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Abstract

In this paper, we introduce a family of robust estimates for the paramet-

ric and nonparametric components under a generalized partially linear model,

where the data are modeled by yi| (xi, ti) ∼ F (·, µi) with µi = H (η(ti) + xT
i β),

for some known distribution function F and link function H . It is shown that

the estimates of β are root–n consistent and asymptotically normal. Through a

Monte Carlo study the performance of these estimators is compared with that

of the classical ones.
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1 Introduction

Semiparametric models contain both a parametric and a nonparametric component.

Sometimes the nonparametric component plays the role of a nuisance parameter.

A lot of research has been done on estimators of the parametric component in a

general framework, aiming to obtain asymptotically efficient estimators. The aim

of this paper is to consider semiparametric versions of the generalized linear models

where the response y is to be predicted by covariates (x, t), where x ∈ IRp and

t ∈ T ⊂ IR. It will be assumed that the conditional distribution of y|(x, t) belongs

to the canonical exponential family exp [yθ(x, t) −B (θ(x, t)) + C(y)], for known

functions B and C. Then, µ (x, t) = E (y|(x, t)) = B′ (θ(x, t)), with B′ as the

derivative of B. In generalized linear models (McCullagh and Nelder, 1989), which

is a popular approach for modeling a wide variety of data, it is often assumed that

the mean is modeled linearly through a known inverse link function, g, i.e.,

g(µ (x, t)) = β0 + xTβ + αt .

For instance, an ordinary logistic regression model assumes that the observations

(yi,xi, ti) are such that the response variables are independent binomial variables

yi|(xi, ti) ∼ Bi(1, pi) whose success probabilities depend on the explanatory vari-

ables through the relation g(pi) = β0 + xT
i β + αti , with g(u) = ln(u/(1 − u)).

The influence function of the classical estimates based on the quasi–likelihood

is unbounded. Large deviations of the response from its mean, as measured by the

Pearson residuals, or outlying points in the covariate space can have large influence

on the estimators. Those outliers or potential outliers for the generalized linear

regression model are to be detected and controlled by robust procedures such as

those considered by Stefanski, Carroll and Ruppert (1986), Künsch, Stefanski and

Carroll (1989), Bianco and Yohai (1995) and Cantoni and Ronchetti (2001a).

In some applications, the linear model is insufficient to explain the relationship

between the response variable and its associated covariates. A natural generaliza-

tion, which suffers from the curse of dimensionality, is to model the mean nonpara-

metrically in the covariates. An alternative strategy is to allow most predictors

to be modeled linearly while one or a small number of predictors enter the model

nonparametrically. This is the approach we will follow, so that the relationship will
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be given by the semiparametric generalized partially linear model

µ (x, t) = H (η(t) + xTβ) (1)

where H = g−1 is a known link function, β ∈ IRp is an unknown parameter and η

is an unknown continuous function.

Severini and Wong (1992) introduced the concept of generalized profile likeli-

hood, which was later applied to this model by Severini and Staniswalis (1994). In

this method, the nonparametric component is viewed as a function of the paramet-

ric component, and
√
n−consistent estimates for the parametric component can be

obtained when the usual optimal rate for the smoothing parameter is used. Such es-

timates do not deal with outlying observations. In a semiparametric setting, outliers

can have a devastating effect, since the extreme points can easily affect the scale and

the shape of the function estimate of η, leading to possibly wrong conclusions on β.

The basic ideas from robust smoothing and from robust regression estimation have

been adapted to partly linear regression models where H(t) = t; we refer to Gao

and Shi (1997), He, Zhu and Fung (2002) and Bianco and Boente (2004). A robust

generalized estimating equations approach, for generalized partially linear models

with clustered data, using regression splines and Pearson residuals is given in He,

Fung and Zhu (2005).

In Section 2 of the present paper, we introduce a two–step robust procedure to

estimate the parameter β and the function η, under the generalized partly linear

model (1). In Section 3, we give conditions under which the proposed method will

lead to strongly consistent estimators, and in Section 4, we derive the asymptotic

distribution of those estimators. In Section 5 simulation studies are carried out to

assess the robustness and efficiency of the proposals. All the proofs are given in the

Appendix.

2 The Proposal

2.1 The estimators

Let (yi,xi, ti) be independent observations such that yi| (xi, ti) ∼ F (·, µi) with

µi = H (η(ti) + xT
i β) and Var (yi|(xi, ti)) = V (µi). Let η0(t) and β0 denote the
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true parameter values, and E0 the expected value under the true model, so that

E0(y|(x, t)) = H (η0(t) + xTβ0). Letting ρ(y, u) be a loss function to be specified in

the next subsection, we define

Sn(a,β, t) =
n∑

i=1

Wi(t)ρ (yi,xT
i β + a)w1(xi) (2)

S(a,β, τ) = E0 [ρ (y,xTβ + a)w1(x)|t = τ ] , (3)

where Wi(t) are the kernel (or nearest–neighbor with kernel) weights on ti, and

w1(·) is a function that downweights high leverage points in the x space. Note that

Sn(a,β, t) is an estimate of S(a,β, t), which is a continuous function of (a,β, t) if

(y,x)|t = τ has a distribution function that is continuous with respect to τ .

The Fisher–consistency states that η0(t) = argmina S(a,β0, t). This is a key

point in order to get asymptotically unbiased estimates for the nonparametric com-

ponent. In many situations, a stronger condition holds, that is, under general con-

ditions it can be verified that

S(η0(t),β0, t) < S(a,β, t) ∀β 6= β0 a 6= η0(t), (4)

which entails the Fisher–consistency. Moreover, it is clear that in this case, β0 can

be estimated by minimizing Sn(a,β, t), over a and β. However, this procedure will

not lead to a root–n estimate.

Following the ideas of Severini and Staniswalis (1994), we define the function

ηβ(t) as the minimizer of S(a,β, t) that will be estimated by the minimizer η̂β(t)

of Sn(a,β, t).

To provide an estimate of β with the root-n convergence rate, we denote

Fn(β) = n−1
n∑

i=1

ρ
(
yi,xT

i β + η̂β(ti)
)
w2(xi) (5)

F (β) = E0

[
ρ
(
y,xTβ + ηβ(t)

)
w2(x)

]
, (6)

where w2(·) plays the same role (and can be taken to be the same) as w1(·). We

will assume that β0 is the unique minimizer of F (β). This assumption is a standard

condition in M–estimation in order to get consistent estimators of the parametric

component and is analogous to condition (A-4) of Huber (1981, p.129).

A two–step robust proposal is now given as follows
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• Step 1: For each value of t and β, let

η̂β(t) = argmin
a∈IR

Sn(a,β, t) , (7)

• Step 2: Define the estimate of β0 as

β̂ = argmin
β∈IRp

Fn(β) , (8)

and the estimate of η0(t) as η̂
β̂

(t).

2.2 Loss function ρ

We propose two classes of loss functions. The first one aims to bound the deviances,

while the second one introduced by Cantoni and Ronchetti (2001a) bounds the

Pearson residuals.

The first class of loss function takes the form of

ρ(y, u) = φ[− ln f(y,H(u)) +A(y)] +G(H(u)) , (9)

where φ is a bounded nondecreasing function with continuous derivative ϕ, and

f(·, s) is the density of the distribution function F (·, s) with y|(x, t) ∼ F (·,H (η0(t) + xTβ0)).

To avoid triviality, we also assume that φ is non–constant in a positive probability

set. Typically, φ is a function performing like the identity function in a neighborhood

of 0. The function A(y) is typically used to remove a term from the log–likelihood

that is independent of the parameter, and can be defined as A(y) = ln (f(y, y)) in

order to get the deviance. The correction term G is used to guarantee the Fisher–

consistency, and satisfies

G′(s) =
∫
ϕ[− ln f(y, s) +A(y)] f ′(y, s)dµ(y)

= Es

(
ϕ[− ln f(y, s) +A(y)] f ′(y, s)/f(y, s)

)
,

where Es indicates expectation taken under y ∼ F (·, s) and f ′(y, s) is shorthand

for ∂ f(y, s)/∂s . With this class of ρ functions, we call the resulting estimator a

modified likelihood estimator.

In a logistic regression setting, Bianco and Yohai (1995) considered the score

function

φ(t) =

{
t− t2/2c if t ≤ c

c/2 otherwise,
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while Croux and Haesbroeck (2002) proposed using the score function

φ(t) =

{
t exp(−

√
c) if t ≤ c

−2(1 +
√
t) exp(−

√
t) + (2(1 +

√
c) + c) exp(−

√
c) otherwise.

Both score functions can be used in the general setting. Explicit forms of the

correction term G(s), for the Binomial and Poisson families, are given in Bianco

and Boente (1996). It is worth noticing that, when considering the deviance and

a continuous family of distributions with strongly unimodal density function, the

correction term G can be avoided, as discussed in Bianco, Garćıa Ben and Yohai

(2005).

The second class of loss function is based on Cantoni and Ronchetti (2001a),

where they consider a general class of M–estimators of Mallows type, by bounding

separately the influence of deviations on y and (x, t). Their approach is based on ro-

bustifying the quasi–likelihood, which is an alternative to the generalizations given

for generalized linear regression models by Stefanski, Carroll and Ruppert (1986) and

Künsch, Stefanski and Carroll (1989). Let r(y, µ) = (y − µ) V −1/2(µ) be the Pear-

son residuals with Var (yi|(xi, ti)) = V (µi). Denote ν(y, µ) = V −1/2(µ)ψc (r(y, µ)),

with ψc an odd nondecreasing score function with tunning constant c, such as the

Huber function, and

ρ(y, u) = −

[∫ H(u)

s0

ν(y, s)ds+G(H(u))

]
, (10)

where s0 is such that ν(y, s0) = 0 and the correction term here to ensure Fisher–

consistency, also denoted as G(s), satisfies G′(s) = −Es (ν(y, s)). With such a

ρ function, we call the resulting estimator a quasi-likelihood estimator. For the

Binomial and Poisson families, explicit forms of the correction term G(s) are given

in Cantoni and Ronchetti (2001a).

2.2.1 General comments

a) Fisher–Consistency

Under a logistic partly linear regression model, if

P (xTβ = α|t = τ) < 1, ∀(β, α) 6= 0 and τ ∈ T , (11)
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and if we consider the score function given by (9) with φ satisfying the regularity

conditions given in Bianco and Yohai (1995), it is easy to see that (4) holds, and the

Fisher–consistency for the nonparametric component is attained under this model.

Moreover, it is easy to verify that β0 is the unique minimizer of F (β) in this case.

Condition (11) does not allow β0 to include an intercept, so that the model

will be identifiable. This means that only the “slope” coefficients can be estimated.

Moreover, we do not allow any linear combination of x to be predicted by t (see

Robinson (1988)).

Under a generalized partly linear model with response having a gamma distri-

bution with fixed shape parameter, Theorem 1 of Bianco, Garćıa Ben and Yohai

(2005) allows us to verify (4) and the Fisher–consistency for the nonparametric and

parametric component, if the score function φ is bounded and strictly increasing on

the set where it is not constant and if (11) holds.

For any generalized partly linear model, conditions similar to those considered

in Cantoni and Ronchetti (2001a) will lead to the uniqueness of the differentiated

equations, which entail (4). Note that this condition is quite similar to Condition

(E) of Severini and Staniswalis (1994, p. 511). When considering the classical

quasi–likelihood, the assumption β0 = argminβ F (β) is related to Condition (7.e.)

of Severini and Staniswalis (1994, p. 510), but for the robust quasi–likelihood, this

assumption is fulfilled, for instance, for a gamma family with a fixed shape parameter

when (11) holds and ψc is bounded and increasing.

b) Differentiated equations

If the function ρ(y, u) is continuously differentiable and we denote Ψ (y, u) =

(∂ρ(y, u))/∂u, the estimates will be a solution to the differentiated equations. More

precisely, ηβ(t) and η̂β(t) will be solutions to S1(a,β, t) = 0 and S1
n(a,β, t) = 0

respectively, with

S1(a,β, τ) = E (Ψ (y,xTβ + a)w1(x)|t = τ) (12)

S1
n(a,β, t) =

n∑

i=1

Wi(t)Ψ (yi,xT
i β + a)w1(xi) . (13)

Under regularity conditions on the kernel K and on the function Ψ, the implicit

function theorem entails that ηβ(t) and η̂β(t) are continuous functions of both β
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and t, which is a condition that will be required later both for consistency and

asymptotic normality.

Besides, β̂ is a solution of F 1
n(β) = 0, and the Fisher consistency states that

F 1(β0) = 0 and S1(η0(t),β0, t) = 0, where

F 1(β) = E

(
Ψ
(
y,xTβ + ηβ(t)

)
w2(x)

[
x +

∂

∂β
ηβ(t)

])
(14)

F 1
n(β) = n−1

n∑

i=1

Ψ
(
yi,xT

i β + η̂β(ti)
)
w2(xi)

[
xi +

∂

∂β
η̂β(ti)

]
. (15)

Note that these first order equations may have multiple solutions and therefore,

we may need the values of the objective functions (2) and (5) to select the final

estimator. For a family of distributions with positive and finite information num-

ber, Bianco and Boente (1996) give conditions that entail the following: for each t

there exists a neighborhood of η0(t) where S1(η0(t),β0, t) = 0 and S1(a,β0, t) 6= 0

for a 6= η0(t). Moreover, η0(t) corresponds to a local minimum of S(a,β0, t). The

asymptotic results in this paper are derived by assuming existence of a unique min-

imum; otherwise, one can only ensure that there exists a solution to the estimating

equations that is consistent.

In the modified likelihood approach, the derivative of (9) is given by Ψ(y, u) =

H ′(u) [Ψ1(y,H(u)) +G′(H(u))] where

Ψ1(y, u) = ϕ[− ln f(y,H(u)) +A(y)] [−f ′(y,H(u))/f(y,H(u))] .

On the other hand, for the proposal based on the robust quasi–likelihood, we have

the following expression for the derivative of (10)

Ψ(y, u) = −
[
ν(y,H(u)) +G′(H(u))

]
H ′(u)

= −
[
ψc (r(y,H(u))) V −1/2(H(u)) +G′(H(u))

]
H ′(u)

= −
[
ψc (r(y,H(u)) −EH(u) {ψc (r(y,H(u))}

]
H ′(u)V −1/2(H(u)) .

For the uniqueness of the minimizer of (3), we note that if (11) holds, and

if φ is bounded and nondecreasing, the modified likelihood proposal that bounds

the deviance satisfies this condition. The same assertion can be verified for the

robust quasi–likelihood proposal not only for the logistic case but for other families

such as the gamma distribution with a fixed shape parameter, if ψc is bounded and
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increasing. In general, a condition on the behavior of the variance with respect to the

mean will be needed to guarantee the uniqueness of the minimum. This uniqueness

condition implies that we will be able to solve S1
n(a,β, t) = 0 and F 1

n(β) = 0 to

avoid the numerical integration involved in the loss function (10). Moreover, when

using the score function of Croux and Haesbroeck (2002), the function G(s) in (9)

has an explicit expression without any need for numerical integration.

c) Some robustness issues

It is clear that for unbounded response variables y, a bounded score function

allows us to deal with large residuals. For models with a bounded response, e.g.,

under a logistic model, the advantage of a bounded score function is mainly to guard

against outliers with large Pearson residuals. If a binary response y is contaminated,

the Pearson residuals are large only when the variances at the contaminated points

are close to 0. These points are made more specific in the simulation study in Section

5.

It is also worth noting that our robust procedures are effective only if at least

one non-constant covariate x is present. To consider a case without any covariate,

we may take yi ∼ Bi(1, p) as a random sample, then easy calculations show that

the minimizer â of Sn(a) = n−1
∑n

i=1 ρ (yi, a) equals the classical estimator, i.e.,

â = H−1 (
∑n

i=1 yi/n), with H(u) = 1/(1+exp(−u)), when using either the modified

likelihood or the robust quasi–likelihood proposals. The same happens if, yi|ti ∼
Bi(1, p(ti)), where the resulting estimate of p(t) will be the local mean. In the

present paper with a semiparametric model where the covariate x plays a role, both

downweighting the leverage points and controlling outlying responses work towards

robustness.

3 Consistency

We will assume that t ∈ T, and let T0 ⊂ T be a compact set. For any continuous

function v : T → IR, we will denote ‖v‖∞ = supt∈T |v(t)| and ‖v‖0,∞ = supt∈T0
|v(t)|.

In this section, we will show that the estimates defined through (7) and (8)

are consistent under mild conditions, when the smoother weights are the kernel

weights Wi(t) =
(∑n

j=1K((t− tj)/hn)
)−1

K((t− ti)/hn). Analogous results can be
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obtained for the weights based on nearest neighbors using similar arguments to those

considered in Boente and Fraiman (1991). In this paper, we will use the following

set of assumptions

C1. The function ρ(y, a) is continuous and bounded, and the functions Ψ(y, a) =

∂ρ(y, a)/∂a, w1(.) and w2(.) are bounded.

C2. The kernel K : IR → IR is an even, nonnegative, continuous and bounded

function, with bounded variation, satisfying
∫
K(u)du = 1,

∫
u2K(u)du <∞

|u|K(u) → 0 as |u| → ∞.

C3. The bandwidth sequence hn is such that hn → 0, nhn/ log(n) → ∞.

C4. The marginal density fT of t is a bounded function, and given any compact

set T0 ⊂ T there exists a positive constant A1 (T0) such that A1 (T0) < fT (t)

for all t ∈ T0.

C5. The function S(a,β, t) satisfies the following equicontinuity condition: for any

ε > 0 there exists δ > 0 such that for any t1, t2 ∈ T0 and β1,β2 ∈ K, a

compact set in Rp,

|t1 − t2| < δ and ‖β1 − β2‖ < δ ⇒ sup
a∈IR

|S(a,β1, t1) − S(a,β2, t2)| < ε .

C6. The function S(a,β, t) is continuous, and ηβ(t) is a continuous function of

(β, t).

Remark 3.1. If the conditional distribution of x|t = τ is continuous with respect to

τ , the continuity and boundness of ρ stated in C1 entail that S(a,β, τ) is continuous.

Assumption C3 ensures that for each fixed a and β we have convergence of the

kernel estimates to their mean, while C5 guarantees that the bias term converges

to 0.

Assumption C4 is a standard condition in semiparametric models. In the classi-

cal case it corresponds to Condition (D) of Severini and Staniswalis (1994, p. 511).

It is also considered in nonparametric regression when the uniform consistency re-

sults on the t-space are needed; it allows us to deal with the denominator in the
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definition of the kernel weights, which is in fact an estimate of the marginal density

fT .

Assumption C5 is fulfilled under C1 if the following equicontinuity condition

holds: for any ε > 0 there exist compact sets K1 ⊂ IR and Kp ⊂ IRp such that

for any τ ∈ T0 P ((y,x) ∈ K1 × Kp|t = τ) > 1 − ε, which holds for instance if, for

1 ≤ j ≤ p, xij = φj(ti) + uij , 1 ≤ i ≤ n, where φj are continuous functions and uij

are i.i.d and independent of ti.

Theorem 3.1. Let K ⊂ IRp and T0 ⊂ T be compact sets such that Tδ ⊂ T where Tδ

is the closure of a δ neighborhood of T0 . Assume that C1 to C6 and the following

conditions hold

i) K is of bounded variation,

ii) the family of functions F = {f(y,x) = ρ (y,xTβ + a)w1(x),β ∈ K, a ∈ IR}
has covering number N

(
ε,F, L1( lQ)

)
≤ Aε−W , for any probability lQ and

0 < ε < 1.

Then, we have

a) supβ∈K
a∈IR

‖Sn(a,β, ·) − S(a,β, ·)‖0,∞
a.s.−→ 0.

b) If inf β∈K
t∈T0

[
lim|a|→∞ S(a,β, t) − S(ηβ(t),β, t)

]
> 0, then

sup
β∈K

‖η̂β − ηβ‖0,∞
a.s.−→ 0 .

Theorem 3.2. Let β̂ be the minimizer of Fn(β) where Fn(β) is defined as in (5)

with η̂β satisfying

sup
β∈K

‖η̂β − ηβ‖0,∞
a.s.−→ 0 (16)

for any compact set K in Rp. If C1 holds, then

a) supβ∈K |Fn(β) − F (β)| a.s.−→ 0,

b) If, in addition, there exists a compact set K1 such that limm→∞ P
(⋂

n≥m β̂ ∈ K1

)
=

1 and F (β) has a unique minimum at β0, then β̂
a.s.−→ β0.
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Remark 3.2. Theorems 3.1 and 3.2 entail that ‖η̂
β̂
− η0‖0,∞

a.s.−→ 0, since ηβ(t) is

continuous.

4 Asymptotic Normality

From now on, T is assumed to be a compact set. The assumptions N1 to N6 under

which the resulting estimates are asymptotically normally distributed are detailed

in the Appendix.

Theorem 4.1. Assume that the ti’s are random variables with distribution on a

compact set T. Assume that N1 to N6 hold, then for any consistent solution β̂ of

(15), we have
√
n
(
β̂ − β0

)
D−→ N

(
0,A−1Σ

(
A−1

)T)
,

where A is defined in N3 and Σ is defined in N4.

Remark 4.1. Theorem 4.1 can be used to construct a Wald-type statistic to make

inferences involving only a subset of the regression parameter, that is, when we want

to test H0 : β(2) = 0 , with βT =
(
βT

(1),β
T

(2)

)
.

Likelihood ratio-type tests can also be used based on the robust quasi–likelihood

introduced in Section 2, as it was done for generalized linear models by Cantoni and

Ronchetti (2001a), or on the robustified deviance. A robust measure of discrepancy

between the two models is defined as

Λ = 2

[
n∑

i=1

ρ

(
yi,xT

i β̂ + η̂
β̂

(ti)
)
w2(xi) −

n∑

i=1

ρ

(
yi,xT

i β̂0 + η̂
β̂0

(ti)
)
w2(xi)

]

where β̂
T

0 =
(
β̂

T

(1),0
T

)
is the estimate of β under the null hypothesis. Both estimates

β̂0 and β̂ need to be computed using the same score function ρ considered in Λ,

in order to ensure that Λ will behave asymptotically as a linear combination of

independent chi–square random variables with one degree of freedom. As in Cantoni

and Ronchetti (2001a), it can be seen that Λ = nUT

n,(2)A22.1Un,(2) + op(1) with

A22.1 = A22 −A21A−1
11 A12 and

√
nUn

D−→ N
(
0,A−1Σ

(
A−1

)T).
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5 Monte Carlo Study

A small scale simulation study was carried out to assess the performance of the

robust estimators considered in this paper. A one-dimensional covariate x and a

nonparametric function η(t) were considered. The modified likelihood estimator

(MOD) used the score function of Croux and Haesbroeck (2002) with c = 0.5. With

this choice, the function C(s) has an explicit expression so no numerical integration

is needed. The weight functions take the following form

w2
1(xi) = w2

2(xi) = {1 + (xi −Mn)2}−1

where Mn = Median{xj : j = 1, · · · , n} is the sample median.

The two competitors considered in the study were the quasi-likelihood estimator

(QAL) of Severeni and Staniswalis (1994) and the robust quasi-likelihood estima-

tor (RQL) of Cantoni and Ronchetti (2001a). For the latter, the Huber function

ψ1.2(x) = max{−1.2,min(1.2, x)} was used with the same weight functions as above.

The QAL estimator corresponds to ψ(x) = x and w1(x) = w2(x) = 1. In all cases,

the kernel K(t) = max{0, 1−|t|} was used. In Studies 1 and 3 below, the search for

β uses a grid of size 0.05, while in Study 2 the grid size is 0.01.

An important issue in any smoothing procedure is the choice of the smoothing

parameter. Under a nonparametric regression model with β = 0 and H(t) = t,

two commonly used approaches are cross–validation and plug–in. However, these

procedures may not be robust and their sensitivity to anomalous data was discussed

by several authors, including Leung, Marrot and Wu (1993), Wang and Scott (1994),

Boente, Fraiman and Meloche (1997) and Cantoni and Ronchetti (2001b). Wang

and Scott (1994) note that, in the presence of outliers, the least squares cross–

validation function is nearly constant on its whole domain and thus, essentially

worthless for the purpose of choosing a bandwidth. The robustness issue remains

for the estimators considered in this paper. With a small bandwidth, a small number

of outliers with similar values of ti could easily drive the estimate of η to dangerous

levels. Therefore, we may consider a robust cross-validation approach as follows.
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• For each given h, let

η̂
(−i)

β
(t, h) = argmin

a∈IR

n∑

j 6=i

Wj(t, h)ρ
(
yj,xT

j β + a
)
w1(xj)

β̂
(−i)

(h) = argmin
β∈IRp

n∑

j 6=i

ρ
(
yj,xT

j β + η̂
(−j)

β
(tj , h)

)
w2(xj) ,

where Wi(t, h) = {
∑n

j=1K((t− tj)/h)}−1K((t− ti)/h).

• Choose

ĥn = argmin
h

n∑

i=1

ρ

(
yi,xT

i β̂
(−i)

(h) + η̂
(−i)

β̂
(−i)(ti, h)

)
w2(xi) .

However, this method is computationally expensive. Another approach divides

the sample into two subsets by choosing at random 100 (1 − α)% of the sample as

training sample and 100α% as validating sample. This procedure can be described

as follows:

• Select at random a subset of size 100 (1−α)%. Let I1−α stand for the indexes

of these observations and J1−α for the indexes of the remaining ones.

• For each given h, compute

η̂
(−α)

β
(t, h) = argmin

a∈IR

∑

i∈I1−α

Wi(t, h)ρ (yi,xT
i β + a)w1(xi)

β̂
(−α)

(h) = argmin
β∈IRp

∑

i∈I1−α

ρ
(
yi,xT

i β + η̂
(−α)

β
(ti, h)

)
w2(xi) ,

where Wi(t, h) are the kernel weights defined above.

• Choose

ĥn = argmin
h

∑

i∈J1−α

ρ

(
yi,xT

i β̂
(−α)

(h) + η̂
(−α)

β̂
(−α)(ti, h)

)
w2(xi).

This is the procedure we have found to be helpful based on our experience with a

number of data sets, including some from Study 1 below, but a full evaluation of

this method is not yet done.
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To measure performance, we use the bias and standard deviation for the β

estimate as well as the mean square error of the function estimate

MSE(η̂) = n−1
n∑

i=1

[η̂(ti) − η(ti)]
2 .

We report the comparisons under three scenarios as follows.

Study 1: Random samples of size n = 100 were generated from the following

model

x ∼ U(−1, 1), t ∼ U({.1, .2, · · · , 1.0}), y|(x, t) ∼ Bi(10, p(x, t))

where log(p(x, t)/(1 − p(x, t))) = 3x+ e2t − 4. We summarized the results over 100

runs in Table 1, using three different bandwidths hn = 0.1, hn = 0.2 and hn = 0.3.

The three estimates are labelled as QAL(hn), MOD(hn) and RQL (hn). Figure 1

gives the histograms of the estimates of β for each method and bandwidth. It is

clear that the robust estimators MOD and RQL have similar performance, and the

relative efficiencies of the MOD(hn) are between 0.69 and 0.80 as compared to QAL

(hn). The MOD method tends to have smaller bias than the RQL method and even

than the QAL method. The normality of β̂ appeared to hold up quite well at this

sample size.

We also applied the data-adaptive method described in this section for choosing

hn based on a split of the sample into a training set (80% of the data) and a

validation set (20%). On a total of 10 random samples for Study 1, the resulting hn

are mostly between 0.1 and 0.2. From Table 1, we notice that hn = 0.2 is indeed a

good choice, but the performance of β̂ is not very sensitive to the choice of hn.

Study 2: To see how the robust estimators protect us from gross errors in the

data, we generated a data set of n = 100 from the following model

x ∼ N(0, 1), t ∼ N(1/2, 1/6), y|(x, t) ∼ Bi(10, p(x, t))

where log(p(x, t)/(1− p(x, t))) = 2x+ 0.2. Then, we replaced the first one, two and

three observations by gross outliers. Table 2 gives the parameter estimates under

the contaminated data, with hn = 0.1, where (xi, yi), 1 ≤ i ≤ 3 denote the outliers.

It is clear that the QAL estimate of β was very sensitive to a single outlier whereas

the robust estimators remained stable.
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Study 3: We considered a data set of size n = 200. We first generated data from

a bivariate normal distribution (xi, ti) ∼ N((0, 1/2),Σ) truncated to t ∈ [1/4, 3/4]

with

Σ =

(
1 1/(6

√
3)

1/(6
√

3) 1/36

)
.

The response variable was then generated as

yi =

{
1, β0xi + η0(ti) + εi ≥ 0

0, β0xi + η0(ti) + εi < 0

where β0 = 2, η0(t) = 2 sin(4πt), εi was a standard logistic variate. For each data set

generated from this model, we also created three contaminated data sets denoted

C1, C2 and C3 in Table 3, respectively. The purpose of the first two contaminations

is to see how the robust methods work when one has contamination in y only.

• Contamination 1. The contaminated data points were generated as follows:

ui ∼ U(0, 1), xi = xi, and

yi =

{
yi if ui ≤ 0.90

a new observation from Bi(1, 0.5) if ui > 0.90

• Contamination 2. For each generated data set, we chose 10 “design points”

with H(β0xi + η0(ti)) > 0.99, where H(u) = 1/(1 + exp(−u)), so at those

points the conditional mean of y given the covariates is not close to 0.5. Then,

we contaminate y as in Contamination 1 but only at those 10 points. At those

10 points, about half of them are expected to be outliers with large Pearson

residuals.

• Contamination 3. Here, we considered a contamination with bad leverage

points by using ui ∼ U(0, 1),

xi =

{
xi if ui ≤ 0.90

a new observation from N(10, 1) if ui > 0.90

yi =

{
yi if ui ≤ 0.90

a new observation from Bi(1, 0.05) if ui > 0.90 .
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Both the original and the contaminated data sets were analyzed using the three

competing estimators. Using a bandwidth of hn = 0.1, we summarized the results in

Tables 3 and 4 based on 100 Monte Carlo samples. The bandwidth was chosen to be

smaller than that in Study 1, because we have 200 distinct observed values of t here

as compared to 10 in the earlier study. Table 3 shows the poor performance of the

classical estimates of β, specially under contamination C3. It is worth noticing, that

our contamination framework in Study 3, shows that the bounded score becomes

more helpful if outliers are present in the sense that the Pearson residuals are large,

which could happen when y is contaminated to 1 (or 0) when the expected value of

y from the model is nearly 0 (or 1). Under C1, most contaminated y do no result in

large Pearson residuals, and the robust estimators RQL and MOD can improve the

non-robust estimator somewhat, but not as significantly as under C2 and specially

under C3, where high leverage points are downweighted in the robust procedure

introduced. With respect to the estimation of η, all procedures seem to be stable,

because the magnitude of outlying y is very limited in this case.

Our studies show the good performance of the two families of robust estimators

considered here in the presence of outliers. The MOD method often shows smaller

bias for estimating β but its mean squared error is usually similar to that of RQL.

Appendix

A.1 Proof of the consistency results

Proof of Theorem 3.1. a) Let Zi(a,β) = ρ (yi,xT
i β + a)w1(xi),

R1n(a,β, t) = (nhn)−1
n∑

i=1

Zi(a,β)K((t− ti)/hn)

R0n(t) = (nhn)−1
n∑

i=1

K((t− ti)/hn) .
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Then, Sn(a,β, t) = R1n(a,β, t)/R0n(t) which entails

sup
β∈K
a∈IR

‖Sn(a,β, ·) − S(a,β, ·)‖0,∞ ≤

[
sup
β∈K
a∈IR

‖R1n(a,β, ·) −E (R1n(a,β, ·))‖0,∞

+ sup
β∈K
a∈IR

‖E (R1n(a,β, ·)) − S(a,β, ·)E (R0n(·))‖0,∞

+ ‖ρ‖∞‖w1‖∞ ‖R0n −E (R0n)‖0,∞

]{
inf
t∈T0

R0n(t)
}−1

,

where ‖ρ‖∞ = sup(y,a) |ρ(y, a)| and ‖w1‖∞ = supx |w1(x)|.

Since, for n large enough,

inf
t∈T0

R0n(t) ≥ inf
t∈T0

E (R0n(t)) − ‖R0n −E (R0n)‖0,∞

E (R0n(t)) =
∫
K(u)fT (t− uhn)du > A1 (Tδ) ,

it is enough to show that

sup
β∈K
a∈IR

‖R1n(a,β, ·) −E (R1n(a,β, ·))‖0,∞
a.s.−→ 0 , (A.1)

‖R0n −E (R0n)‖0,∞
a.s.−→ 0 , (A.2)

sup
β∈K
a∈IR

‖E (R1n(a,β, ·)) − S(a,β, ·)E (R0n(·))‖0,∞ → 0 . (A.3)

Assumptions C2 to C4 entail (A.2) (see, for instance, Pollard, pp. 35, 1984). On

the other hand, since

|E (R1n(a,β, t)) − S(a,β, t)E (R0n(t))|

=
∣∣h−1E [(S(a,β, t1) − S(a,β, t))K((t− t1)/hn)]

∣∣

=
∣∣∣∣
∫

(S(a,β, t− uhn) − S(a,β, t))K (u) fT (t− uhn)du
∣∣∣∣

≤ ‖fT ‖∞
∫

|S(a,β, t− uhn) − S(a,β, t)|K (u) du ,

(A.3) follows easily from the boundness of ρ, the integrability of the kernel, the

equicontinuity condition C5 and the fact that hn → 0.

It remains to prove (A.1). Let us consider the class of functions

Fn = {ft,a,β,hn(y,x, v) = B−1ρ(y,xTβ + a)w1(x)K ((t− v)/hn)

= B−1ρ(y,xTβ + a)w1(x)Kt,hn(v)}
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with B = ‖ρ‖∞‖w1‖∞‖K‖∞. From Problem 27 in Pollard (1984) the graphs of

translated kernels Kt,hn have polynomial discrimination and 0 ≤ Kt,hn ≤ ‖K‖∞,

which together with assumption ii) entails that N
(
ε,Fn, L

1( lQ)
)
≤ A1ε

−W1 , for all

probability lQ and 0 < ε < 1, where A1 and W1 do not depend on n. For any

ft,a,β,hn ∈ Fn, |ft,a,β,h| ≤ 1 and E
(
f2

t,a,β,hn
(y,x, v)

)
≤ hn‖K‖−1

∞ ‖fT ‖∞. Then,

Theorem 37 in Pollard (1984) (with αn = 1, δ2n = hn) and C4 entail that

(hn)−1 sup
Fn

∣∣∣∣∣n
−1

n∑

i=1

ft,a,β,hn(yi,xi, ti) −Eft,a,β,hn(y1,x1, t1)

∣∣∣∣∣
a.s.−→ 0 ,

which concludes the proof of (A.1).

b) Since ηβ(t) is a continuous function of both (β, t), we get that ηβ(t) is bounded

for t ∈ T0 and β ∈ K and thus there exists a compact set A(T0,K) such that ηβ(t) ∈

A(T0,K) for any t ∈ T0 and β ∈ K. Assume that supβ∈K

∥∥∥η̂β − ηβ

∥∥∥
0,∞

does not

converge to 0 in a set Ω0 with P (Ω0) > 0. Then, for each ω ∈ Ω0 we have that there

exists a sequence (βk, tk) such that tk ∈ T0, βk ∈ K and η̂βk
(tk)− ηβk

(tk) → c 6= 0.

Since T0 and K are compact without loss of generality we can assume tk → tL ∈ T0

and βk → βL ∈ K. From the continuity of ηβ(t), we get that ηβk
(tk) → ηβL

(tL),

which entails that η̂βk
(tk) − ηβL

(tL) → c.

Assume first that c < ∞. Then, the proof follow the same steps as that of

Lemma A1 of Carroll, Fan, Gijbels and Wand (1997).

If c = ∞, we have that η̂βk
(tk) → ∞. By assumption, we have that

0 < i = inf
β∈K
t∈T0

[
lim

|a|→∞
S(a,β, t) − S(ηβ(t),β, t)

]
,

and so lim|a|→∞ S(a,βL, tL) − S(ηβL
(tL),βL, tL) ≥ i, thus for k large enough

S(η̂βk
(tk),βL, tL) > S(ηβL

(tL),βL, tL) + i/2. The equicontinuity condition entails

that given ε > 0 for k large enough, S(ηβL
(tL),βk, tk) ≤ S(ηβL

(tL),βL, tL) + ε/4

and S(η̂βk
(tk),βL, tL) ≤ S(η̂βk

(tk),βk, tk) + ε/4 which from (a) and the definition

of η̂β entails

S(η̂βk
(tk),βL, tL) ≤ Sn(η̂βk

(tk),βk, tk) + ε/2 ≤ Sn(ηβL
(tL),βk, tk) + ε/2 .

Using again (a), we get S(η̂βk
(tk),βL, tL) ≤ Sn(ηβL

(tL),βk, tk) + ε/2 ≤
S(ηβL

(tL),βk, tk) + 3ε/4 ≤ S(ηβL
(tL),βL, tL) + ε. Hence, for k large enough
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S(η̂βk
(tk),βL, tL) ≤ S(ηβL

(tL),βL, tL) + ε, which contradicts the fact that

S(η̂βk
(tk),βL, tL) > S(ηβL

(tL),βL, tL) + i/2.

The following Proposition states a general uniform convergence result which will

be helpful in proving Theorem 3.2. and Theorem 4.1.

We will begin by fixing some notation. Denote C1(T) the set of continuously

differentiable functions in T. Note that if S1(a,β, τ) defined in (12) is continuously

differentiable with respect to (a, τ) then ηβ ∈ C1(T). V(β) and Hδ(β) stand for

neighborhoods of β ∈ K and ηβ such that V(β) ⊂ K and

Hδ(β) =
{
u ∈ C1(T) : ‖u− ηβ‖∞ ≤ δ ,

∥∥∥∥
∂

∂t
u− ∂

∂t
ηβ

∥∥∥∥
∞

≤ δ

}
.

Proposition A.1.1. Let (yi,xi, ti) be independent observations such that yi| (xi, ti) ∼
F (·, µi) with µi = H (η0(ti) + xT

i β0) and Var (yi|(xi, ti)) = V (µi). Assume that

ti are random variables with distribution on T. Let g : IR2 → IR be a contin-

uous and bounded function, W (x, t) : IRp+1 → IR be such that E(|W (x, t)|) <
∞ and ηβ(t) = η(β, t) : IRp+1 → IR be a continuous function of (β, t). De-

fine L (y,x, t,β, v) = g (y,xTβ + v(t))W (x, t) and E(β) = E0

(
L
(
y,x, t,β, ηβ

))
.

Then,

a) E
(
n−1

∑n
i=1 L (yi,xi, ti,θ, v)

)
→ E(β) when ‖θ − β‖ +

∥∥∥v − ηβ

∥∥∥
∞

→ 0.

b) supθ∈K
∣∣n−1

∑n
i=1 L

(
yi,xi, ti,θ, ηθ

)
−E

(
L
(
yi,xi, ti,θ, ηθ

))∣∣ a.s.−→ 0.

c) supθ∈K,v∈H1(β)

∣∣n−1
∑n

i=1 L (yi,xi, ti,θ, v) −E (L (yi,xi, ti,θ, v))
∣∣ a.s.−→ 0, if in

addition, T is compact and ηβ ∈ C1(T).

Proof. a) follows from the Dominated Convergence Theorem. The proof of (b)

and (c) follows using the continuity of ηβ and g, Theorem 3 in Chapter 2 of Pol-

lard (1984), the compactness of K and H1(β) and analogous arguments to those

considered in Bianco and Boente (2002).

Remark A.1.1. Proposition A.1.1. entails that for any weakly consistent estimate

20



η̂β of ηβ such that

sup
t∈T

∣∣∣η̂β(t) − ηβ(t)
∣∣∣ a.s.−→ 0,

sup
t∈T

∣∣∣∣
∂

∂t
η̂β(t) − ∂

∂t
ηβ(t)

∣∣∣∣
a.s.−→ 0 ,

we have (1/n)
∑n

i=1 H
(
yi,xi, ti,β, η̂β

)
a.s.−→ E(β).

An analoguous result can be obtained replacing a.s.−→ by
p−→.

Proof of Theorem 3.2. a) Define

F̃n(β) =
1
n

n∑

i=1

ρ
(
yi,xT

i β + ηβ(ti)
)
w2(xi) .

For any ε > 0, let T0 be a compact set such that P (ti /∈ T0) < ε. We have that

sup
β∈K

|Fn(β) − F̃n(β)| ≤ ‖Ψ‖∞‖w2‖∞ sup
β∈K

∥∥∥η̂β − ηβ

∥∥∥
0,∞

+ 2‖ρ‖∞‖w2‖∞
1
n

n∑

i=1

I (ti /∈ T0)

and hence, using (16) and the Strong Law of Large numbers we get easily that

sup
β∈K

|Fn(β) − F̃n(β)| a.s.−→ 0 . (A.4)

Moreover, Proposition A.1.1.b) with W (x, t) = w2(x) and g(y, u) = ρ(y, u), implies

that supβ∈K |F̃n(β) − F (β)| a.s.−→ 0 which together with (A.4) concludes the proof

of a).

b) Note that (a) entails that

Fn(β̂) = inf
β∈K

Fn(β) a.s.−→ inf
β∈K

F (β) = F (β0)

Fn(β̂) − F (β̂) a.s.−→ 0

and so, F (β̂) a.s.−→ F (β0). Since F has a unique minimum at β0, b) follows easily.
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A.2 Proof of the asymptotic normality of the regression estimates

For the sake of simplicity, we denote

χ(y, a) =
∂

∂a
Ψ(y, a)

χ1(y, a) =
∂2

∂a2
Ψ(y, a)

υ̂(β, t) = η̂β(t) − ηβ(t) υ̂0(t) = υ̂(β0, t) (A.5)

v̂j(β, t) =
∂υ̂(β, t)
∂βj

v̂j,0(t) = v̂j(β0, t) . (A.6)

We list the following conditions needed for the asymptotic normality theorem,

followed by general comments on those conditions. The first condition is on the pre-

liminary estimate of ηβ(t), and the rest are on the score functions and the underlying

model distributions.

N1. a) The functions η̂β(t) and ηβ(t) are continuously differentiable with respect

to (β, t) and twice continuously differentiable with respect to β such that

(∂2ηβ(t))/∂βj∂β`|β=β0
is bounded. Furthermore, for any 1 ≤ j, ` ≤ p,

(∂2ηβ(t))/∂βj∂β` satisfies the following equicontinuity condition:

∀ε > 0, ∃δ > 0 : |β1−β0| < δ ⇒

∥∥∥∥∥∥
∂2

∂βj∂β`
ηβ

∣∣∣∣∣
β=β1

− ∂2

∂βj∂β`
ηβ

∣∣∣∣∣
β=β0

∥∥∥∥∥∥
∞

< ε .

b)
∥∥∥∥η̂β̂ − η0

∥∥∥∥
∞

p−→ 0, for any consistent estimate β̂ of β0.

c) For each t ∈ T and β, υ̂(β, t)
p−→ 0. Moreover, n1/4 ‖υ̂0‖∞

p−→ 0 and

n1/4 ‖v̂j,0‖∞
p−→ 0 for all 1 ≤ j ≤ p.

d) There exists a neighborhood of β0 with closure K such that for any

1 ≤ j, ` ≤ p, supβ∈K
(
‖v̂j(β, ·)‖∞ + ‖(∂v̂j(β, ·))/∂β`‖∞

) p−→ 0.

e) ‖(∂υ̂0)/∂t‖∞ + ‖(∂v̂j,0)/∂t‖∞
p−→ 0 for any 1 ≤ j ≤ p.

N2. The functions Ψ, χ, χ1, w2 and ψ2(x) = xw2(x) are bounded and continuous.
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N3. The matrix A is non-singular, where

A = E0

[{
χ (y,xTβ0 + η0(t))

[
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

] [
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

]T

+ Ψ(y,xTβ0 + η0(t))
∂2

∂β∂βT
ηβ(t)

∣∣∣
T

β=β0

}
w2(x)

]
.

N4. The matrix Σ is positive definite with

Σ = E0

{
Ψ2 (y,xTβ0 + η0(t))w2

2(x)
[
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

] [
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

]T}
.

N5. a) E0 {Ψ(y,xTβ0 + η0(t)) |(x, t)} = 0.

b) E0

[{
χ (y,xTβ0 + η0(τ))

(
x +

∂

∂β
ηβ(τ)

∣∣∣
β=β0

)}
w2(x)|t = τ

]
= 0 .

N6. E0

(
w2(x)

∥∥∥∥x + (∂ηβ(τ))/∂β
∣∣∣
β=β0

∥∥∥∥
2
)
<∞.

Remark A.2.1. Conditions N1a) and d) entail that for any consistent estimator

β̃ of β0, we have ∆n
p−→ 0 and Λn

p−→ 0 with

∆n = max
1≤j≤p

∥∥∥∥∥∥
∂

∂βj
η̂β

∣∣∣∣∣
β=β̃

− ∂

∂βj
ηβ

∣∣∣∣∣
β=β0

∥∥∥∥∥∥
∞

Λn = max
1≤j,`≤p

∥∥∥∥∥∥
∂2

∂βj∂β`
η̂β

∣∣∣∣∣
β=β̃

− ∂2

∂βj∂β`
ηβ

∣∣∣∣∣
β=β0

∥∥∥∥∥∥
∞

.

Condition N1b) follows from the continuity of ηβ(t) = η(β, t) with respect to (β, t)

and Theorem 3.1 that leads to supβ∈K

∥∥∥η̂β − ηβ

∥∥∥
∞

a.s.−→ 0.

Remark A.2.2. When the kernel K is continuously differentiable with derivative

K ′ bounded and with bounded variation, the uniform convergence required in N1b)

to e) can be derived through analogous arguments to those considered in Theorem
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3.1 by using that

∂

∂t
η̂β(t) = −

(
nhn

2
)−1

n∑

i=1

K ′ ((t− ti) /hn) Ψ
(
yi,xT

i β + η̂β(t)
)

(nhn)−1
n∑

i=1

K ((t− ti) /hn)χ
(
yi,xT

i β + η̂β(t)
)

∂

∂βj
η̂β(t) = −

(nhn)−1
n∑

i=1

K ((t− ti) /hn)χ
(
yi,xT

i β + η̂β(t)
)
xij

(nhn)−1
n∑

i=1

K ((t− ti) /hn)χ
(
yi,xT

i β + η̂β(t)
)

and requiring

sup
t∈T

E

(
sup
β∈K

|χ
(
y1,xT

1β + ηβ(t)
)
‖x1‖ |t1 = t

)
< ∞

sup
t∈T

E

(
sup
β∈K

|χ1

(
y1,xT

1β + ηβ(t)
)
‖x1‖ |t1 = t

)
< ∞

inf
β∈K
t∈T

E
(
χ
(
y1,xT

1β + ηβ(t)
)
|t1 = t

)
> 0 .

The uniform convergence rates required in N1c) are fulfilled when η̂β is defined

through (7) and a rate-optimal bandwidth is used for the kernel. The convergence

requirements in N1 are analogous to those required in Condition (7) in Severini and

Staniswalis (1994, p. 510) and are needed in order to obtain the desired rate of

convergence for the regression estimates. More precisely, assumption N1c) avoids

the bias term and ensures that Gn(η̂β0
) will behave asymptotically as Gn(ηβ0

),

where for any β ∈ IRp and any differentiable function υβ(t) = υ(β, t) : IRp+1 → IR

Gn

(
υβ

)
=

1√
n

n∑

i=1

Ψ
(
yi,xT

i β0 + υβ0
(ti)
) [

xi +
∂

∂β
υβ(ti)

∣∣∣
β=β0

]
w2(xi) .

Remark A.2.3. If N4 is fulfilled then the columns of x + (∂ηβ(t))/∂β|β=β0
will

not be collinear. It is necessary not to allow x to be predicted by t to get root-n

regression estimates.

Note that for the Ψ functions considered by Bianco and Yohai (1995), Croux and

Haesbroeck (2002) and Cantoni and Ronchetti (2001a), N5a) is satisfied. This
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condition is the conditional Fisher consistency property as stated in the generalized

linear regression model by Künsch, Stefanski and Carroll (1989).

Note also that N5b) is fulfilled if w2 ≡ w1. Effectively, since ηβ(τ) minimizes

S(a,β, τ) for each τ , it satisfies

E0

[
Ψ
(
y,xTβ + ηβ(τ)

)
w1(x)| t = τ

]
= 0 ,

thus, differentiating with respect to β, we get

E0

[
χ
(
y,xTβ + ηβ(τ)

)(
x +

∂

∂β
ηβ(τ)

)
w1(x)| t = τ

]
= 0.

Moreover, either if w2 ≡ w1 or if N5a) holds

A = E0

{
χ (y,xTβ0 + η0(t))

[
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

] [
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

]T

w2(x)
}
.

Therefore, if Ψ(y, u) is strictly monotone in u and P (w2(x) > 0) = 1, N3 holds, i.e.,

A will be non- singular unless

P

(
aT

[
x +

∂

∂β
ηβ(t)

∣∣∣
β=β0

]
= 0
)

= 1 ,

for some a ∈ IRp, that is, unless there is a linear combination of x which can be

completely determined by t.

Assumption N6 is used to ensure the consistency of the estimates of A based

on preliminary estimates of the regression parameter β and of the functions ηβ.

Lemma A.2.1. Let (yi,xi, ti) be independent observations such that yi| (xi, ti) ∼
F (·, µi) with µi = H (η0(ti) + xT

i β0) and Var (yi|(xi, ti)) = V (µi). Assume that ti

are random variables with distribution on a compact set T and that N1 to N3 and

N6 hold. Let β̃ be such that β̃
p−→ β. Then , An

p−→ A where A is given in N3

and

An = n−1
n∑

i=1

χ

(
yi,xT

i β̃ + η̂
β̃

(ti)
)

ẑi

(
β̃
)

ẑi

(
β̃
)T

w2(xi)

+ n−1
n∑

i=1

Ψ
(
yi,xT

i β̃ + η̂
β̃

(ti)
)

∂2

∂β∂βT
η̂β(ti)

∣∣∣
T

β=β̃
w2(xi)

ẑi

(
β̃
)

= xi +
∂

∂β
η̂β(ti)

∣∣∣
β=β̃

.
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Proof. Note that An can be written as An =
∑6

j=1 A(j)
n where

A(1)
n = n−1

n∑

i=1

χ
(
yi,xT

i β̃ + η0(ti)
)

zi zT
i w2(xi)

A(2)
n = n−1

n∑

i=1

Ψ
(
yi,xT

i β̃ + η0(ti)
) ∂2

∂β∂βT
ηβ(ti)

∣∣∣
T

β=β0

w2(xi)

A(3)
n = n−1

n∑

i=1

χ1

(
yi,xT

i β̃ + ξi,1

)
ŵ0(ti)zizT

i w2(xi)

A(4)
n = n−1

n∑

i=1

χ
(
yi,xT

i β̃ + ξi,2

)
ŵ0(ti)

∂2

∂β∂βT
ηβ(ti)

∣∣∣
T

β=β0

w2(xi)

A(5)
n = n−1

n∑

i=1

χ

(
yi,xT

i β̃ + η̂
β̃

(ti)
)

[ŵ(ti)zT
i + ziŵ(ti)T + ŵ(ti) ŵ(ti)T]w2(xi)

A(6)
n = n−1

n∑

i=1

Ψ
(
yi,xT

i β̃ + η̂
β̃

(ti)
)

V̂(ti)Tw2(xi) ,

where ξi,1 and ξi,2 are intermediate points and

zi = xi +
∂

∂β
ηβ(ti)

∣∣∣
β=β0

ŵ0(t) = η̂
β̃

(t) − η0(t)

ŵ(t) =
∂

∂β
η̂β(t)

∣∣∣
β=β̃

− ∂

∂β
ηβ(t)

∣∣∣
β=β0

V̂(t) =
∂2

∂β∂βT
η̂β(ti)

∣∣∣
β=β̃

− ∂2

∂β∂βT
ηβ(ti)

∣∣∣
β=β0

.

Using N1a), b) and d), N6, the boundness of Ψ, χ, χ1, w2 and ψ2 and the fact that

β̂
p−→ β0, it follows easily that A(j)

n
p−→ 0 for 3 ≤ j ≤ 6.

It remains to show that A(1)
n + A(2)

n
p−→ A. which follows from Proposition

A.1.1, using N6, the consistency of β̃ and the continuity of Ψ and χ.

Proof of Theorem 4.1. Let β̂ is a solution of F 1
n(β) = 0 defined in (15). Using

a Taylor’s expansion of order one we get

0 =
n∑

i=1

Ψ
(
yi,xT

i β̂ + η̂
β̂

(ti)
)
w2(xi)

[
xi +

∂

∂β
η̂β(ti)

∣∣∣
β=β̂

]

=
n∑

i=1

Ψ
(
yi,xT

i β0 + η̂β0
(ti)
)
w2(xi)

[
xi +

∂

∂β
η̂β(ti)

∣∣∣
β=β0

]
+ nAn

(
β̂ − β0

)
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where

An = n−1
n∑

i=1

∂

∂β

{
Ψ
(
yi,xT

i β + η̂β(ti)
)[

xi +
∂

∂β
η̂β(ti)

]} ∣∣∣
β=β̃

w2(xi)

=n−1
n∑

i=1

χ

(
yi,xT

i β̃ + η̂
β̃

(ti)
)[

xi +
∂

∂β
η̂β(ti)

∣∣∣
β=β̃

] [
xi +

∂

∂β
η̂β(ti)

∣∣∣
β=β̃

]T

w2(xi)

+ n−1
n∑

i=1

Ψ
(
yi,xT

i β̃ + η̂
β̃

(ti)
)

∂2

∂β∂βT
η̂β(ti)

∣∣∣
T

β=β̃
w2(xi) ,

with β̃ an intermediate point between β and β̂. Note that in the partly linear

regresion model, only the first term in An is different from 0, since η̂β(t) is linear

in β.

From Lemma A.2.1, we have that An
p−→ A, where A is defined in N3. There-

fore, in order to obtain the asymptotic distribution of β̂ it will be enough to derive

the asymptotic behaviour of

L̂n = n−1/2
n∑

i=1

Ψ
(
yi,xT

i β0 + η̂β0
(ti)
) [

xi +
∂

∂β
η̂β(ti)

∣∣∣
β=β0

]
w2(xi) .

Let

Ln = n−1/2
n∑

i=1

Ψ
(
yi,xT

i β0 + ηβ0
(ti)
) [

xi +
∂

∂β
ηβ(ti)

∣∣∣
β=β0

]
w2(xi) .

Using that ηβ0
= η0 and since N5 entails that E

[
Ψ
(
yi,xT

i β0 + ηβ0
(ti)
)
|(xi, ti)

]
=

0, it follows that Ln is asymptotically normally distributed with covariance matrix

Σ. Therefore, it remains to show that Ln − L̂n
p−→ 0.

We have the following expansion L̂n − Ln = L1
n + L2

n + L3
n + L4

n where

L1
n = n−1/2

n∑

i=1

χ (yi,xT
i β0 + η0(ti))

[
xi +

∂

∂β
ηβ(ti)

∣∣∣
β=β0

]
w2(xi)υ̂0(ti)

L2
n = n−1/2

n∑

i=1

Ψ
(
yi,xT

i β0 + ηβ0
(ti)
)
w2(xi)v̂0(ti)

L3
n = n−1

n∑

i=1

χ (yi,xT
i β0 + η0(ti))w2(xi)

(
n1/4v̂0(ti)

) (
n1/4υ̂0(ti)

)

L4
n = (2n)−1

n∑

i=1

χ1 (yi,xT
i β0 + ξ(ti))

[
xi +

∂

∂β
ηβ(ti)

∣∣∣
β=β0

]
w2(xi)

(
n1/4υ̂0(ti)

)2
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where υ̂0(t) = η̂β0
(t) − η0(t), v̂0(t) = (v̂1,0(t), . . . , v̂p,0(t))

T = ∂υ̂(β, t)/∂β|β=β0

is defined in (A.6), υ̂ is defined in (A.5) and ξ(ti) an intermediate point between

η̂β0
(ti) and η0(ti). It is easy to see that L3

n
p−→ 0 and L4

n
p−→ 0 follow from N1c)

and N2.

To complete the proof, we will show that Lj
n

p−→ 0 for j = 1, 2 which will follow

from N1c) to e) and N5, using similar arguments to those considered in Bianco and

Boente (2004).

Effectively, fix the coordinate j, 1 ≤ j ≤ p. For any function υ, if xi,j and βj

denote the j−th coordinate of xi and β respectively, we define

Jn,1 (υ) = n−1/2
n∑

i=1

χ (yi,xT
i β0 + η0(ti))

[
xi,j +

∂

∂βj
ηβ(ti)

∣∣∣
β=β0

]
w2(xi) υ(ti)

Jn,2 (υ) = n−1/2
n∑

i=1

Ψ(yi,xT
i β0 + η0(ti))w2(xi) υ(ti)

where we have omitted the subscript j for the sake of simplicity.

Let V = {υ ∈ C1(T) : ‖υ‖∞ ≤ 1 ‖υ′‖∞ ≤ 1}. Note that, for any probability

measure lQ, the bracketing number N[ ]

(
ε,V, L2( lQ)

)
, and so the covering number

N
(
ε,V, L2( lQ)

)
, satisfy

logN
(
ε/2,V, L2( lQ)

)
≤ logN[ ]

(
ε,V, L2( lQ)

)
≤ Kε−1 ,

for 0 < ε < 2, where the constant K is independent of the probability measure lQ

(see Corollary 2.7.2 in van der Vaart and Wellner (1996)).

Consider the classes of functions

F1 =
{
f1,υ(y,x, t) = χ (y,xTβ0 + η0(t))

[
xj +

∂

∂βj
ηβ(t)

∣∣∣
β=β0

]
w2(x) υ(t) , υ ∈ V

}

F2 =
{
f2,υ(y,x, t) = Ψ

(
y,xTβ0 + ηβ0

(t)
)
w2(x) υ(t) , υ ∈ V

}
.

F1 and F2 have enveloppes the constants

A1 = ‖χ‖∞
[
‖ψ2‖∞ +

∥∥∥(∂ηβ)/∂βj |β=β0

∥∥∥
∞
‖w2‖∞

]

and A2 = ‖Ψ‖∞‖w2‖∞, respectively. On the other hand, N5 implies that, for any

f ∈ F1 ∪ F2, E f (yi,xi, ti) = 0.
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Denote ‖f‖ iq,2 =
(
E iq(f2)

)1/2. It is easy to see that, given υ ∈ V, for any

0 < ε < 2, ‖υs − υ‖ iq,2 < ε entail that

‖f1,υs − f1,υ‖ iq,2 ≤ A1 ε

‖f2,υs − f2,υ‖ iq,2 ≤ A2 ε

and so,

N
(
εA1,F1, L

2( lQ)
)

≤ N
(
ε,V, L2( lQ)

)

N
(
εA2,F2, L

2( lQ)
)

≤ N
(
ε,V, L2( lQ)

)
.

Therefore, these classes of functions have finite uniform–entropy.

For any class of functions F, denote J(δ,F) the integral

J(δ,F) = sup
lQ

∫ δ

0

√
1 + log

(
N
(
ε ‖F‖ iq,2,F, L2( lQ)

))
dε ,

where the supremum is taken over all discrete probability measures lQ with ‖F‖ iq,2 >

0 and F is the enveloppe of F. The function J is increasing, J(0,F) = 0 and

J(1,F) < ∞ and J(δ,F) → 0 as δ → 0 for classes of functions F which satisfies the

uniform–entropy condition. Moreover, if F0 ⊂ F and the enveloppe F is used for

F0, then J(δ,F0) ≤ J(δ,F).

For any ε > 0 and 0 < δ < 1, consider the subclasses

F1,δ = {f1,υ(y,x, t) ∈ F1 with ‖υ‖∞ < δ} ⊂ F1

F2,δ = {f2,υ(y,x, t) ∈ F2 with ‖υ‖∞ < δ} ⊂ F2 .

Remind that υ̂0(t) = η̂β0
(t) − η0(t) and v̂j,0(t) = (∂υ̂(β, t))/∂βj |β=β0

. Using that

N1c) and e) entail that

sup
t∈T

|υ̂0(t)|
p−→ 0, sup

t∈T
| ∂
∂t
υ̂0(t)|

p−→ 0 ,

sup
t∈T

|v̂j,0(t)|
p−→ 0, sup

t∈T
| ∂
∂t

v̂j,0(t)|
p−→ 0 ,

we have that, for n large enough, P (υ̂0 ∈ V and ‖υ̂0‖∞ < δ) > 1 − δ/2 and

P (v̂j,0 ∈ V and ‖v̂j,0‖∞ < δ) > 1 − δ/2, for 1 ≤ j ≤ p.
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It is clear that

sup
f∈F1,δ

n−1
n∑

i=1

f2(ri, zi, ti) ≤ A2
1δ

2

sup
f∈F2,δ

n−1
n∑

i=1

f2(ri, zi, ti) ≤ A2
2 δ

2 .

Therefore, the maximal inequality for covering numbers entails that, for any

0 ≤ ` ≤ p,

P (|Jn,1 (υ̂0) | > ε) ≤ P (|Jn,1 (υ̂0) | > ε , υ̂0 ∈ V and ‖υ̂0‖∞ < δ) + δ

≤ P

(
sup

f∈F1,δ

∣∣∣∣∣n
−1/2

n∑

i=1

f(yi,xi, ti)

∣∣∣∣∣ > ε

)
+ δ

≤ ε−1E

(
sup

f∈F1,δ

∣∣∣∣∣n
−1/2

n∑

i=1

f(ri, zi, ti)

∣∣∣∣∣

)
+ δ

≤ ε−1D1A1 J (δ,F1) + δ ,

where D1 is a constant not depending on n.

Similarly, P (|Jn,2 (v̂j,0) | > ε) ≤ ε−1D2A2 J (δ,F2) + δ. Using that the classes

F1 and F2 satisfy the uniform–entropy condition, we get limδ→0 J (δ,F1) = 0 and

limδ→0 J (δ,F2) = 0. Thus, we have that L1
n = Jn,1 (υ̂0)

p−→ 0 and

L2
n = (Jn,2 (v̂1,0) , . . . , Jn,2 (v̂p,0))

T p−→ 0, as desired.
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Bias(β̂) SD(β̂) MSE(β̂) MSE(η̂)

QAL(0.1) 0.059 0.219 0.051 0.111

QAL(0.2) 0.033 0.214 0.047 0.073

QAL(0.3) 0.004 0.220 0.048 0.152

RQL(0.1) −0.051 0.242 0.061 0.114

RQL(0.2) −0.054 0.254 0.067 0.089

RQL(0.3) −0.105 0.262 0.080 0.154

MOD(0.1) 0.030 0.252 0.064 0.143

MOD(0.2) 0.018 0.251 0.063 0.088

MOD(0.3) −0.001 0.252 0.064 0.135

Table 1: Summary Results for Study 1.

QAL RQL MOD

Original data 2.02 2.08 1.99

x1 = 10, y1 = 0 0.90 2.07 2.00

x2 = −10, y2 = 10 0.31 2.06 1.97

x3 = −10, y3 = 10 0.12 2.05 1.95

Table 2: Estimates of β (true value of 2) in Study 2. (xi, yi), 1 ≤ i ≤ 3 denote the

three contaminating points which replace the first three observations one by one.
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Figure 1: Histograms of β̂ for QAL, RQL and MOD using bandwidths hn = 0.1, 0.2 and

0.3 .
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Data Estimator Bias(β̂) SD(β̂) MSE(β̂) MSE (η̂)

Original QAL 0.126 0.357 0.143 0.297

Original RQL 0.199 0.409 0.207 0.348

Original MOD 0.158 0.386 0.174 0.317

Contaminated C1 QAL −0.393 0.366 0.288 0.378

Contaminated C1 RQL −0.171 0.440 0.223 0.378

Contaminated C1 MOD −0.245 0.414 0.231 0.365

Contaminated C2 QAL −0.935 0.287 0.957 0.446

Contaminated C2 RQL 0.018 0.545 0.297 0.399

Contaminated C2 MOD −0.237 0.436 0.246 0.350

Contaminated C3 QAL −2.187 0.071 4.788 0.402

Contaminated C3 RQL 0.177 0.430 0.216 0.400

Contaminated C3 MOD −0.037 0.475 0.227 0.369

Table 3: Summary Results for Study 3.

Data Ratio MSE(β̂) MSE(η̂)

Original QAL/RQL 0.691 0.853

Original QAL/MOD 0.822 0.937

Contaminated C1 QAL/RQL 1.291 1.000

Contaminated C1 QAL/MOD 1.247 1.036

Contaminated C2 QAL/RQL 3.222 1.118

Contaminated C2 QAL/MOD 3.890 1.274

Contaminated C3 QAL/RQL 22.167 1.005

Contaminated C3 QAL/MOD 21.093 1.089

Table 4: Summary Results for Study 3. Ratio of MSE
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