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1 Introduction

Several authors, as Flury (1988), have studied models for common structure dispersion. As it is well
known, those models have been introduced to overcome the problem of an excessive number of parame-
ters, when dealing with several populations, in multivariate analysis. One such basic common structure
assumes that the k covariance matrices have different eigenvalues but identical eigenvectors, i.e.,

Σi = βΛiβ
t , 1 ≤ i ≤ k , (1)

where Λi are diagonal matrices, β is the orthogonal matrix of the common eigenvectors and Σi is the
covariance matrix of the i−th population. The more restrictive proportionality model assumes that the
scatter matrices are equal up to a proportionality constant, i.e.,

Σi = ρiΣ1 , for 1 ≤ i ≤ k and ρ1 = 1 . (2)

Model (1) was proposed in Flury (1984) and became known as the Common Principal Components
(cpc) model. The maximum likelihood estimators of β and Λi are derived in Flury (1984), assuming
multivariate normality of the original variables. In Flury (1988) a unified study of the maximum likelihood
estimators under a cpc model and under a proportionality model is given.

Let (xij)1≤j≤ni,1≤i≤k be independent observations from k independent samples in IRp with location

parameter µi and scatter matrix Σi. Let N =
k∑

i=1

ni, τi =
ni

N
and Xi = (xi1, . . . ,xini). For the sake of

simplicity and without loss of generality, we will assume that µi = 0p.

It is well known that, in practice, the classical cpc analysis can be affected by the existence of
outliers in a sample. In order to obtain robust estimators, Boente and Orellana (2001) extended the
plug–in approach studied in Croux and Haesbroeck (2000) to several populations by considering robust
affine equivariant estimators of the covariance matrices Σi, 1 ≤ i ≤ k. On the other hand, also in
the one population setting, i.e., k = 1, Croux and Ruiz–Gazen (2005) studied the influence function
of the projection–pursuit approach introduced by Li and Chen (1985). Boente and Orellana (2001)
also generalized to the common principal components model the projection–pursuit estimates i.e., the
estimator of β =

(
β1, . . . ,βp

)
is defined as the solution of

β̂1 = argmax
‖b‖=1

k∑

i=1

τi s2(Xt
i b) β̂j = argmax

b∈Bj

k∑

i=1

τis
2(Xt

i b) 2 ≤ j ≤ p , (3)

where Bj = {b : ‖b‖ = 1,btβ̂m = 0 for 1 ≤ m ≤ j − 1} and s is a univariate scale estimator. The
partial influence functions of the functionals related to both classes of estimators were studied in Boente,
Pires and Rodrigues (2002). A more general approach which consists on applying a score function to the
scale estimator was considered by Boente, Pires and Rodrigues (2005). This proposal considers a general
increasing score function f : IR+ → IR and estimates the common directions as

β̂1 = argmax
‖b‖=1

k∑

i=1

τi f
{
s2(Xt

i b)
}

β̂j = argmax
b∈Bj

k∑

i=1

τif
{
s2(Xt

i b)
}

2 ≤ j ≤ p . (4)

The estimators of the eigenvalues of the i-th population are then computed as λ̂ij = s2(Xt
i β̂j) for

1 ≤ j ≤ p.
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In this paper, we consider a reweighted estimator of the scatter matrices of each population, where
the weights do not depend on the Mahalanobis distance as usually (see, for instance, Lopuhaä, 1999),
but on the outlier detection measures defined in Boente, Pires and Rodrigues (2002). The paper is
organized as follows. In Section 2, we motivate and introduce our proposal while in Sections 3 and 4 the
partial influence functions and the asymptotic variances are derived, respectively. In Section 5, through
a simulation study, the proposed estimators are compared with those defined through (4) for normal and
contaminated samples. All proofs are given in the Appendix.

2 The estimators

Let O(p) be the group of orthogonal matrices of order p. Let Si be the sample covariance matrix of the
i−th population. Flury (1988) defined maximum likelihood estimates (ML) for normal data as the values
solving the system

Λ̂i = diag
(

β̂
t
Siβ̂

)

β̂
t
m

[
k∑

i=1

ni
λ̂im − λ̂ij

λ̂imλ̂ij

Si

]
β̂j = 0 for m 6= j (5)

β̂
t
mβ̂j = δmj .

In order to obtain robust alternatives, Boente and Orellana (2001) replaced the sample covariance
matrices by robust scatter matrices asymptotically normally distributed and spherically equivariant.
Under these conditions, they derived the asymptotic behavior of the robust plug–in estimates for the
common principal axis and for their size. As with maximum likelihood estimation, a solution for (5)
where the sample matrix is replaced by a robust one, always exists, since O(p) is compact. Uniqueness
conditions are similar to those given in Flury (1988) for the maximum likelihood estimators.

For one population, several authors, such as Critchley (1985), Jaupi and Saporta (1993), Shi (1997),
Croux and Haesbroeck (1999), Pison et al. (2000) and Croux and Ruiz–Gazen (2005), have suggested
statistical diagnostics and graphical displays for detecting outliers in multivariate analysis, such as side–
by–side boxplots of the scores obtained from a robust principal component analysis and index plots
based on empirical influence functions. Under a common principal components model, partial influence
functions can also be used to detect influential observations in a sample. We will remind the definition of
the outlier detection measures introduced by Boente, Pires and Rodrigues (2002). Given an observation
x from the ith population, let

IML2
i (x,β,λ) =

p∑

r=1

PIFi(x, λS,ir, F )2

vir(β,λ)
(6)

IMB2
i (x,β,λ) =

p∑

r=1

{
PIFi(βtx,β

(r)
S,r, F0)

}t
A−1

ir (β,λ)
{
PIFi(βtx,β

(r)
S,r, F0)

}
, (7)

where PIFi(x, λS,ir, F ) denotes the partial influence functions, λS,i` and βS,r indicate the functionals re-
lated to the classical functional estimators S of the scatter matrix, β and λ = (λ11, . . . , λ1p, . . . , λk1, . . . , λkp)

t

are the unknown parameters, z(r) the vector z without the rth component and

Air(β,λ) = EFi

{
PIFi(u,β

(r)
S,r, F0)PIFi(u,β

(r)
S,r, F0)t

}
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vir(β,λ) = EFi {PIFi(u, λS,ir, F )}2 .

From now on, the index S or V indicates the scatter estimates, classical or robust one, used to compute
the plug–in estimates of the common directions and their size. The rth coordinate is not included in
the expression for IMBi(x,β,λ), since both its partial influence function and its variance are equal to
zero when transforming the data to the diagonal case. When Fi,0 = N(0p,Λi), expressions (6) and (7)
simplify to

IML2(x,β,Λi) = IML2
i (x,β,λ) =

p∑

r=1

{(
βt

r x
)2

− λir

}2

2λ2
ir

(8)

IMB2(x,β,Λi) = IMB2
i (x,β,λ) =

p∑

r=1

∑

s6=r

{(
βt

r x
) (

βt
s x
)}2

λirλis
. (9)

The outlier detection measures were defined as IML(x, β̂, Λ̂i) = IMLi(x, β̂, λ̂) and IMB(x, β̂, Λ̂i) =
IMBi(x, β̂, λ̂), where the ‘hat’ denotes replacement of the unknown parameters by their robust estimators
β̂ and Λ̂i = diag(λ̂i1, . . . , λ̂ip). This proposal is analogous to the one considered by Pison et al. (2000)
for principal factor analysis in order to avoid the masking effect. As those authors mentioned, if one
computes IMLi(x,β,λ) and IMBi(x,β,λ) using the partial influence function of a robust functional
and then the diagnostics measures IMLi(x, β̂, λ̂) and IMBi(x, β̂, λ̂) at robust estimators, one will not
achieve the desired property of detecting influential points.

An estimate of Σi can be defined as

Σ̂i = κi

ni∑

j=1

w
(
IML2(xij , β̂, Λ̂i), IMB2(xij , β̂, Λ̂i)

)
xij xt

ij

ni∑

j=1

w
(
IML2(xij , β̂, Λ̂i), IMB2(xij , β̂, Λ̂i)

) (10)

since we have assumed µi = 0p. κi is a normalizing constant in order to attain asymptotically unbiased
estimators of the scatter matrices Σi at the normal distribution and w is a weight function which bounds
the effect of outlying observations. Now, the estimators of the principal axes and of the eigenvalues
can be defined by plugging–in these estimators into the system of equations (5), defining the maximum
likelihood estimators for normal data.

Our proposal, considers a three–step procedure

• Step 1: Obtain initial estimates of the common directions and their size either by considering
a plug–in approach or by using generalized projection–pursuit estimates. Denote β̂I and λ̂I the
resulting estimates.

• Step 2: Define Σ̂i through (10) using β̂I and λ̂I.

• Step 3: Replace Σ̂i in (5) and solve. Denote β̂ and λ̂ the final estimates.

It should be noticed that the reweighted matrices Σ̂i are rotationally equivariant, but need not to be
affine equivariant. However, this allow us to construct equivariant estimates for the common directions.
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3 Influence Functions for the Reweighted Estimators

As mentioned in Section 2, the estimators are obtained by plugging the reweighted robust scatter matrices
into the equations defining the maximum likelihood estimators for normal data. They are defined as the
solution of (5) where Si is replaced by Σ̂i. In order to define the functional related to the estimation
procedures, let

W1(x,β,Λ) = w
(
IML2(x,β,Λ), IMB2(x,β,Λ)

)
(11)

Ψ1(x,β,Λ) = w
(
IML2(x,β,Λ), IMB2(x,β,Λ)

)
xxt (12)

where IML(x,β,Λ) and IMB(x,β,Λ) are defined in (8) and (9), respectively. For a given distribution
F = F1 × . . . × Fk, let Vi = Vi(F ) be the robust scatter functional related to Σ̂i evaluated at the
distribution F , i.e.,

Vi(F ) = κi
EFiΨ1 (xi,βI(F ),ΛI, i(F ))
EFiW1 (xi,βI(F ),ΛI, i(F ))

, (13)

where βI(F ) and ΛI, i(F ) are the functionals related to the initial estimates.

We will thus define the functionals βV(F ), ΛV,i(F ), 1 ≤ i ≤ k, related to V = (V1, . . . ,Vk), which
are in fact functions of the initial functionals βI and ΛI, i , as the solution of

diag
{
βV(F )tVi(F )βV(F )

}
= ΛV,i(F ) (14)

βV,m(F )t
{

k∑

i=1

τi
λV,im(F ) − λV,ij(F )
λV,im(F )λV,ij(F )

Vi(F )

}
βV,j(F ) = 0 for m 6= j (15)

βV,m(F )tβV,j(F ) = δmj . (16)

When βI and ΛI provide Fisher–consistent estimators, Vi will provide Fisher–consistent estimators, thus,
the solution (ΛV, i(F ),βV(F )) will be Fisher–consistent for (Λi,β). The following Theorem gives the
values of the partial influence functions for the plug–in functionals defined through (14) to (16).

Theorem 3.1. Let Vi(F ) be the reweighted scatter functional such that Vi(F ) = Σi. Denote by
β1, . . . ,βp, λi1, . . . , λip the common eigenvectors and the eigenvalues of Σi. Assume that the partial
influence functions PIFi (x,V`, F ) exist and that λ11 > . . . > λ1p. Then the partial influence functions
of the solution βV(F ), ΛV,i(F ), 1 ≤ i ≤ k, of (14) to (16) are given by

PIFi(x, λV, `j, F ) = βt
j PIFi (x,V`, F ) βj (17)

PIFi(x,βV, j, F ) =
∑

m 6=j

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1{ k∑

`=1

τ`
λ`j − λ`m

λ`mλ`j
βt

j PIFi (x,V`, F ) βm

}
βm . (18)

Remark 3.1. It is worth noticing that in this case, without any assumptions on the underlying distribu-
tion, the partial influence function PIFi(x, λV, `j, F ) is not equal to 0 for ` 6= i as it is for the plug–in and
for the projection pursuit estimates studied in Boente, Pires and Rodrigues (2002, 2005). However, as it
will be shown latter, when all the populations have the same elliptical distribution except for changes in
the scatter, PIFi(x, λV, `j , F ) = 0 for ` 6= i. This happens for instance, if we are interested in computing
the partial influence functions for normal distributions.

5



On the other hand, the PIFi(x,βV, j, F ) depends on the partial influence functions of all the scatter
matrices, since now the scatter matrices of the different populations are not independent.

The following Theorem gives the partial influence functions of the reweighted scatter functional for
differentiable weight functions.

Theorem 3.2. Let Vi(F ) be the reweighted scatter functional defined in (13), such that Vi(F ) = Σi.
Denote by β1, . . . ,βp, λ`1, . . . , λ`p the common eigenvectors and the eigenvalues of Σ`. Let βI(F ) and
ΛI, i(F ) be Fisher–consistent functionals related to the initial estimates of the common eigenvectors and of
the eigenvalues of the i−th population. Assume that the function w : IR2 → IR is differentiable and that
the partial influence functions PIFi (x,βI, F ) and PIFi (x,ΛI, `, F ) exists and that PIFi (x,ΛI, `, F ) = 0

for ` 6= i. Denote w1(u, v) =
∂w(u, v)

∂u
and w2(u, v) =

∂w(u, v)
∂v

and assume that we can differentiate

under the integral with respect to ε the functions

EF`
Ψ1 (x,βI(Fε,xo,i),ΛI, i(Fε,xo,i))

EF`
W1 (x,βI(Fε,xo,i),ΛI, i(Fε,xo,i)) ,

where Fε,x,i = F1 × . . . × Fi−1 × Fi,ε,x × Fi+1 × . . . × Fk and Fi,ε,x = (1 − ε)Fi + εδx, where δx denotes

the point mass at x. Let ϕ
(`)
j (x) = wj

(
IML2(x,β,Λ`), IMB2(x,β,Λ`)

)
for j = 1, 2. Then, the partial

influence functions of V`(F ) are given by

PIFi(y,V`, F ) = D−1
` (F ) κ` Υi, `(y, F ) − D−1

` (F )∆i, `(y, F )V`(F ) .

where

D`(F ) = EF`
W1 (x,β,Λ`)

∆i, i(y, F ) = −Di(F ) + W1(y,β,Λi) +

+
p∑

r=1

1
λ3

ir

EFi

{
ϕ

(i)
1 (x)

[(
βt

r x
)2

− λir

] [
2λir βt

r xxtPIFi

(
y,βI, r, F

)
−

−
(
βt

r x
)2

PIFi (y, λI, ir, F )
]}

+

+2
p∑

r=1

∑

s6=r

EFi



ϕ

(i)
2 (x)

(
βt

r x
) (

βt
s x
)

λirλis

[
PIFi

(
y,βI, r, F

)t
xxtβs + PIFi

(
y,βI, s, F

)t
xxtβr−

−1
2

(
βt

r x
) (

βt
s x
)

λirλis
(PIFi (y, λI, ir, F ) λis + PIFi (y, λI, is, F ) λir)







∆i, `(y, F ) = 2
p∑

r=1

βt
r EF`





ϕ
(`)
1 (x)

{(
βt

r x
)2

− λ`r

}

λ2
`r

xxt





PIFi

(
y,βI, r, F

)
+

+2
p∑

r=1

∑

s6=r

EF`



ϕ

(`)
2 (x)

(
βt

r x
) (

βt
s x
)

λ`rλ`s

[
PIFi

(
y,βI, r, F

)t
xxtβs + PIFi

(
y,βI, s, F

)t
xxtβr

]


for ` 6= i

Υi, i(y, F ) = Ψ1(y,β,Λi) −Ni(F ) +
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+
p∑

r=1

1
λ3

ir

EFi

{
ϕ

(i)
1 (x)

[(
βt

r x
)2

− λir

] [
2λir βt

r xxtPIFi

(
y,βI, r, F

)
−

−
(
βt

r x
)2

PIFi (y, λI, ir, F )
]
xxt

}
+

+2
p∑

r=1

∑

s6=r

EFi



ϕ

(i)
2 (x)

(
βt

r x
) (

βt
s x
)

λirλis

[
PIFi

(
y,βI, r, F

)t
xxtβs + PIFi

(
y,βI, s, F

)t
xxtβr−

−1
2

(
βt

r x
) (

βt
s x
)

λirλis
[PIFi (y, λI, ir, F ) λis + PIFi (y, λI, is, F ) λir]


xxt





Υi, `(y, F ) = 2
p∑

r=1

1
λ2

`r

EF`

{
ϕ

(`)
1 (x)

[(
βt

r x
)2

− λ`r

]
βt

r xxtPIFi

(
y,βI, r, F

)
xxt

}
+

+2
p∑

r=1

∑

s6=r

EF`

{
ϕ

(`)
2 (x)

(
βt

r x
) (

βt
s x
)

λ`rλ`s

[
PIFi

(
y,βI, r, F

)t
xxtβs + PIFi

(
y,βI, s, F

)t
xxtβr

]
xxt

}

for ` 6= i ,

with N`(F ) = EF`
Ψ1 (x,β,Λ`).

The expression for the partial influence function of the scatter matrices involves, as expected, the
partial influence functions of the eigenvalues and eigenvectors functionals computed in the first step, so
that the usual influence function of a scatter matrix with nonrandom weights, given by Ψ1(y,β,Λi) −
Ni(F ) is corrected due to the initial estimation procedure.

From Theorems 3.1 and 3.2, using that ∆i, `(y, F ) = 0 and βt
j Υi, `(y, F )βj = 0, if Fi is an ellipsoidal

distribution, for 1 ≤ i ≤ k, we get easily the following Corollary.

Corollary 3.1. Under the conditions of Theorem 3.2, denote by β1, . . . ,βp, λi1, . . . , λip the common
eigenvectors and the eigenvalues of Σi. Assume that Fi are ellipsoidal distributions, for 1 ≤ i ≤ k. Then,
the partial influence functions of the solution βV(F ), ΛV,i(F ), 1 ≤ i ≤ k, of (14) to (16) are given by

PIFi(x, λV, `j , F ) = δ`i D−1
i (F )

{
κi βt

j Υi, i(x, F )βj − ∆i, i(x, F )λij

}

PIFi(x,βV, j , F ) =
∑

m 6=j

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1{ k∑

`=1

τ`
λ`j − λ`m

λ`mλ`j
κ` D−1

` (F )βt
j Υi, `(x, F )βm

}
βm .

Note that, as mentioned above, under elliptical distributions, PIFi(x, λV, `j , F ) = 0 for ` 6= i. More-
over, straightforward calculations (given in the Appendix) allow to show that, if all the populations have
ellipsoidal distributions, PIFi(x,βV, j , F ) depends only on the partial influence functions of the initial
eigenvectors while PIFi(x, λV, ij , F ) depends only on those of the initial eigenvalues.

Corollary 3.2. Under the conditions of Theorem 3.2, denote by β1, . . . ,βp, λi1, . . . , λip the common
eigenvectors and the eigenvalues of Σi. Moreover, assume that Σi = diag (λi1, . . . , λip), i.e., β = Ip and

that Λ
− 1

2
i xi1 = zi have the same spherical distribution G for all 1 ≤ i ≤ k. Denote by κ the constant
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that satisfies

Ip = κ
EGW1 (z, I, I) zzt

EGW1 (z, I, I)
.

Then, PIFi(x, λV, `j , F ) = 0 for ` 6= i and

PIFi(x, λV, ij, F ) =
κ Ψ1(x,β,Λi)jj − λij W1(x,β,Λi) − α1(G)PIFi (x, λI, ij , F ) − α2(G)λijAj(x, F )

D(G)

=
W1(x,β,Λi)

(
κ x2

j − λij

)
− α1(G)PIFi (x, λI, ij , F ) − α2(G)λijAj(x, F )

D(G)
(19)

and

PIFi(x,βV, j, F ) =
κ

D(G)





∑

m 6=j

τi
λij − λim

λimλij
Ψ1(x,β,Λi)jm

k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

βm − α3(G)
∑

m 6=j

PIFi

(
x,βI, j, F

)
m

βm





, (20)

where Aj(x, F ) =
∑

r 6=j

1
λir

PIFi (x, λI, ir, F ) and α1(G) = κ d11(ϕ1) − c11(ϕ1) + 2(p − 1)f12(ϕ2), α2(G) =

κ d12(ϕ1) − c11(ϕ1) + 2f12(ϕ2) + 2(p − 2)f123(ϕ2), α3(G) = 4 [b12(ϕ2) + (p − 2)b123(ϕ2)] + 2d12(ϕ1), with

D(G) = EGW1 (z, I, I) a12(ϕ) = EG

{
ϕ (z) z2

1 z2
2

}

b12(ϕ) = EG

{
ϕ (z) z4

1 z2
2

}
b123(ϕ) = EG

{
ϕ (z) z2

1 z2
2 z2

3

}
δp>2

c11(ϕ) = EG

{
ϕ (z)

(
z2
1 − 1

)
z2
1

}

d11(ϕ) = EG

{
ϕ (z)

(
z2
1 − 1

)
z4
1

}
d12(ϕ) = EG

{
ϕ (z)

(
z2
1 − 1

)
z2
1 z2

2

}

f12(ϕ) = κ b12(ϕ) − a12(ϕ) f123(ϕ) = κ b123(ϕ) − a12(ϕ)

and ϕj(z) = wj
(
IML2(z, I, I), IMB2(z, I, I)

)
.

Remark 3.2. Corollary 3.2 gives the partial influence functions assuming differentiability of the weight
function. Similar expressions can be obtained when the function w is not differentiable by requiring
differentiability to the density of the common distribution G. However, since the weight function is
choosen by the practioner, it seems more natural to require smoothness on it than on the underlying
distribution.

Remark 3.3. Expressions (19) and (20) show that the partial influence functions of the reweighted
functionals are those of the reweighted functional computed with the true parameters corrected by the
partial influence functions of the initial functionals. Figures 1 and 2 show the plots of the partial influence
functions when F = F1 ×F2 with F1 = N (0,diag(2, 1)) and F2 = N (0, 4diag(2, 1)). We have considered
as initial estimates, the plug–in estimators computed with an S–estimator using as ρ function the biweight
Tukey’s function calibrated to attain 25% breakdown point and the projection–pursuit estimate computed
with an M–estimator of scale using Huber’s function calibrated to attain 50% breakdown. The weight
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function was taken as w
(
IML2(xij , β̂, Λ̂i), IMB2(xij , β̂, Λ̂i)

)
= wIML (xij) × wIMB (xij), with

wIML (xij) =





1 IML(xij , β̂, Λ̂i) < aL

exp


−

(
IML(xij , β̂, Λ̂i) − aL

)2

2c2
L


 IML(xij , β̂, Λ̂i) ≥ aL

(21)

wIMB (xij) =





1 IMB(xij , β̂, Λ̂i) < aB

exp


−

(
IMB(xij, β̂, Λ̂i) − aB

)2

2c2
B


 IMB(xij , β̂, Λ̂i) ≥ aB

with aL = G−1
λ (0.95), cL =

bL − aL

p + 1
and bL = G−1

λ (0.975) while aB = G−1
β (0.95), cB =

bB − aB

p + 1
and

bB = G−1

β
(0.975). The functions Gλ and Gβ are the distribution functions of the random variables γλ

and γβ, defined in Boente, Pires and Rodrigues (2002) in order to detect influential observations, i.e.,

γλ =

{ p∑

r=1

(
z2
r − 1

)2

2

} 1
2

γβ =




p∑

r=1

∑

s6=r

z2
rz2

s




1
2

=





( p∑

r=1

z2
r

)2

−
p∑

r=1

z4
r





1
2

,

where z1, . . . , zp are independent and identically distributed N(0, 1) random variables. The weight func-
tion is plotted in Figure 3.

It is worth noticing that the plots corresponding to the reweighted projection–pursuit estimates of
the largest eigenvalue look like the corresponding ones in a proportional model (see, Boente, Critchley
and Orellana, 2004).

An adaptive outlier detection procedure can be designed with the detection measures IML and IMB,
as it was done for the Mahalanobis distance by Filzmoser (2004) and Filzmoser, Reimann and Garrett
(2005), in order to take into account the sample size. This procedure can be combined with reweighting
to provide adaptive reweighted type estimators for the common axes.

4 Asymptotic variances for ellipsoidal distributions

In this section, for the sake of simplicity, we will assume that Λ
− 1

2
i xi1 = zi have the same spherical

distribution G for all 1 ≤ i ≤ k.

We will derive the asymptotic variances of the estimates defined through (5) when the matrices Σ̂i

are defined in (10) using as initial estimates the plug–in or the projection pursuit estimates defined
in Boente and Orellana (2001) and in Boente, Pires and Rodrigues (2005), respectively. One of the
main disadvantage of projection–pursuit estimators is their low efficiency. In fact, they provide more
resistant estimators than plug–in methods at the cost of some loss of efficiency. Our procedure overcomes
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this problem, since it improves the efficiency of the initial estimates when dealing with projection–
pursuit techniques preserving the robustness of the initial estimates. In other settings, such as regression
models, it is well known that reweighted estimates have the same breakdown point as the initial estimates
considered. The influence functions given in Corollary 3.2 suggest that the same result holds in this
setting. In this Section, the asymptotic variances derived allow to show that the low efficiency of the
initial projection–pursuit estimates can be improved by appropiately choosing the tuning constant of the
weight function.

4.1 Initial Plug–in Estimators

When considering as initial estimates the plug–in estimates defined through an initial scatter matrix Vi,o,
Boente, Pires and Rodrigues (2002) have shown that if the influence function IF (x,Vi,o, Fi) exists and
λ11 > . . . > λ1p, then the partial influence functions of the initial plug–in estimators βI(F ), ΛI,i(F ),
1 ≤ i ≤ k,

PIFi(x, λI, `j, F ) = δ`i βt
j IF (x,Vi,o, Fi)βj (22)

PIFi(x,βI, j, F ) = τi

∑

m 6=j

λij − λim

λimλij

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1{
βt

j IF (x,Vi,o, Fi)βm

}
βm . (23)

Moreover, if Vi,o is an affine equivariant scatter matrix functional, there exists two functions α(i) and
γ(i) : [0,∞) → IR such that IF (x,Vi,o, Fi) = α(i) (di(x))xxt − γ(i) (di(x)) Σi, where d2

i (x) = xtΣ−1
i x.

From now on, we will assume that the initial plug–in estimates are evaluated using affine equivariant
scatter estimates.

It is well known that if the initial estimates of Σi are asymptotically normally distributed and spher-
ically equivariant, i.e.,

A1.
√

ni (Vi,o −Σi)
D−→ Zi where vec (Zi) has a multivariate normal distribution with zero mean and

covariance matrix Ci and D−→ stands for weak convergence.

A2. For any G such that GGt = Σ−1
i , the distribution of GZiGt is invariant under orthogonal

transformations.

then, vec (Zi) ∼ N(0p,Ci) where

Ci = σi, 1 (I + Kpp) (Σi ⊗Σi) + σi, 2 vec (Σi) vec (Σi)
t , (24)

with Kpp the p2 × p2 block matrix with the (l,m)−block equal to a p× p matrix with a 1 at entry (l,m)
and 0 everywhere else. Under mild regularity conditions, E

(
IF (x,Vi,o, Fi) IF (x,Vi,o, Fi)

t
)

= Ci. This
entails that

asvar
(
λ̂I, ij

)
= (2σi, 1 + σi, 2)λ2

ij , 1 ≤ j ≤ p

ascov
(
λ̂I, ij , λ̂I, im

)
= σi, 2λijλim for m 6= j

asvar
(
β̂I, jm

)
=

[
k∑

i=1

τiσi, 1
(λij − λim)2

λijλim

] [
k∑

i=1

τi
(λij − λim)2

λijλim

]−2

for m 6= j .
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Standard calculations lead to the asymptotic variances of the reweighted based estimates with initial
plug–in estimates which are stated in the following Theorem.

Theorem 4.1. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples

with scatter matrix Σi = Λi = diag(λi1, . . . , λip) such that Λ
− 1

2
i xi1 = zi have the same spherical distri-

bution G for all 1 ≤ i ≤ k. Assume that λ11 > . . . > λ1p, ni = τiN with 0 < τi < 1 fixed numbers such
that

∑k
i=1 τi = 1. Let Vi,o be robust affine equivariant estimates of the scatter matrices Σi, satisfying

A1 and A2, where Ci can be written as in (24). Denote by β̂I and λ̂I the plug–in estimates obtained
from Vi,o and by β̂ and λ̂ the final estimates computed from the reweighted matrix defined in (10) using

β̂I and λ̂I. Then, we have that

asvar
(
λ̂ij

)
=

λ2
ij

τi D2(G)

{
EG

(
η2
1(z)

(
κ z2

1 − 1
)2
)

+ α2
1(G) (2σi, 1 + σi, 2) + 2(p − 1)α1(G)α2(G)σi, 2+

+(p − 1)α2
2(G) (2σi, 1 + (p − 1)σi, 2) − 2α1(G)ci,11 − 2(p − 1)α2(G)ci,12

}

asvar
(
β̂jm

)
=

κ2

D2(G)
πjm

{
a12

(
η2
1

)
+ πjm

[
k∑

i=1

τi
(λim − λij)

2

λijλim

(
α2

3(G)σi, 1 − 2α3(G)di,12

)]}

ascov
(
β̂jm, β̂js

)
= 0 for m 6= s

where κ and a12(ϕ) are defined in Corollary 3.2, η1(z) = W1(z, I, I) and

πjm =

[
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`jλ`m

]−1

ci,11 = E
(
η1(z)

(
κ z2

1 − 1
)

IF(z,Vi,o, G)11
)

= E
(
η1(z)

(
κ z2

1 − 1
) [

α(i) (‖z‖) z2
1 − γ(i) (‖z‖)

])

ci,12 = E
(
η1(z)

(
κ z2

1 − 1
)

IF(z,Vi,o, G)22
)

= E
(
η1(z)

(
κ z2

1 − 1
) [

α(i) (‖z‖) z2
2 − γ(i) (‖z‖)

])

di,12 = E (η1(z)z1 z2IF(z,Vi,o, G)12) = E
(
η1(z)α(i) (‖z‖) z2

1 z2
2

)
.

Note that if the same family of scatter matrices is considered for all populations, then asvar
(
β̂jm

)
=

πjm κ2 D−2(G)
{
a12

(
η2
1

)
+ α2

3(G)σ1, 1 − 2α3(G)d1,12
}

which entails that the efficiency of β̂jm is given by
κ2 D−2(G)

{
a12

(
η2
1

)
+ α2

3(G)σ1, 1 − 2α3(G)d1,12
}
.

4.2 Initial Projection–Pursuit Estimators

We will now consider as initial estimates the projection–pursuit estimates defined in (3) through an

univariate scale estimator s. Let G0 be the distribution of z11, where it will be assumed that Σ
− 1

2
i xi1 = zi

have the same spherical distribution G for all 1 ≤ i ≤ k. Boente, Pires and Rodrigues (2002) have shown
that if the function (ε, y) → σ {(1 − ε)G0 + εδy} is twice continuously differentiable at (0, y), the partial
influence functions of the eigenvalues and eigenvectors are given by

PIFi(x, λI, `j, F ) = 2 δ`i λij IF

(
xtβj

λij
1
2

, σ,G0

)
(25)
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PIFi(x,βI,j, F ) = τiλij
1
2 DIF

(
xtβj

λij
1
2

, σ,G0

) p∑

s=j+1

1
νj − νs

βs

(
xtβs

)
+

+ τi

j−1∑

s=1

1
νj − νs

βsλis
1
2 DIF

(
xtβs

λis
1
2

, σ,G0

)(
xtβj

)
, (26)

where DIF(y, σ,G) denotes the derivative of the influence function of the scale functional σ, IF(y, σ,G),
with respect to y. The same authors have also shown that the corresponding asymptotic variances are
given by

asvar
(
λ̂I, ij

)
=

1
τi

λ2
ij σ11

ascov
(
λ̂I,ij, λ̂I,im

)
=

1
τi

λijλim σ12

asvar
(
β̂I,jm

)
=

k∑

i=1

τiλijλim

(νj − νm)2
υ12 , for m 6= j ,

with σ11 = 4asvar (σ,G0), σ12 = 4 covG (IF(z1, σ,G0), IF(z2, σ,G0)), υ12 = EG

{
[DIF (z1, σ,G0) z2]

2
}

and

νj =
k∑

i=1

τiλij.

On the other hand, if, in addition, f is twice continuously differentiable and we consider the general
projection–pursuit estimates defined through (4), we have that

PIFi(x, λI, `j, F ) = 2 δ`i λij IF

(
xtβj√

λij
, σ,G0

)
(27)

PIFi(x,βI,j, F ) = τi βt
j x

j−1∑

s=1

1
νsj − νss

√
λisf

′ (λis) DIF

(
βt

s x√
λis

, σ,G0

)
βs +

+ τi

√
λijf

′ (λij)DIF

(
βt

j x
√

λij
, σ,G0

) p∑

s=j+1

1
νjj − νjs

βt
s x βs (28)

where νjs =
k∑

i=1

τif
′ (λij) λis and νjs 6= νjj for s 6= j (see, Boente, Pires and Rodrigues, 2005). Thus,

the partial influence function of the eigenvalues is independent of the score function f . Moreover, the
asymptotic variances of the eigenvectors are given by

ASVAR
(
β̂jm

)
=

k∑

i=1

τiλijλim

{
δm>j {f ′ (λij)}2

(νjj − νjm)2
+

δm<j {f ′ (λim)}2

(νmj − νmm)2

}
υ12.

Straightforward calculations lead to the asymptotic variances of the proposed estimates with initial
projection–pursuit estimates given in the following Theorem. This result can be applied only when the
initial projection–pursuit functionals are Fisher–consistent. Conditions under which this assumption
holds are given in Boente, Pires and Rodrigues (2005).
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Theorem 4.2. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples

with scatter matrix Σi = Λi = diag(λi1, . . . , λip) such that Λ
− 1

2
i xi1 = zi have the same spherical dis-

tribution G for all 1 ≤ i ≤ k. Assume that λ11 > . . . > λ1p, ni = τiN with 0 < τi < 1 fixed numbers
such that

∑k
i=1 τi = 1. Let s(·) be a univariate robust scale statistic related to the functional σ(F )

and assume that σ(G0) = 1, where G0 is the distribution of z11. Moreover, assume that the function
(ε, y) → σ {(1 − ε)G0 + εδy} is twice continuously differentiable at (0, y).
Let κ, α1(G), α2(G), α3(G) and a12(ϕ) be defined in Corollary 3.2, η1(z) = W1(z, I, I) and

πjm =

[
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`jλ`m

]−1

cσ,11 = E
(
η1(z)

(
κ z2

1 − 1
)

IF(z1, σ,G0)
)

cσ,12 = E
(
η1(z)

(
κ z2

1 − 1
)

IF(z2, σ,G0)
)

dσ,12 = E
(
η1(z)z2

1 z2DIF(z2, σ,G0)
)

.

a) Denote by β̂I and λ̂I the projection–pursuit estimates obtained through (3) or (4) and by β̂ and λ̂
the final estimates computed from the reweighted matrix defined in (10) using β̂I and λ̂I. Then, we
have that

asvar
(
λ̂ij

)
=

λ2
ij

τi D2(G)

{
EG

(
η2
1(z)

(
κ z2

1 − 1
)2
)

+ α2
1(G)σ11 + 2(p − 1)α1(G)α2(G)σ12+

+(p − 1)α2
2(G) (σ11 + (p − 1)σ12) − 4α1(G)cσ,11 − 4(p − 1)α2(G)cσ,12

}

b) When β̂I and λ̂I are the projection–pursuit estimates obtained from s through (3) and β̂ and λ̂
are the final estimates computed from the reweighted matrix defined in (10) using β̂I and λ̂I, if

ν1 > ν2 > . . . > νp, with νj =
k∑

i=1

τiλij , we have that

asvar
(
β̂jm

)
=

κ2 πjm

D2(G)

{
a12

(
η2
1

)
− 2α3(G)dσ,12 + α2

3(G) υ12π
−1
jm

[
k∑

i=1

τi
λijλim

(νj − νm)2

]}

c) When β̂I and λ̂I are the projection–pursuit estimates obtained from s through (4) and β̂ and λ̂
are the final estimates computed from the reweighted matrix defined in (10) using β̂I and λ̂I, if

νjs 6= νjj for s 6= j, with νjs =
k∑

i=1

τif
′ (λij)λis, we have that

asvar
(
β̂jm

)
=

κ2 πjm

D2(G)

{
a12

(
η2
1

)
− 2α3(G)dσ,12

[
k∑

i=1

τi (λij − λim)

{
δm>jf

′ (λij)
νjj − νjm

+
δm<jf

′ (λim)
νmj − νmm

}]
+

+ α2
3(G) υ12π

−1
jm

[
k∑

i=1

τiλijλim

{
δm>j {f ′ (λij)}2

(νjj − νjm)2
+

δm<j {f ′ (λim)}2

(νmj − νmm)2

}]}
.

Moreover, when G = N(0p, Ip), ascov
(
β̂jm, β̂js

)
= 0, for m 6= s, in both cases.
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Note that when w ≡ 1, we get the asymptotic variances of the classical estimates, showing that by
calibrating the tuning constant of the weight function, we can obtain more efficient estimates of the
common directions, as mentioned above and showed in the simulation study discussed in Section 5.

5 Monte Carlo Study

We performed a simulation study in dimension 4 and another one in dimension 2. In both situations, we
evaluated the estimators defined in Section 2 using as initial estimates the projection–pursuit estimators
based on f(t) = ln(t) and the plug–in estimates based on the Donoho–Stahel scatter matrices. We have
also computed the scatter reweighted estimates based on the Mahalanobis distance evaluated with the
Donoho–Stahel scatter matrices and the plug–in estimates derived from them, which will be denoted by
WPI2. For the reweighted estimates based on the Mahalanobis distance, we chose as weight function
wMD(t)

wMD (t) =





1 t < aM

exp

[
−(t − aM )2

2c2
M

]
t ≥ aM ,

where a2
M = χ2

p,0.95 and b2
M = χ2

p,0.975 are the percentiles 0.95 and 0.975 of a χ2 distribution with p degrees

of freedom, respectively, and cM =
bM − aM

p + 1
.

For the projection–pursuit estimator, an M−scale estimator with score function χ(t) = min
(

t2

c2 , 1
)
− 1

2

and c = 1.041 was used, while for the reweighted estimates we have considered as weight functions

wm

(
IML2(xij , β̂, Λ̂i), IMB2(xij , β̂, Λ̂i)

)
= min(wIML (xij) , wIMB (xij))

wp

(
IML2(xij , β̂, Λ̂i), IMB2(xij , β̂, Λ̂i)

)
= wIML (xij) × wIMB (xij) ,

where wIML and wIMB are defined in (21). In all Tables LPP will denote the projection–pursuit estimates
while, in Tables 2 and 3, WmLPP and WpLPP correspond to the reweighted estimates related to them us-
ing the function wm and wp, respectively. Similarly, PI1, WmPI1 and WpPI1 denote the plug–in estimates
obtained using the Donoho–Stahel matrix and the two reweighted estimates related to them, respectively.
As it will be shown for the estimation of the eigenvectors, the results for both weight functions are similar.
Therefore, when reporting all the results in dimension 2 and for the remaining tables in dimension 4, the
notation WLPP and WPI1 will be used to indicate the estimators related to wm.

5.1 Simulation Conditions in Dimension 4

In dimension p = 4, we have considered k = 2 populations with Σ1 = diag(16, 8, 2, 1) and Σ2 = 4 Σ1.

In all models, we performed 500 replications generating k independent samples of size ni = n = 100.
The eigenvectors were ordered according to a decreasing order of the eigenvalues of the first population
and so, βj = ej .

The results for normal data sets will be indicated by C0 in the Tables, while C1 and C2 will denote
the following two contaminations.
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• C1: xi1, . . . ,xin are i.i.d. (1 − ε)N(0,Σi) + εN(µ,Σi) with µ = 10 e4 = (0, 0, 0, 10)t . We present
the results for ε = 0.10. This case corresponds to contaminating both populations in the direction
of the smallest eigenvalue. The aim is to study changes in the estimation of the principal directions.

• C2: x1, . . . ,xn are i.i.d. (1− ε)N(0,Σ) +
ε

2
N(µ, 0.01Σ) +

ε

2
N(−µ, 0.01Σ) where xj =

(
xt

1j ,x
t
2j

)t
,

Σ = diag (Σ1,Σ2), µ =
(
µt

1 ,µt
2

)t
and µi = Σ

1
2
i

√
7 e4. We present the results for ε = 0.10. This

case corresponds to contaminating both populations in the direction of the smallest eigenvalue with
a mild outlier. The aim is to study changes in the estimation of the principal directions between the
outlier detection measures we propose to use in the reweighting step and the Mahalanobis distance.

For simplicity, we present only the results corresponding to the common eigenvectors and to the
eigenvalues of the first population. The projection–pursuit estimators were computed as in Boente and
Orellana (2001).

Tables 2 and 3 give respectively the means and medians, over the replications, of the square distance
between the j-th estimated and target eigenvector, ‖β̂j − βj‖2. This measure determines the angle θ̂j

between the j-th estimated and true direction by cos(θ̂j) = 1 − ‖β̂j − βj‖2/2.

Table 4 gives summary measures for the eigenvalue estimates. Mean values, standard deviations and

mean square errors of log

(
λ̂j

λj

)
are reported.

5.2 Simulation in Dimension 2

We performed a simulation under the cpc model, in dimension p = 2 with n1 = n2 = n = 50 and
500 replications, in order to evaluate the behavior of the estimators considered above in more detail.
In dimension 2, it is possible to compute the projection–pursuit estimates without using resampling
techniques by maximizing over 1000 fixed and equally spaced directions. The common direction estimates
were ordered according to decreasing values of the eigenvalues.

To avoid consistency problems with the projection–pursuit estimates, we have considered, as in Ro-
drigues (2003), the covariance matrices Σ1 = diag(14, 4) and Σ2 = diag(12, 2) which have well separated
eigenvalues.

We generated normally and contaminated distributed samples, denoted respectively as C0, C1,ε and
C2 in Tables 5 to 7. The contaminated samples correspond to

• C1,ε: (x1j)1≤j≤n i.i.d. with distribution (1 − ε)N(0,Σ1) +
ε

2
δµ +

ε

2
δ−µ where µ = (−0.042; 4.72)t

and (x2j)1≤j≤n i.i.d. with non–contaminated distribution N(0,Σ2).

• C2: x1, . . . ,xn are i.i.d. 0.8 N(0,Σ) + 0.1δµ + 0.1δ−µ where xj =
(
xt

1j ,x
t
2j

)t
, Σ = diag (Σ1,Σ2),

µ =
(
µt

1 ,µt
2

)t
and µi = Σ

1
2
i (0, 2.4)t. Now, both populations are contaminated at the same time.

In this case, also the mean and the median of square distance between ‖β̂1 − β1‖2 are considerably
different, showing that in some replications large values are obtained, as shown in Table 5. Therefore,
we also report in Table 6 the number of times that the absolute value of the angle between β1 and β̂1 is

15



greater than 45 (N45), 60 (N60) and 80 (N80) degrees. Table 7 gives summary measures for the eigenvalue

estimates. Mean values, standard deviations and mean square errors of log

(
λ̂j

λj

)
are reported.

5.3 Results

5.3.1 Behavior of the eigenvector estimates

In dimension 4, under normal data, the weighting procedure leads to direction estimates with smaller
median and mean of square distance, when the initial estimate is the projection–pursuit one, see Tables
2 and 3. This reduction is of order 60% for the median square error and 50% for the mean square error.
When the initial estimates are the plug–in ones, the reweighted–based estimates have median square
error of the same order, while mean square errors are now about twice those of the initial estimates and
are quite similar to those of the Mahalanobis reweighted estimates. All the reweighted procedures have
similar mean and median square errors, showing that the reweighting step improves the efficiency of the
projection–pursuit estimators.

Similar results are observed in dimension 2, with respect to the median square error (Table 5), where
the reduction is of order 75% for the projection–pursuit estimates and only a small reduction is obtained
for the plug–in ones. With respect to the mean square error, we observe now a small reduction. Indeed,
the weighted estimates based on the projection–pursuit show their advantage with respect to the two
other competitors with a much smaller mean and median square error.

Under contamination, in dimension 4, the weighting procedure performs better than the initial esti-
mates under C1 which is a contamination with an extreme outlier in the direction of the smaller eigen-
value. All reweighted estimators show median square errors of the same order under C1, while higher
mean square errors are observed for WmLPP and WpLPP. Under C2, which is a contamination with a
mild outlier, difficult to detect, an improvement is observed in the directions of the two largest eigenvalues
when the initial estimate is the projection–pursuit one, while similar square errors are obtained for the
two smaller ones. The results for the other reweighted procedures are slightly worse than for the plug–in
estimate based on the Donoho-Stahel scatter matrices. This shows that this mild contamination produces
a rotation in the principal axis related to the two smallest eigenvalues, which is worse than the extreme
contamination C1, even if it does not produce breakdown. Since both weight functions lead to similar
performance, from now on, we only report the results corresponding to wm.

In dimension 2, the best performance under contamination is attained with the reweighted estimates
based on the projection–pursuit estimators, in all cases, even if some extreme values are obtained, leading
to possible breakdown as shown in Table 6. However, these estimates show mean and median square
errors which are about a half of those obtained by the initial estimates and which are comparable or
smaller than those of the reweighted estimates derived using the Mahalanobis distance as an outlier
detection procedure. Note that under C1,0.2 and C2 the plug–in estimates, lead to very large angles in
about half of the replications. In this case, the resulting directions will not allow to detect influential
observations explaining the bad performance of the reweighted estimates.

In order to explain the similar behavior of the reweighted estimates based on the plug–in estimators

and of those based on the Mahalanobis distance, denote d2(z) =
p∑

i=1

z2
i and d4(z) =

p∑

i=1

z4
i . Then, when
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Σ = I, we have

IML2 (z, I, I) = d4(z) − 2d2(z) + 1
IMB2 (z, I, I) = d2

2(z) − d4(z)

Thus, if aL,1−α denotes the percentile 1−α of IML (z, I, I) and aB,1−α that of IMB (z, I, I), we have that
IML2 (z, I, I) ≤ a2

L,1−α and IMB2 (z, I, I) ≤ a2
B,1−α, entailing that d2

2(z) ≤ a2
B,1−α + 2d2(z) + a2

L,1−α − 1

and so d2(z) ≤ 1 +
√

a2
B,1−α + a2

L,1−α.

On the other hand, if aM,1−α denotes the percentile 1 − α of the Mahalanobis distance and d2(z) ≤
a2

M,1−α we have that IMB2 (z, I, I) ≤ a4
M,1−α and IML2 (z, I, I) ≤ d2

2(z) − 2d2(z) + 1 = (d2(z) − 1)2 ≤
max

(
a2

M,1−α − 1, 1
)

using that d4(z) ≤ d2
2(z). These values are reported in Table 1, when α = 0.05 and

p = 2, 4.

Figure 4 illustrates that, in dimension 2, if IML (z, I, I) ≤ aL,0.95 and IMB (z, I, I) ≤ aB,0.95 then
d2(z) ≤ a2

M,0.95. On the other hand, if d2(z) ≤ a2
M,0.95 then IML (z, I, I) ≤ aL,0.975. These inequalities

explain the similar behavior observed under the selected contaminations for the reweighted estimators.

5.3.2 Behavior of the eigenvalue estimates

With respect to the estimation of the eigenvalues, all estimates present similar biases under normal
data, except LPP which shows a quite smaller one specially for larger eigenvalues. With respect to the
standard deviation, as expected, reweighting improves the efficiency of the projection–pursuit estimates.
All reweighting procedures show similar efficiencies in dimension 4.

In dimension 4, under contamination, the reweighted estimates perform similarly as their initial ones,
for the larger eigenvalues. The same happens in dimension 2, except for the LPP which is better than
WLPP under C2. On the other hand, in p = 4, reweighting improves both bias and standard deviation
for the smaller eigenvalues.

According to the simulation study, the best performance is obtained with the reweighted estimates
based on our outlier detection measures with initial projection–pursuit estimators.

6 Conclusions

We have introduced reweighted–based estimators of the paramters under a cpc model, using the outlier
detection measures defined by Boente, Pires and Rodrigues (2002) and we have obtained their partial
influence functions.

The partial influence functions turn out to be that of the plug–in estimates computed using reweighted
scatter matrices with the true parameters corrected by those of the initial estimates used, when all the
populations have the same elliptical distribution except for changes on the scatter.

The corresponding asymptotic variances were derived heuristically and allow to calibrate the estimates
in order to improve the efficiency of the initial estimates.

Our procedure has performed better under the contaminations considered in the simulation study.
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A Appendix

Note that

IML(x, I, I) =

[ p∑

r=1

{
x2

r − 1
}2

2

] 1
2

IMB(x, I, I) =




p∑

r=1

∑

s6=r

x2
r x2

s




1
2

,

and that IML(x,β,Λ) = IML(Λ− 1
2 βtx, I, I) and similarly IMB(x,β,Λ) = IMB(Λ− 1

2 βtx, I, I).
Therefore, if x is spherically distributed, we have that E [W1 (x, I, I) xrxs] = 0, if r 6= s.

Proof of Theorem 3.1. The proof follows the same steps as those given in the proof of Theorem 1 in
Boente, Pires and Rodrigues (2002).

Let Fi,ε,x = (1 − ε)Fi + εδx and let Fε,x,i = F1 × . . . × Fi−1 × Fi,ε,x × Fi+1 × . . . × Fk. Let βj,ε,i =
βV,j (Fε,x,i), λ`j,ε,i = λV,`j (Fε,x,i), V`,ε,i = V` (Fε,x,i). Then we have that for 1 ≤ ` ≤ k, 1 ≤ m, j ≤ p

λ`j,ε,i = βt
j,ε,iV`,ε,iβj,ε,i (A.1)

0 = βt
m,ε,i

(
k∑

`=1

τ`
λ`m,ε,i − λ`j,ε,i

λ`m,ε,i λ`j,ε,i
V`,ε,i

)
βj,ε,i m 6= j (A.2)

δmj = βt
m,ε,i βj,ε,i . (A.3)

Therefore, differentiating (A.3) with respect to ε, we get that

PIFi(x,βV,m, F )tβm = 0 (A.4)

PIFi(x,βV,m, F )tβj + PIFi(x,βV,j , F )tβm = 0 . (A.5)

• Partial influence functions for the eigenvalues.

Differentiating (A.1), we get

PIFi(x, λV,`j , F ) = 2λ`jPIFi(x,βV,j , F )tβj + βt
j PIFi(x,V`, F )βj

= βt
j PIFi(x,V`, F )βj ,

since (A.4) holds and V`βj = Σ`βj = λ`jβj, which entails (17).

• Partial influence functions for the eigenvectors.

It remains to show (18). Differentiating (A.2) leads to

0 = PIFi(x,βV,m, F )t
(

k∑

`=1

τ`
λ`m − λ`j

λ`mλ`j
V`

)
βj + βt

m

(
k∑

`=1

τ`
λ`m − λ`j

λ`mλ`j
V`

)
PIFi(x,βV,j , F ) +

+βt
m

{
k∑

`=1

τ`
∂

∂ε

(
λ`m,ε,i − λ`j,ε,i

λ`m,ε,iλ`j,ε,i

) ∣∣∣
ε=0

V` +
k∑

`=1

τ`
λ`m − λ`j

λ`mλ`j
PIFi(x,V`, F )

}
βj for m 6= j . (A.6)
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Using again the fact that Σ`βj = λ`jβj in (A.6), the orthogonality condition βt
mβj = 0 for m 6= j and

(A.5), we obtain, after some algebra,

PIFi(x,βV,j, F )tβm =

{
k∑

`=1

τ`
(λ`m − λ`j)

2

λ`mλ`j

}−1k∑

`=1

τ`
λ`j − λ`m

λ`mλ`j

{
βt

j PIFi (x,V`, F ) βm

}
for m 6= j .

Lemma A.3. Denote by β1, . . . ,βp, λi1, . . . , λip the common eigenvectors and the eigenvalues of Σi.
Let βI(F ) and ΛI, i(F ) be Fisher–consistent functionals related to the initial estimates of the common
eigenvectors and of the eigenvalues of the i−th population. Assume that the partial influence functions
PIFi (x,βI, F ) and PIFi (x,ΛI, `, F ) exists and satisfy PIFi (x,ΛI, `, F ) = 0 for ` 6= i. Then, the partial
influence functions of IML2(x,βI(F ),ΛI, `(F )) and IMB2(x,βI(F ),ΛI, `(F )) defined through (8) and (9),
are given by

PIFi

(
xo, IML2(x,βI,ΛI, `), F

)
= 2

p∑

r=1

{(
βt

r x
)2

− λ`r

}

λ2
`r

(
βt

r x
)

PIFi

(
xo,βI, r, F

)t
x for ` 6= i

PIFi

(
xo, IML2(x,βI,ΛI, i), F

)
=

p∑

r=1

{(
βt

r x
)2

− λir

}

λ3
ir

[
2λir

(
βt

r x
)

PIFi

(
xo,βI, r, F

)t
x−

−
(
βt

r x
)2

PIFi (xo, λI, ir, F )
]

PIFi

(
xo, IMB2(x,βI,ΛI, `), F

)
= 2

p∑

r=1

∑

s6=r

(
βt

r x
) (

βt
s x
)

λ`rλ`s

[(
PIFi

(
xo,βI, r, F

)t
x
) (

βt
s x
)

+

+
(

PIFi

(
xo,βI, s, F

)t
x
) (

βt
r x
)]

for ` 6= i

PIFi

(
xo, IMB2(x,βI,ΛI, i), F

)
= 2

p∑

r=1

∑

s6=r

(
βt

r x
) (

βt
s x
)

λirλis

[(
PIFi

(
xo,βI, r, F

)t
x
) (

βt
s x
)

+

+
(

PIFi

(
xo,βI, s, F

)t
x
) (

βt
r x
)]

−

−
p∑

r=1

∑

s6=r




(
βt

r x
) (

βt
s x
)

λirλis




2

[PIFi (xo, λI, ir, F ) λis+

+PIFi (xo, λI, is, F ) λir] .

Proof. Let Fi,ε,xo = (1 − ε)Fi + εδxo and let Fε,xo,i = F1 × . . . × Fi−1 × Fi,ε,xo × Fi+1 × . . . × Fk.
Let βj,ε,i = βI, j (Fε,xo,i), λ`j,ε,i = λI, `j (Fε,xo,i), IMB2

`,ε,i(x) = IMB2(x,βI((Fε,xo,i)),ΛI, `((Fε,xo,i))) and
IML2

`,ε,i(x) = IML2(x,βI((Fε,xo,i)),ΛI, `((Fε,xo,i))). Then we have that for 1 ≤ ` ≤ k

IML2
`,ε,i(x) =

1
2

p∑

r=1





(
βt

r,ε,ix
)2

λ`r, ε,i
− 1





2
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IMB2
`,ε,i(x) =

p∑

r=1

∑

s6=r

{(
βt

r,ε,ix
) (

βt
s,ε,ix

)}2

λ`r,ε,iλ`s,ε,i
.

Differentiating with respect to ε, we get

PIFi

(
xo, IML2(x,βI,ΛI, `), F

)
=

p∑

r=1

{(
βt

r x
)2

− λ`r

}

λ3
`r

[
2λ`r

(
βt

r x
)

PIFi

(
xo,βI, r, F

)t
x−

−
(
βt

r x
)2

PIFi (xo, λI, `r, F )
]

PIFi

(
xo, IMB2(x,βI,ΛI, `), F

)
=

p∑

r=1

∑

s6=r

2

(
βt

r x
) (

βt
s x
)

λ`rλ`s

[(
PIFi

(
xo,βI, r, F

)t
x
) (

βt
s x
)

+

+
(

PIFi

(
xo,βI, s, F

)t
x
) (

βt
r x
)]

−

−




(
βt

r x
) (

βt
s x
)

λ`rλ`s




2

[PIFi (xo, λI, `r, F ) λ`s + PIFi (xo, λI, `s, F ) λ`r]

Using that PIFi (xo,ΛI, `, F ) = 0, we conclude the proof.

Proof of Theorem 3.2. Let Fi,ε,xo = (1− ε)Fi + εδxo and let Fε,xo,i = F1× . . .×Fi−1 ×Fi,ε,xo ×Fi+1×
. . . × Fk and denote V`,ε,i = V` (Fε,xo,i). Moreover, for ` 6= i define

N`,ε,i = N`(Fε,xo,i) = EF`
Ψ1 (x,βI(Fε,xo,i),ΛI, `(Fε,xo,i))

Ni,ε,i = Ni(Fε,xo,i) = EFi,ε,xo
Ψ1 (x,βI(Fε,xo,i),ΛI, i(Fε,xo,i))

D`,ε,i = D`(Fε,xo,i) = EF`
W1 (x,βI(Fε,xo,i),ΛI, `(Fε,xo,i))

Di,ε,i = Di(Fε,xo,i) = EFi,ε,xo
W1 (x,βI(Fε,xo,i),ΛI, i(Fε,xo,i)) ,

where W1 and Ψ1 are defined in (11) and (12) respectively. Since V`,ε,i = κi D−1
`,ε,iN`,ε,i we get

∂V`,ε,i

∂ε

∣∣∣
ε=0

= κi D
−1
` (F )

∂N`,ε,i

∂ε

∣∣∣
ε=0

− κi D
−2
` (F )

∂D`,ε,i

∂ε

∣∣∣
ε=0

N`(F )

= κi D
−1
` (F )

∂N`,ε,i

∂ε

∣∣∣
ε=0

− D−1
` (F )

∂D`,ε,i

∂ε

∣∣∣
ε=0

V`(F ) .

We begin by considering the case ` 6= i. Differentiating N`,ε,i and D`,ε,i with respect to ε, we obtain

∂D`,ε,i

∂ε

∣∣∣
ε=0

= EF`

∂w
(
IML2(x,βI(Fε,xo,i),ΛI, `(Fε,xo,i)), IMB2(x,βI(Fε,xo,i),ΛI, `(Fε,xo,i))

)

∂ε

∣∣∣
ε=0

= EF`

{
w1

(
IML2(x,β,Λ`), IMB2(x,β,Λ`)

)
PIFi

(
xo, IML2(x,βI,ΛI, `), F

)
+

+w2

(
IML2(x,β,Λ`), IMB2(x,β,Λ`)

)
PIFi

(
xo, IMB2(x,βI,ΛI, `), F

)}

= 2
p∑

r=1

βt
r EF`





ϕ
(`)
1 (x)

{(
βt

r x
)2

− λ`r

}

λ2
`r

xxt





PIFi

(
xo,βI, r, F

)
+
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+2
p∑

r=1

∑

s6=r

EF`



ϕ

(`)
2 (x)

(
βt

r x
) (

βt
s x
)

λ`rλ`s

[
PIFi

(
xo,βI, r, F

)t
xxtβs+

+ PIFi

(
xo,βI, s, F

)t
xxtβr

]}

Similarly, we get

∂N`,ε,i

∂ε

∣∣∣
ε=0

= 2
p∑

r=1

EF`





ϕ
(`)
1 (x)

{(
βt

r x
)2

− λ`r

}

λ2
`r

βt
r xxtPIFi

(
xo,βI, r, F

)
xxt





+

+2
p∑

r=1

∑

s6=r

EF`



ϕ

(`)
2 (x)

(
βt

r x
) (

βt
s x
)

λ`rλ`s
xxt

[
PIFi

(
xo,βI, r, F

)t
xxtβs+

+ PIFi

(
xo,βI, s, F

)t
xxtβr

]}

which entails the desired result.

We consider now the case ` = i. Differentiating Di,ε,i with respect to ε, we obtain

∂Di,ε,i

∂ε

∣∣∣
ε=0

=
∂

∂ε
[(1 − ε)EFiW1 (x,βI(Fε,xo,i),ΛI, i(Fε,xo,i)) + ε W1 (xo,βI(Fε,xo,i),ΛI, i(Fε,xo,i))]

∣∣∣
ε=0

= −Di(F ) + W1(xo,β,Λi) + EFi

{
ϕ

(i)
1 (x)PIFi

(
xo, IML2(x,βI,ΛI, i), F

)}
+

+EFi

{
ϕ

(i)
2 (x)PIFi

(
xo, IMB2(x,βI,ΛI, i), F

)}

= −Di(F ) + W1(xo,β,Λi) +

+
p∑

r=1

EFi





ϕ
(i)
1 (x)

{(
βt

r x
)2

− λir

}

λ3
ir

[
2λir βt

r xxtPIFi

(
xo,βI, r, F

)
−

−
(
βt

r x
)2

PIFi (xo, λI, ir, F )
]}

+

+
p∑

r=1

∑

s6=r

EFiϕ
(i)
2 (x)



 2

(
βt

r x
) (

βt
s x
)

λirλis

[
PIFi

(
xo,βI, r, F

)t
xxtβs+

+ PIFi

(
xo,βI, s, F

)t
xxtβr

]
−

−




(
βt

r x
) (

βt
s x
)

λirλis




2

[PIFi (xo, λI, ir, F ) λis + PIFi (xo, λI, is, F ) λir]





In an analogous way we can derive ∂N`,ε,i

∂ε

∣∣∣
ε=0

, which concludes the proof.

Proof of Corollary 3.2. When Fi are ellipsoidal distributions and β = Ip, i.e., Λ
− 1

2
i xij is spherically

distributed, for 1 ≤ i ≤ k, using that βt
r PIFi

(
y,βI, r, F

)
= 0, we get that

βt
r EFi

{
ϕ

(i)
1 (x)

[(
βt

r x
)2

− λir

]
xxt

}
PIFi

(
y,βI, r, F

)
= 0
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βt
r EFi

{
ϕ

(i)
1 (x)

(
βt

j x
)2
[(

βt
r x
)2

− λir

]
xxt

}
PIFi

(
y,βI, r, F

)
= 0

βt
s EFi

{
ϕ

(i)
2 (x)

(
βt

r x
) (

βt
s x
)
xxt

}
PIFi

(
y,βI, r, F

)
= 0 for s 6= r

βt
s EFi

{
ϕ

(i)
2 (x)

(
βt

j x
)2 (

βt
r x
) (

βt
s x
)
xxt

}
PIFi

(
y,βI, r, F

)
= 0 for s 6= r

βt
j EFi

{
ϕ

(i)
1 (x)

[(
βt

r x
)2

− λir

] (
βt

r x
)2

xxt
}

βm = 0 for j 6= m

βt
j EFi

{
ϕ

(i)
2 (x)

[(
βt

r x
) (

βt
s x
)]2

xxt
}

βm = 0 for j 6= m .

Thus, for ` 6= i, ∆i, `(y, F ) = 0 and

∆i, i(y, F ) = −Di(F ) + W1(y,β,Λi) −
p∑

r=1

1
λ3

ir

EFi

{
ϕ

(i)
1 (x)

[
x2

r − λir

]
x2

r

}
PIFi (y, λI, ir, F ) −

−
p∑

r=1

∑

s6=r

EFi

{
ϕ

(i)
2 (x)

[
xr xs

λirλis

]2}
[PIFi (y, λI, ir, F ) λis + PIFi (y, λI, is, F ) λir]

On the other hand, since Ni(F )jm = 0 for j 6= m, we have

βt
j Υi, i(y, F )βj = (Ψ1(y,β,Λi) −Ni(F ))jj +

−
p∑

r=1

1
λ3

ir

EFi

{
ϕ

(i)
1 (x)

[
x2

r − λir

]
x2

r x2
j

}
PIFi (y, λI, ir, F ) −

−
p∑

r=1

∑

s6=r

EFi

{
ϕ

(i)
2 (x)

[
xr xs

λirλis

]2
x2

j

}
[PIFi (y, λI, ir, F ) λis + PIFi (y, λI, is, F ) λir]

βt
j Υi, i(y, F )βm = (Ψ1(y,β,Λi))jm +

+2
∑

r=j,m

1
λ2

ir

EFi

{
ϕ

(i)
1 (x)

[
x2

r − λir

]
xr xj xm

(
PIFi

(
y,βI, r, F

)t
x
)}

+

+4
∑

r=j,m

∑

s6=r

EFi

{
ϕ

(i)
2 (x)

xr x2
s

λirλis
xj xm

(
PIFi

(
y,βI, r, F

)t
x
)}

βt
j Υi, `(y, F )βm = 2

∑

r=j,m

1
λ2

`r

EF`

{
ϕ

(`)
1 (x)

[
x2

r − λ`r

]
xr xj xm

(
PIFi

(
y,βI, r, F

)t
x
)}

+

+4
∑

r=j,m

∑

s6=r

EF`

{
ϕ

(`)
2 (x)

xr x2
s

λ`rλ`s
xj xm

(
PIFi

(
y,βI, r, F

)t
x
)}

.

Then, using that κi D−1
i (F )Ni(F ) = Vi(F ) = Σi, we get easily

PIFi(y, λV, `j , F ) = 0 for ` 6= i

PIFi(y, λV, ij , F ) = D−1
i (F )κi (Ψ1(y,β,Λi))jj − D−1

i (F )W1(y,β,Λi))

−D−1
i (F )

p∑

r=1

1
λ3

ir

EFi

{
ϕ

(i)
1 (x)

[
x2

r − λir

]
x2

r

[
κi x2

j − λij

]}
PIFi (y, λI, ir, F ) −

−D−1
i (F )

p∑

r=1

∑

s6=r

EFi

{
ϕ

(i)
2 (x)

[
xr xs

λirλis

]2 [
κi x2

j − λij

]}
[PIFi (y, λI, ir, F ) λis+

+PIFi (y, λI, is, F ) λir]
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In particular, if Λ
− 1

2
i xi1 = zi has the same spherical distribution G for all 1 ≤ i ≤ k, straightforward

calculations lead to the given expression of PIFi(x, λV, `j , F ). Moreover, using that PIFi

(
y,βI,m, F

)
j

=

− PIFi

(
y,βI, j, F

)
m

, we get

βt
j Υi, i(y, F )βm = Ψ1(y,β,Λi)jm + α3(G)

[
λim PIFi

(
y,βI, j, F

)
m

+ λij PIFi

(
y,βI, m, F

)
j

]

= Ψ1(y,β,Λi)jm + α3(G) (λim − λij) PIFi

(
y,βI, j, F

)
m

βt
j Υi, `(y, F )βm = α3(G)

[
λ`m PIFi

(
y,βI, j, F

)
m

+ λ`j PIFi

(
y,βI,m, F

)
j

]

= α3(G) (λ`m − λ`j) PIFi

(
y,βI, j , F

)
m

,

which entails (20).
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p aL aB aM 1 +
√

a2
B + a2

L max
(
a2

M − 1, 1
)

a4
M

2 2.927 3.088 2.448 5.2548 4.991 35.898
4 3.957 6.809 3.080 8.8753 8.488 90.017

Table 1: Percentiles 0.95 of the Mahalanobis distance and of the outlier detection measures IML (z, I, I) and
IMB (z, I, I) and bounds giving the relation between them.
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λ LPP PI1 WmLPP WpLPP WmPI1 WpPI1 WPI2
16 C0 0.0319 0.0063 0.0096 0.0096 0.0078 0.0080 0.0078

C1 0.0460 0.0072 0.0090 0.0090 0.0078 0.0080 0.0080
C2 0.0432 0.0078 0.0109 0.0110 0.0089 0.0090 0.0083

8 C0 0.0429 0.0089 0.0126 0.0130 0.0114 0.0114 0.0113
C1 0.0955 0.0103 0.0132 0.0134 0.0119 0.0118 0.0121
C2 0.1110 0.0113 0.0164 0.0164 0.0141 0.0142 0.0134

2 C0 0.0447 0.0099 0.0126 0.0126 0.0130 0.0130 0.0120
C1 0.3377 0.8805 0.0170 0.0168 0.0152 0.0150 0.0144
C2 0.5463 0.4156 0.5448 0.5566 0.8752 0.8752 0.6466

1 C0 0.0329 0.0073 0.0095 0.0096 0.0093 0.0094 0.0086
C1 0.3498 0.8842 0.0139 0.0140 0.0126 0.0124 0.0116
C2 0.5467 0.4141 0.5441 0.5532 0.8742 0.8742 0.6468

Table 2: Median of the square distance between the estimated common principal directions and the true
principal axes related to the eigenvalue λ, under a proportional model in dimension 4.

λ LPP PI1 WmLPP WpLPP WmPI1 WpPI1 WPI2
16 C0 0.0609 0.0130 0.0299 0.0298 0.0278 0.0278 0.0216

C1 0.0874 0.0133 0.0313 0.0314 0.0240 0.0280 0.0235
C2 0.0930 0.0204 0.0510 0.0512 0.0338 0.0340 0.0266

8 C0 0.0683 0.0151 0.0325 0.0326 0.0304 0.0304 0.0242
C1 0.1426 0.0163 0.0381 0.0382 0.0270 0.0310 0.0264
C2 0.1710 0.0234 0.0556 0.0558 0.0377 0.0378 0.0303

2 C0 0.0798 0.0156 0.0217 0.0218 0.0236 0.0236 0.0196
C1 0.5667 0.9106 0.0638 0.0640 0.0398 0.0428 0.0392
C2 0.7188 0.7380 0.7642 0.7688 0.8959 0.8978 0.8115

1 C0 0.0702 0.0137 0.0190 0.0192 0.0212 0.0212 0.0173
C1 0.5787 0.9103 0.0624 0.0626 0.0373 0.0404 0.0369
C2 0.7089 0.7367 0.7622 0.7670 0.8941 0.8960 0.8098

Table 3: Mean of the square distance between the estimated common principal directions and the true
principal axes related to the eigenvalue λ, under a proportional model in dimension 4.
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λ14 = 16

LPP PI1 LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1 C2 C0 C1 C2

Mean 0.0020 -0.0618 0.0259 -0.0473 -0.2567 -0.2037 -0.0607 -0.0529 -0.0486 -0.0312 -0.0258 -0.0214 -0.2377 -0.1978 -0.1840
SD 0.1961 0.1585 0.1900 0.1618 0.2320 0.1784 0.1785 0.1750 0.1699 0.1783 0.1799 0.1720 0.2139 0.1982 0.1918

MSE 0.0385 0.0289 0.0368 0.0284 0.1198 0.0734 0.0356 0.0334 0.0312 0.0327 0.0330 0.0301 0.1024 0.0785 0.0707

λ13 = 8

LPP PI1 LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1 C2 C0 C1 C2

Mean 0.0174 -0.0595 0.0955 -0.0491 -0.2178 -0.2087 -0.0442 -0.0504 -0.0475 -0.0164 -0.0300 -0.0273 -0.2202 -0.2043 -0.1916
SD 0.2024 0.1516 0.1934 0.1597 0.2172 0.1800 0.1720 0.1726 0.1693 0.1725 0.1813 0.1739 0.2056 0.2030 0.1982

MSE 0.0413 0.0265 0.0465 0.0279 0.0947 0.0760 0.0316 0.0323 0.0309 0.0300 0.0338 0.0310 0.0908 0.0830 0.0761

λ12 = 2

LPP PI1 LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1 C2 C0 C1 C2

Mean 0.0633 -0.0574 0.4267 0.1256 0.2753 -0.0939 -0.0321 -0.0494 -0.0432 0.0236 -0.0261 -0.0198 -0.0271 -0.0518 -0.0621
SD 0.1955 0.1514 0.2854 0.2109 0.2535 0.1256 0.1721 0.1714 0.1679 0.1794 0.1765 0.1695 0.1320 0.1351 0.1324

MSE 0.0423 0.0262 0.2639 0.0603 0.1402 0.0246 0.0306 0.0318 0.0301 0.0327 0.0318 0.0291 0.0182 0.0209 0.0214

λ11 = 1

LPP PI1 LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1 C2 C0 C1 C2

Mean 0.0465 -0.0831 0.6657 0.5190 0.5558 0.3428 -0.0576 -0.0812 -0.0724 0.0210 0.0145 -0.0040 0.4061 0.3660 0.3686
SD 0.2208 0.1633 0.2862 0.1750 0.2369 0.1377 0.1802 0.1778 0.1771 0.1900 0.1775 0.1732 0.1464 0.1567 0.1408

MSE 0.0509 0.0336 0.5260 0.3005 0.3656 0.1367 0.0358 0.0382 0.0366 0.0365 0.0317 0.0300 0.1867 0.1587 0.1559

Table 4: Estimation of log
(

λ̂
λ

)
of Σ1, under a proportional model in dimension 4.
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Median Mean Median Mean
LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2

C0 0.0080 0.0032 0.0221 0.0105 0.0023 0.0030 0.0028 0.0046 0.0072 0.0065
C1,0.1 0.0644 0.0040 0.1755 0.1810 0.0027 0.0042 0.0038 0.0516 0.1982 0.1920
C1,0.2 0.3371 0.0372 0.4731 0.8984 0.0049 0.0676 0.0241 0.3380 0.9163 0.8633
C2 0.6797 0.2594 0.6589 0.8626 0.0135 0.3416 0.1263 0.3489 0.8541 0.8081

Table 5: Median and mean of ‖β̂1 − β1‖2, in dimension 2.

LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1,0.1 C0 C1,0.1

N45 1 1 38 47 0 0 0 12 52 50
N60 1 1 18 47 0 0 0 12 52 50
N80 0 1 2 44 0 0 0 12 45 46

C1,0.2 C2 C1,0.2 C2

N45 178 239 336 241 88 245 230 99 245 232
N60 53 239 31 234 88 245 230 94 234 218
N80 1 230 0 183 88 231 220 62 168 159

Table 6: Estimation of the common principal directions. Nα denotes the number of times that the absolute
value of the angle between e1 and the estimated first principal direction is greater than α degrees, in
dimension 2.

Estimates of λ = 14

LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1,0.1 C0 C1,0.1

Mean -0.0260 -0.1462 -0.1704 -0.2634 0.0426 -0.1093 -0.1056 -0.0850 -0.2232 -0.2305
SD 0.2750 0.2654 0.2387 0.2800 0.2363 0.2695 0.2583 0.2431 0.2738 0.2694

MSE 0.0763 0.0919 0.0861 0.1479 0.0576 0.0846 0.0778 0.0663 0.1249 0.1258

C1,0.2 C2 C1,0.2 C2

Mean -0.1198 -0.3072 -0.0028 -0.2891 -0.1506 -0.2829 -0.3030 -0.1235 -0.2608 -0.2833
SD 0.1803 0.2408 0.1722 0.2417 0.1972 0.1920 0.1952 0.2021 0.1903 0.1926

MSE 0.0469 0.1526 0.0296 0.1422 0.0616 0.1171 0.1301 0.0561 0.1044 0.1175

Estimates of λ = 4

LPP PI1 LPP PI1 WLPP WPI1 WPI2 WLPP WPI1 WPI2
C0 C1,0.1 C0 C1,0.1

Mean 0.0011 -0.1213 0.3963 0.2512 0.0515 -0.0911 -0.0911 0.4737 0.3722 0.3730
SD 0.2946 0.2701 0.3566 0.2844 0.2385 0.2788 0.2692 0.2371 0.3096 0.2766

MSE 0.0868 0.0877 0.2845 0.1441 0.0596 0.0860 0.0808 0.2811 0.2347 0.2159

C1,0.2 C2 C1,0.2 C2

Mean 0.8303 0.4110 0.9454 0.3963 0.7439 0.5228 0.5178 0.7451 0.5119 0.5152
SD 0.3070 0.3481 0.2589 0.3500 0.1682 0.3562 0.3336 0.1698 0.3649 0.3390

MSE 0.7850 0.2905 0.9626 0.2799 0.5828 0.4008 0.3800 0.5850 0.3958 0.3809

Table 7: Estimation of log
(

λ̂
λ

)
of Σ1, in dimension 2.
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Figure 1: ‖PIF1(x, β1, F )‖ at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)).
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Figure 2: ‖PIF1(x, λ11, F )‖ at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)).

29



-4

-2

 0

2

4

x1

-4

-2

 0

2

4

x2

 0
0.

2
0.

4
0.

6
0.

8
1

Figure 3: Weight Function used to compute the partial influence functions.
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Figure 4: Detection regions obtained with Mahalanobis distance (ellipse), IML1 (closed curves) and IMB1 (open
curves). The 95% detection limits are the solid curves and the 97.5% detection limits are the dashed curves.
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