1

1
2ρ̂2

i λ̂
2
j

(
λ̂ij − ρ̂iλ̂j

)2
+ op (1)

= pN −
k∑

i=1

ni

ρ̂i

p∑

j=1

λ̂ij

λ̂j

+
k∑

i=1

ni

p∑

j=1

1
2ρ̂2

i λ̂
2
j

(
λ̂ij − ρ̂iλ̂j

)2
+ op (1)

= pN −
k∑

i=1

ni

ρ̂i
pρ̂i +

k∑

i=1

ni

p∑

j=1

1
2ρ̂2

i λ̂
2
j

(
λ̂ij − ρ̂iλ̂j

)2
+ op (1)

=
1
2

k∑

i=1

τi

p∑

j=1

1
ρ̂2

i λ̂
2
j

N
(
λ̂ij − ρ̂iλ̂j

)2
+ op (1)

=
1
2

k∑

i=1

τi

p∑

j=1

1
ρ2

i λ
2
j

N
(
λ̂ij − ρ̂iλ̂j

)2
+ op (1) .

Using that

ρ̂i =
1
p

p∑

j=1

λ̂ij

λ̂j

=
1
p

p∑

j=1

Ûi,jj√
Nλ̂j

+
ρi

p

p∑

j=1

λj

λ̂j
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λ̂j =
k∑

i=1

τiλ̂ij

ρ̂i
=

k∑

i=1

τiÛi,jj√
Nρ̂i

+ λj

k∑

i=1

τiρi

ρ̂i
,

we get
√

N
(
ρ̂iλ̂j − λ̂ij

)
=

k∑

`=1

τ`W`j +
1
p

p∑

s=1

Wis −
1
p

p∑

s=1

k∑

`=1

τ`W`s − Wij + op(1) ,

where Wij = Ûi,jj/λij is such that Wi
D−→ N (0,B) independent where B = 2σ1Ip + σ21p1t

p , i.e,

W D−→ N (0, Ik ⊗B). Thus,

Tprop =
1
2

k∑

i=1

τi

p∑

j=1

(
Wij +

V

p
− Mj − Ni

)2

+ op(1)

=
1
2

k∑

i=1

τi

p∑

j=1

W 2
ij +

V 2

p
−

p∑

j=1

M2
j − p

k∑

i=1

τiN
2
i + op(1) ,

where

Mj =
k∑

i=1

τiWij Ni =
1
p

p∑

j=1

Wij V =
p∑

j=1

Mj = p
k∑

i=1

τiNi .

After some algebra, we get that the asymptotic distribution of Tprop is that of L1 = 1
2W

tΥW where
Υ is given by

Υ = ∆ +
1
p
aat −C− 1

p
T

with

T = diag
(
τ11p1t

p , . . . , τk1p1t
p

)
= diag (τ1, . . . , τk) ⊗

(
1p1t

p

)

C =
p∑

j=1

Bj1kp1t
kpBj = ττt ⊗ Ip

Bj = diag
(
τ1etj , . . . , τketj

)

τ = (τ1, . . . , τk)
t

a =
(
τ11t

p , . . . , τk1t
p

)t
= τ ⊗ 1p

∆ = diag
(
τ11t

p , . . . , τk1t
p

)t
= diag (τ1, . . . , τk) ⊗ Ip

It is easy to see that Υ
(
Ik ⊗

(
1p1t

p

))
= 0, thus the asymptotic distribution of Tprop is the distribution

of L2 = W∗tΥW∗ with W∗ ∼ N (0, σ1Ikp). Using that Υ is idempotent with rank (p− 1)(k − 1) we get
the desired result.

The following Lemma will be useful to prove Theorem 4.

Lemma 8.1. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi. Denote by β1, . . . ,βp, λi1, . . . , λip

the common eigenvectors and the eigenvalues of Σi, i.e., assume that Hcpc : Σi = βΛiβ
t , for 1 ≤

i ≤ k holds. Assume that the influence function IF (x,Vi, Fi) and ∂2

∂ε2 Vi(Fi,ε,x)
∣∣∣
ε=0

exist and that
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λ11 > . . . > λ1p. Let βV(F ) and λV,`j denote the plug–in functionals related to the scatter V(F ) =
(V1(F1), . . . ,Vk(Fk)) and let Fε,x,i = F1× . . .×Fi−1×Fi,ε,x×Fi+1× . . .×Fk where Fi,ε,x = (1−ε)Fi +εδx.

Moreover, define λ
(i)
`j,ε = λV,`j (Fε,x,i), then we have that

∂2

∂ε2
λ

(i)
ij,ε

∣∣∣
ε=0

= 4τi

∑

m 6=j

λij − λim

λimλij
Amj

[
βt

j IF (x,Vi, Fi)βm

]2
+

+ 2 τ2
i

∑

m 6=j

(λim − λij)
3

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi)βm

]2
+ βt

j
∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj (21)

∂2

∂ε2
λ

(i)
`j,ε

∣∣∣
ε=0

= 2 τ2
i

∑

m 6=j

(λ`m − λ`j)
(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi) βm

]2
` 6= i (22)

where Amj =

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1

.

Proof. Using (10), we have that λ
(i)
`j,ε = λV,`j (Fε,x,i) = βt

j,εV`βj,ε for ` 6= i and λ
(i)
ij,ε = λV,ij (Fε,x,i) =

βt
j,εVi,εβj,ε with βj,ε = βV,j (Fε,x,i). Thus, straighforward calculations, lead to

∂2

∂ε2
λ

(i)
ij,ε

∣∣∣
ε=0

= 2
∂2

∂ε2
βj,ε

∣∣∣
t

ε=0
Σiβj + 4 PIFi

(
x,βV,j, F

)t
IF (x,Vi, Fi)βj +

+ 2 PIFi

(
x,βV,j, F

)t
ΣiPIFi

(
x,βV,j, F

)
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj

= 2λij
∂2

∂ε2
βj,ε

∣∣∣
t

ε=0
βj + 4 PIFi

(
x,βV,j, F

)t
IF (x,Vi, Fi)βj +

+ 2 PIFi

(
x,βV,j, F

)t
Σi PIFi

(
x,βV,j, F

)
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj

and

∂2

∂ε2
λ

(i)
`j,ε

∣∣∣
ε=0

= 2λ`j
∂2

∂ε2
βj,ε

∣∣∣
t

ε=0
βj + 2 PIFi

(
x,βV,j, F

)t
Σ` PIFi

(
x,βV,j , F

)

Using the orthogonality conditions we get that ∂2

∂ε2
βj,ε

∣∣∣
t

ε=0
βj = −PIFi

(
x,βV,j, F

)t
PIFi

(
x,βV,j , F

)
.

From Theorem 1 in Boente, Pires and Rodrigues (2002), we have that

PIFi(x,βV, j, F ) = τi

∑

m 6=j

λij − λim

λimλij
Amj

{
βt

j IF (x,Vi, Fi) βm

}
βm ,

and so

∂2

∂ε2
λ

(i)
ij,ε

∣∣∣
ε=0

= −2λijτ
2
i

∑

m 6=j

(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi)βm

]2
+

+ 4τi

∑

m 6=j

λij − λim

λimλij
Amj

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 2 τ2
i

∑

m 6=j

λim
(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi)βm

]2
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj
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= 4τi

∑

m 6=j

λij − λim

λimλij
Amj

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 2 τ2
i

∑

m 6=j

(λim − λij)
3

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi) βm

]2
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj

and

∂2

∂ε2
λ`j,ε

∣∣∣
ε=0

= −2λ`jτ
2
i

∑

m 6=j

(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 2 τ2
i

∑

m 6=j

λ`m
(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi)βm

]2

= 2 τ2
i

∑

m 6=j

(λ`m − λ`j)
(λij − λim)2

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi) βm

]2
,

concluding the proof.

Proof of Theorem 4. We need to compute ∂2

∂ε2
TV,cpc(Fε,x, i)

∣∣∣
ε=0

. Note that if ` 6= i, then,
∂
∂ε log (λj (V`(F`))) = 0 for all j.

∂2

∂ε2
TV,cpc(Fε,x, i)

∣∣∣
ε=0

=
∂2

∂ε2

∑

6̀=i

τ`

p∑

j=1

log (λV,`j(Fε,x, i)) − log (λj (V`(F`)))
∣∣∣
ε=0

+

+
∂2

∂ε2
τi

p∑

j=1

log (λV,ij(Fε,x, i)) − log (λj (Vi(Fi,ε,x)))
∣∣∣
ε=0

=
∑

6̀=i

τ`

p∑

j=1

∂2

∂ε2
log (λV,`j(Fε,x, i))

∣∣∣
ε=0

+

+ τi

p∑

j=1

∂2

∂ε2
[log (λV,ij(Fε,x, i)) − log (λj (Vi(Fi,ε,x)))]

∣∣∣
ε=0

=
∑

6̀=i

τ`

p∑

j=1

− [PIFi(x, λV, `j, F )]2

λ2
`j

+
1

λ`j

∂2

∂ε2
λV,`j(Fε,x, i)

∣∣∣
ε=0

+

+ τi

p∑

j=1

− [PIFi(x, λV, ij , F )]2

λ2
ij

+
1

λij

∂2

∂ε2
λV,ij(Fε,x, i)

∣∣∣
ε=0

−
{
− [IF(x, λj (Vi) , Fi)]

2

λ2
ij

+
1

λij

∂2

∂ε2
λj (Vi(Fi,ε,x))

} ∣∣∣
ε=0

Using Theorem 1 in Boente, Pires and Rodrigues (2002) we have that PIFi(x, λV, `j , F ) = δ`i βt
j IF (x,Vi, Fi)βj ,

while Lemma 3 in Croux and Haesbroek (2000) which gives an expression for the influence function of a
robust scatter functional entails that IF(x, λj (Vi) , Fi) = βt

j IF (x,Vi, Fi)βj . Therefore

∂2

∂ε2
TV,cpc(Fε,x, i)

∣∣∣
ε=0

=
∑

6̀=i

τ`

p∑

j=1

1
λ`j

∂2

∂ε2
λV,`j(Fε,x, i)

∣∣∣
ε=0

+

+ τi

p∑

j=1

1
λij

[
∂2

∂ε2
λV,ij(Fε,x, i)

∣∣∣
ε=0

− ∂2

∂ε2
λj (Vi(Fi,ε,x))

∣∣∣
ε=0

]
(23)
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Let βj,i,ε be the eigenvector of Vi,ε = Vi (Fi,ε,x), then βj,i,0 = βj and λj,i,ε = λj (Vi (Fi,ε,x)) =

βt
j,i,εVi,εβj,i,ε which entails that ∂

∂ελj,i,ε = 2
(

∂
∂εβj,i,ε

)t
Vi,εβj,i,ε + βt

j,i,ε

(
∂
∂εVi,ε

)
βj,i,ε, thus

∂2

∂ε2
λj (Vi(Fi,ε,x))

∣∣∣
ε=0

= 2
∂2

∂ε2
βj,i,ε

∣∣∣
t

ε=0
Σiβj + 4 IF

(
x,βj (Vi) , Fi

)t
IF (x,Vi, Fi)βj +

+ 2 IF
(
x,βj (Vi) , Fi

)t
ΣiIF

(
x,βj (Vi) , Fi

)
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj

Using that Σiβj = λijβj, the expression for the influence function of an equivariant scatter matrix given
in Lemma 3 in Croux and Haesbroek (2000)

IF
(
x,βj (Vi) , Fi

)
=
∑

m 6=j

1
λij − λim

[
βt

j IF (x,Vi, Fi) βm

]
βm

and the fact that βt
j,i,εβj,i,ε = 1 which entails that ∂

∂εβ
t
j,i,εβj = 0 and so

∂2

∂ε2
βj,i,ε

∣∣∣
t

ε=0
βj = −IF

(
x,βj (Vi) , Fi

)t
IF
(
x,βj (Vi) , Fi

)
= −

∑

m 6=j

1
(λij − λim)2

[
βt

j IF (x,Vi, Fi)βm

]2

we get

∂2

∂ε2
λj (Vi(Fi,ε,x))

∣∣∣
ε=0

= −2λij

∑

m 6=j

1
(λij − λim)2

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 4
∑

m 6=j

1
λij − λim

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 2
∑

m 6=j

λim

(λij − λim)2
[
βt

j IF (x,Vi, Fi) βm

]2
+ βt

j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj

= βt
j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj +

+ 2
∑

m 6=j

1
(λij − λim)2

[
βt

j IF (x,Vi, Fi) βm

]2
[λim − λij + 2 (λij − λim)]

= βt
j

∂2

∂ε2
Vi(Fi,ε,x)

∣∣∣
ε=0

βj + 2
∑

m 6=j

1
(λij − λim)

[
βt

j IF (x,Vi, Fi) βm

]2
. (24)

Thus, from Lemma 8.1 using (24) and (21), we obtain that

∂2

∂ε2
[λV,ij(Fε,x, i) − λj (Vi(Fi,ε,x))]

∣∣∣
ε=0

= 4τi

∑

m 6=j

λij − λim

λimλij
Amj

[
βt

j IF (x,Vi, Fi) βm

]2
+

+ 2 τ2
i

∑

m 6=j

(λim − λij)
3

λ2
imλ2

ij

A2
mj

[
βt

j IF (x,Vi, Fi) βm

]2

− 2
∑

m 6=j

1
(λij − λim)

[
βt

j IF (x,Vi, Fi) βm

]2

The equality (13) follows now using (23) and the expression (22) given in Lemma 8.1. Straightforward
calculations allow to derive (14) from (13).
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Proof of Theorem 5. We need to compute ∂2

∂ε2WV,prop(Fε,x, i)
∣∣∣
ε=0

. Since,

∂2

∂ε2
WV,prop(Fε,x, i) = 2vec

(
∂

∂ε
D(Fε,x, i)

)t
Σ−1

D (Fε,x, i)vec (D(Fε,x, i))

using that under Hprop, D(F ) = 0 we get (16). On the other hand, using that PIFi (x, λ`j(F ), F ) = 0
if i 6= ` and PIFi (x, λ`j(F ), F ) = βt

j IF(x,Vi, F )βj the proof follows easily.

Proof of Theorem 6. We need to compute ∂2

∂ε2 TV,prop(Fε,x, i)
∣∣∣
ε=0

. Since

TV,prop(Fε,x, i) =
k∑

`=1

τ`

p∑

j=1

log (ρV,`(F )) + log (λV,j(F )) − log (λV,`j(F ))

and PIFi (x, λV,`j , F ) = δ`iβ
t
j IF(x,Vi, F )βj , we have

∂2

∂ε2
TV,prop(Fε,x, i)

∣∣∣
ε=0

=
k∑

`=1

τ`

p∑

j=1

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

1
ρ`

+
∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

1
λj

− ∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

1
λjρ`

+
k∑

`=1

τ`

p∑

j=1

[PIFi (x, λV,`j , F )]2

λ2
`j

− [PIFi (x, ρV,`, F )]2

ρ2
`

− [PIFi (x, λV,j , F )]2

λ2
j

= S1 + S2

S1 = p
k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

+
p∑

j=1

1
λj

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

−
k∑

`=1

τ`

p∑

j=1

1
ρ`λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

S2 = τi

p∑

j=1

[
βt

j IF(x,Vi, F )βj

]2

ρ2
i λ

2
j

− p
k∑

`=2

τ`A
2
i

ρ2
`

[
δ`i(1 − δi1) + ρ2

`δi1(1 − δ`i)
]

−
p∑

j=1

1
λ2

j

[
τi

ρi
βt

j IF(x,Vi, F )βj −
τi

ρi
λjAi + λjA1δi1

]2

Ai = Ai(x) =
1
p

p∑

j=1

βt
j IF(x,Vi, F )βj

λj

where the last equalities follow from Lemma 7.1 in Boente, Crichtley and Orellana (2005), since

PIFi (x, ρV,`, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k

PIFi (x, λV,j , F ) =
τi

ρi
βt

j IF(x,Vi, F )βj −
τi

ρi
λjAi(x) + λjA1(x)δi1 1 ≤ j ≤ p

a) We begin by computing S2.
For i 6= 1

S2 = τi

p∑

j=1

[
βt

j IF(x,Vi, F )βj

]2

ρ2
i λ

2
j

− p
τiA

2
i

ρ2
i

− τ2
i

ρ2
i

p∑

j=1

1
λ2

j

[(
βt

j IF(x,Vi, F )βj

)2

− 2λjAiβ
t
j IF(x,Vi, F )βj + λ2

jA
2
i

]

=
τi(1 − τi)

ρ2
i

ξi − pA2
i

τi

ρ2
i

+ pA2
i

τ2
i

ρ2
i

=
τi(1 − τi)

ρ2
i

(
ξi − pA2

i

)
=

τi(1 − τi)
ρ2

i

(
ξi −

1
p
γ2

i

)
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For i = 1

S2 = τ1

p∑

j=1

[
βt

j IF(x,V1, F )βj

]2

λ2
j

− pA2
1 (1 − τ1)

−
p∑

j=1

1
λ2

j

[
τ2
1

(
βt

j IF(x,V1, F )βj

)2
+ 2τ1(1 − τ1)λjA1β

t
j IF(x,V1, F )βj + (1 − τ1)2λ2

jA
2
1

]

= τ1(1 − τ1)ξ1 − pA2
1(1 − τ1) − pA2

1(1 − τ2
1 )

b) We compute now S1. Using that

ρV,`(F ) =
1
p

p∑

j=1

λV,`j

λV,j(F )
` = 2, . . . , k λV,j(F ) =

k∑

i=1

τi
λV,ij(F )
ρV,i(F )

1 ≤ j ≤ p

we get that

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

=
1
p

p∑

j=1

1
λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− ρ`
1
p

p∑

j=1

1
λj

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

− 2
p

p∑

j=1

1
λ2

j

PIFi (x, λV,j , F ) PIFi (x, λV,`j, F ) +
2
p
ρ`

p∑

j=1

1
λ2

j

PIFi (x, λV,j , F )2

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

=
k∑

`=1

τ`

ρ`

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− 2
k∑

`=2

τ`

ρ2
`

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F )

+ 2λj

k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2 − λj

k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

which implies that

p∑

j=1

1
λj

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

=
k∑

`=1

τ`

ρ`

p∑

j=1

1
λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− 2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F )

+ 2
p∑

j=1

1
λj

λj

k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2 −
p∑

j=1

1
λj

λj

k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

=
k∑

`=1

τ`

ρ`

p∑

j=1

1
λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− 2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F )

+ 2p
k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2 − p
k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

Therefore
p∑

j=1

1
λj

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

+ p
k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

=
k∑

`=1

τ`

ρ`

p∑

j=1

1
λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− 2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F ) + 2p
k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2

22



S1 = p
k∑

`=2

τ`

ρ`

∂2

∂ε2
(ρ`,ε)

∣∣∣
ε=0

+
p∑

j=1

1
λj

∂2

∂ε2
(λj,ε)

∣∣∣
ε=0

−
k∑

`=1

τ`

p∑

j=1

1
ρ`λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

=
k∑

`=1

τ`

ρ`

p∑

j=1

1
λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

− 2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F )

+ 2p
k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2 −
k∑

`=1

τ`

p∑

j=1

1
ρ`λj

∂2

∂ε2
(λ`j,ε)

∣∣∣
ε=0

= 2p
k∑

`=2

τ`

ρ2
`

PIFi (x, ρV,`, F )2 − 2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) PIFi (x, ρV,`, F )

= 2p
k∑

`=2

τ`

ρ2
`

A2
i

[
(1 − δi1) δ`i + ρ2

`δi1 (1 − δ`i)
]

−2
k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

PIFi (x, λV,`j , F ) Ai [(1 − δi1) δ`i − ρ`δi1 (1 − δ`i)]

= 2p
k∑

`=2

τ`

ρ2
`

A2
i

[
(1 − δi1) δ`i + ρ2

`δi1 (1 − δ`i)
]
− 2

k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

δ`iβ
t
j IF(x,Vi, F )βjAi (1 − δi1)

Thus, for i 6= 1

S1 = 2p
k∑

`=2

τ`

ρ2
`

A2
i δ`i − 2

k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

δ`iβ
t
j IF(x,Vi, F )βjAi

= 2p
τi

ρ2
i

A2
i − 2

τi

ρ2
i

p∑

j=1

1
λj

βt
j IF(x,Vi, F )βjAi = 2p

τi

ρ2
i

A2
i − 2

τi

ρ2
i

pA2
i = 0

which entails together with a)

∂2

∂ε2
TV,prop(Fε,x, i)

∣∣∣
ε=0

= S2 =
τi(1 − τi)

ρ2
i

(
ξi −

1
p
γ2

i

)

For i = 1

S1 = 2p
k∑

`=2

τ`

ρ2
`

A2
1

[
ρ2

` (1 − δ`i)
]
− 2

k∑

`=2

τ`

ρ2
`

p∑

j=1

1
λj

δ`iβ
t
j IF(x,V1, F )βjA1 (1 − δi1)

= 2p
k∑

`=2

τ`

ρ2
`

A2
1ρ

2
` = 2p(1 − τ1)A2

1

and so using a)

∂2

∂ε2
TV,prop(Fε,x, 1)

∣∣∣
ε=0

= S1 + S2 = 2p(1 − τ1)A2
1 + τ1(1 − τ1)ξ1 − pA2

1(1 − τ1) − pA2
1(1 − τ2

1 )

= p(1 − τ1)A2
1 + τ1(1 − τ1)ξ1 − pA2

1(1 − τ2
1 )

= pA2
1τ

2
1 − τ1pA2

1 + τ1(1 − τ1)ξ1 = τ1(1 − τ1)

(
ξ1 −

γ2
1

p

)
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Figure 1: PIFi(x, SV,cpc, F ) at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)).
a) Sample Covariance Matrix b) Donoho–Stahel Scatter Matrix
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Figure 2: PIFi(x, RV,prop, F ) at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)).
a) Sample Covariance Matrix b) Donoho–Stahel Scatter Matrix
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Figure 3: PIFi(x, SV,prop, F ) at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)).
a) Sample Covariance Matrix b) Donoho–Stahel Scatter Matrix
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Figure 4: Frequency of rejection (π) of the log–likelihood test for testing model cpc against arbitrary scatter
matrices (thick line) and of the robust plug–in test (dashed lines −·−) under normal data and under contaminations
C1, C2 and C3. The dotted lines correspond to the frequency of rejection of the classical test under C0. The
horizontal line corresponds to the fixed 5% level
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Figure 5: Frequency of rejection (π), for testing proportionality against model cpc, of the classical (thick line)
and of the robust (dashed lines −·−) Wald test, under normal data and under contaminations C1, C3 and C4. The
dotted lines correspond to the frequency of rejection of the classical test under C0. The horizontal line corresponds
to the fixed 5% level
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Figure 6: Frequency of rejection (π), for testing proportionality against model cpc, of the classical log–likelihood
test for proportionality against cpc (thick line) and of the robust plug–in one (dashed lines − · −) under normal
data and under contaminations C1, C3 and C4. The dotted lines correspond to the frequency of rejection of the
classical test under C0. The horizontal line corresponds to the fixed 5% level
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