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Abstract

In this paper, we define a class of multivariate tolerance regions
which turn out to be more resistant than the classical ones to outliers.
The tolerance factors are evaluated using a simulation study under
the central model and the sensitivity to deviations of the normal
distribution for moderate samples is studied through a Monte Carlo
study. Besides, the influence function of the coverage probability
allows to compare the sensitivity of different proposals to anomalous
data.

KEY WORDS: Coverage Probability, Multivariate Normal Distrib-
ution, Donoho–Stahel Estimator.
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1 INTRODUCTION

Tolerance regions are widely used in industrial applications, being may
be the most important one, quality control, where one seeks to guarantee
that several variables satisfy given standards. See, for instance, Fuchs and
Kenett (1988), where tolerance regions are applied on a quality control
study of ceramic substrates used in the electronic industry. In particular,
the theory of univariate tolerance regions for normal populations is well
known, see Proschan (1953), Guttman (1970) and Odeh and Owen (1980).
Under a normal distribution, even if there is no explicit solution for the
tolerance factor, it can be obtained solving an univariate integral equation.
Tables, algorithms and aproximations for this problem are described in
Odeh and Owen (1980).

In the multivariate setting, the development is smaller and the com-
putation of the tolerance factor is much more difficult since it involves,
even in the normal setting, the resolution of a (d+1)−dimensional integral
equation. The first attempt to construct a tolerance region for multivariate
normally distributed observations, is due to John (1962). In the particu-
lar situation of a normal distribution the tolerance regions are ellipsoids
centered at the sample mean. More precisely, given a training sample
x1, . . . ,xn, with distribution Pθ = N(µ,Σ), let x be a random vector in-
dependent of the sample such that x ∼ Pθ. Then, the tolerance region can
be defined as R = R(x1, . . . ,xn) =

{
y : (y − x)S−1 (y − x) ≤ K

}
where

S denotes the sample covariance matrix and K is the tolerance factor to
be choosen such that

Pn,θ

[
Pθ
(
(x − x)S−1 (x− x) ≤ K|x,S

)
≥ q

]
≥ δ ∀θ = (µ,Σ) ,

where the inner probability is measured with respect to x (conditional to
the values x1, . . . ,xn) and Pn,θ is the probability measure associated to
x1, . . . ,xn. Since the pioneer paper from John (1962), many authors have
considered different approximations to compute tolerance factors. The re-
sults in John (1962), Chew (1966), Guttman (1970) and Krishnamoor-
thy and Mathew (1999) are based on approximations to the distribution
of the arithmetic, geometric or harmonic means of the eigenvalues of a
Wishart matrix to derive the values for the tolerance factors. Recently,
Krishnamoorthy and Mathew (1999) gave approximations for the toler-
ance factor based on Monte Carlo study. These evaluations are possible
even though they are computationally expensive.

In the univariate case, the sensitivity of the classical tolerance intervals
was first noticed by Canavos and Koutraouvaelis (1984). See also But-
ler(1982) and Fernholz and Gillespie (2001) and the references therein. On
the other hand, Fernholz (2002) extended the proposal of Fernholz and
Gillespie (2001) to include robust statistics for the end-points in order to
provide resistant tolerance intervals.

The same lack of robustness of the classical tolerance regions can be
observed in the multivariate setting since they are constructed using the
sample mean and the sample covariance matrix. Therefore, the content or
coverage probability, Pθ (x ∈ R), and the size of the region will be strongly
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affected by anomalous observations. This phenomena is illustrated in Sec-
tion 2.1 where the behavior of the classical tolerance region is studied when
outliers or inliers are included. A robust plug–in tolerance region defined by
replacing the classical estimators of location and scatter by affine equivari-
ant robust Fisher–consistent estimators is then introduced in Section 3.

The value of the tolerance factors for the robust tolerance regions is
derived through a Monte Carlo study, when the Donoho–Stahel estimators
are used. The description of the algorithm used and the values obtained
are given in Section 3.2. In Section 4.2 a simulation study is carried on to
compare the behavior of the proposed region with that of the classical one
for normal and contaminated training samples. Finally, in Section 5, the
influence function of the coverage probability is computed. The influence
function allows to understand the sensitivity of the classical procedure to
anomalous data. On the other hand, it turns out to be bounded if the
multivariate scatter estimator used has bounded influence. Proofs are given
in the Appendix.

2 CLASSICAL TOLERANCE REGIONS

Given a training sample x1, . . . ,xn from a normal distribution, i.e, xi ∼
Nd (µ,Σ), and a new observation x ∼ Nd (µ,Σ) independent of {xi}, for
any 0 < q < 1 and 0 < δ < 1, a tolerance region R(x1, . . . ,xn), based on
the training sample, is the random region which covers with probability at
least q the new observation x with a confidence level higher than δ. In the
particular case of a normal distribution it can be written as

R =
{
y : (y − x)′ S−1 (y − x) ≤ K

}
(1)

where x and S are the sample mean and covariance matrix, respectively
and the tolerance factor K = K(q, δ, n, d) depends on the size of the sample
n, the dimension d, as well as the parameters q and δ.

The following result which will be used in the sequel and whose proof
is straighforward shows that if we consider affine equivariant location and
scatter estimates, to evaluate the tolerance factor K under elliptical distri-
butions we can assume that the true location and scatter parameters are
µ = 0 and Σ = Id. Thus, as is well known, for the classical tolerance region,
one can assume that x ∼ Nd (0, (1/n)Id) and (n − 1)S ∼ Wd(n − 1, Id),
where Wd(m,Σ) denotes the d−dimensional Wishart distribution with m
degree of freedom and scatter matrix Σ.

Proposition 2.1. Let xi, 1 ≤ i ≤ n be independent random vectors with
elliptical distribution Pθ, θ = (µ,Σ), i.e., C− 1

2 (xi − µ) = zi has an spher-
ical distribution G with Σ = CC′. Assume that tn = tn (x1, . . . ,xn) and
Vn = Vn (x1, . . . ,xn) are affine equivariant location and scatter estima-
tors, respectively. Define the region

R(x1, . . . ,xn) =
{
y : (y − tn)′ V−1

n (y − tn) ≤ K
}

.
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Denote by K the tolerance factor related to R(x1, . . . ,xn), i.e., the constant
such that

pn(θ) = Pn,θ [Pθ (x ∈ R(x1, . . . ,xn)|x1, . . . ,xn) ≥ q] ≥ δ ∀ θ = (µ,Σ) .

Then, pn(θ) does not depend on θ and to compute K we can assume µ = 0
and Σ = Id. More precisely, the tolerance factor is the constant K such
that

Pn,θ0

[
Pθ0

(x ∈ R(x1, . . . ,xn)|x1, . . . ,xn) ≥ q
]
≥ δ ,

where θ0 = (0, Id).

Proof. Since the estimators are affine equivariant we have that tn (x1, . . . ,xn) =
µ + Ctn (z1, . . . , zn) and Vn (x1, . . . ,xn) = Ctn (z1, . . . , zn)C′. The re-
sult follows inmediately using that R(x1, . . . ,xn) = µ + CR(z1, . . . , zn).

Remark 2.1. Note that the conclusion of Proposition 2.1. still holds
if the training sample and the new observation x have different elliptical
distribution but the same location and scatter parameters.

As mentioned in the Introduction, the classical procedures are not dis-
tributionally robust since they are sensitive to even small deviations from
normality. More precisely, as it will be shown just one outlying observa-
tion can modify the region obtained, due to changes in the estimation of
the mean and of the covariance matrix, modifying the actual content. The
question, is then if the constant q is still a reliable bound for the coverage
probability of the tolerance region based on the sample mean x and on the
sample covariance matrix S. In general, the answer is negative as it is in
the univariate case (see, Butler(1982), Canavos and Koutraouvaelis (1984),
Fernholz and Gillespie (2001)).

2.1 Sensitivity study of the classical tolerance regions

The goal of this Section is to show the sensitivity of the classical tolerance
regions when the tolerance factor has been computed as the value satisfying

Pn,(0, Id)

[
P(0, Id)

(
(x − x)S−1 (x − x) ≤ K

)
≥ q

]
≥ δ (2)

with x ∼ Nd (0, Id) and xi ∼ Nd (0, Id). To show the lack of robustness
of the classical regions, in the multivariate setting, we have contaminated
training samples of size n = 30 with distribution N (0, Id), by replacing
one observation by an outlier x at distance ‖x‖ = 2, 4, 8 and 16 from
the center of the distribution (x = ‖x‖e1 with e1 the first vector of the
canonical basis). We have performed the study in dimension d = 2, 3, 4
and 5. For each of these samples, we have considered the region defined
through (1) with the tolerance factor computed for normal samples with
theoretical coverage q = 0.95 and confidence level δ = 0.95.

The tolerance factors used were evaluated by simulation through the
procedure described in Krishnamoorthy and Mathew (1999) and are given
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in Table 1. Through a Monte Carlo study, we have computed the actual
coverage probability π of the region, when the training sample has distrib-
ution G and we use as location and scatter estimates tn = x and Vn = S,
as follows

(i) Generate n random vectors xi ∼ G. Compute tn and Vn.

(ii) Generate R random vectors yi ∼ Nd(0, Id) and for each of them verify
if it lies or not at the region R =

{
y : (y − tn)′ V−1

n (y − tn) ≤ K
}
.

If yi ∈ R define ci = 1 elsewhere, ci = 0. Compute the average

content c as c = (1/R)
R∑

i=1

ci.

(iii) Repeat (i) and (ii) N times, preserving c at each step.

(iv) Sort the average contents c(1) ≤ · · · ≤ c(N) and we keep the N(1 −
δ)−th one, c(N (1−δ)) = π, which approximates the actual coverage
probability with confidence level δ.

We took N = R = 1000.

We have also computed the increase of the volume of the regions, I,
computed as % of the volume of the region for the uncontaminated distri-
bution with respect to that of the contaminated one, i.e.,

Id =
[det(S)]

1
2

[det(Sc)]
1
2

where Sc denotes the sample covariance matrix evaluated over the conta-
minated sample. The results are shown in Table 2.

As it can be seen, the main problem is that the size of the regions
increase due to an inflated estimated generalized variance (det(S)). This
explains the large values for the actual coverage probability with the con-
taminated sample, even when the region is centered far away from 0, the
true center, as a result of the lack of robustness of the sample mean as
location estimator.

To study the sensitivity to inliers we have contaminated N(0, Id) sam-
ples of size n = 30 in dimension d = 2, 3, 4 and 5, with 1, 2, 3, or 4
anomalous data located at zero. For each of these contaminated samples,
we have considered the tolerance region defined through the tolerance fac-
tor related to q = 0.95 and δ = 0.95 for normal data given in Table 1.
Then, we evaluate the actual content asdescribed above and the increase in
the volume of the region. The results are given in Table 3 which shows that
including inliers lead to a reduction of the actual content as a consequence
of the reduction in the volume of the region. Both effects are higher as the
dimension increase.

These observations show the need of defining tolerance regions not so
sensitive to a small amount of anomalous data.
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3 ROBUST TOLERANCE REGIONS

3.1 Its definition

A “plug–in”approach can be used to define robust tolerance regions that
will not be affected by the inclusion of some anomalous data. Such a proce-
dure replaces the classical location and scatter estimates by robust counter-
parts. More precisely, let tn = tn (x1, . . . ,xn) and Vn = Vn (x1, . . . ,xn)
be robust location and scatter estimates. Define the region

R(x1, . . . ,xn) =
{
y : (y − tn)′ V−1

n (y − tn) ≤ K
}

, (3)

where the constant K is choosen such that

pn (µ,Σ) = Pn,θ [Pθ (x ∈ R(x1, . . . ,xn)|x1, . . . ,xn) ≥ q] ≥ δ ∀ θ = (µ,Σ) ,

with x ∼ Nd (µ,Σ) and xi ∼ Nd (µ,Σ), 1 ≤ i ≤ n, independent, Pn,θ the
distribution of (tn,Vn) and Pθ that of x. We will then say that R is a
robust tolerance region.

For the evaluation of the tolerance factor, the problem of the depen-
dence of pn (µ,Σ) on the unknown parameters araises. To avoid this prob-
lem and using Proposition 2.1, we must choose robust affine equivariant
location and scatter estimates. Therefore, if tn = tn (x1, . . . ,xn) and
Vn = Vn (x1, . . . ,xn) are robust affine equivariant location and scatter
estimates, the tolerance factor K of the region R defined in (3) solves

Pn,(0, Id)

[
P(0, Id) (x ∈ R(x1, . . . ,xn)|x1, . . . ,xn) ≥ q

]
≥ δ . (4)

On the other hand, to compare the robust tolerance factors defined in (4)
with the classical ones given in Table 4 from Krishnamoorthy and Mathew
(1999), it is necessary that the robust location and scatter functionals will
be Fisher–consistent at the multivariate normal distribution, i.e, if xi ∼
Nd (0, Id), 1 ≤ i ≤ n, Vn

c.t.p.−→ Id and tn
c.t.p.−→ 0.

There are several proposals of robust location and scatter estimates.
Possibles choices are the M–scatter estimate proposed by Maronna (1976),
the minimum volume ellipsoid estimate (Rousseeuw and van Zomeren (1990)),
the minimum covariance determinant (MCD, Rousseeuw (1985)), the Donoho
(1982)–Stahel (1981) estimate, the S-, MM- and τ−estimates (Lopuhaä
(1990)). The main disadvantage of M–estimates, with monotone score
functions, is that their breakdown point decreases with the dimension. All
other proposals mentioned can achieve 1

2 breakdown point. Among them,
only the minimum volume ellipsoid estimate converges at a low rate, n1/3,
while the other ones have a root–n convergence rate. An overview of ex-
isting estimators of multivariate location and scatter is given in Maronna
and Yohai (1998).

3.2 Computation of the tolerance factor for the robust
tolerance regions

In this Section we will describe a method to compute the tolerance factor
which is related to that given by Krishnamoorthy and Mathew (1999). It
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will be applied to the regions constructed using the Donoho–Stahel estima-
tors.

A simulation algorithm similar to that introduced by Krishnamoorthy
and Mathew (1999), was developped in matlab to approximate the value
of the tolerance factor K for differewnt combinations of n, d, q and δ. This
algorithm which is available upon request, is briefly described as follows

(i) For each j, generate n random vectors xi ∼ Nd(0, Id). Evaluate
robust affine equivariant location and scatter estimates tn and Vn.

(ii) Generate R random vectors yi ∼ Nd(0, Id) and for each of them
compute the Mahalanobis distance to the robust location according
to Vn, i.e., DMi = (yi − tn)′ V−1

n (yi − tn).

(iii) Sort the quadratic forms DM (1) ≤ · · · ≤ DM (R) and search for
the q−th percentile of the quadratic form DM (R q). Denote uj this
percentile.

(iv) Repeat (i) to (iii) N times, keeping the value uj at each step.

(v) Sort the values uj , u(1) ≤ · · · ≤ u(N) and search for the δ−th per-
centile, u(N δ) which gives an approximation to the tolerance factor
K.

Tables 5 to 7 give the values of the tolerance factor Kds satisfying (4)
for different values of d, q, δ y n, when using the Donoho–Stahel estimator.

For the sake of completeness, we will remind the definition of the
Donoho–Stahel estimates. Given a sample x1, . . . ,xn, denote X = (x1, . . . ,xn)
and consider all the univariate projections of the observations a′X, a ∈ IRd,
a �= 0. Let m(·) and s(·) be univariate location and scale estimates, re-
spectively. An outlyingness measure of a′xi is the standardized distance
|a′xi − m (a′X)| /s (a′X).

The overall outlyingness measure of the point xi ∈ IRd is then de-
fined as r (xi,X) = sup

a∈IRd

|a′xi − m (a′X)| /s (a′X). The Donoho–Stahel

downweights each observation according to its outlyingness measure. The
location estimate is then a weighted mean and the scatter matrix estimator
is a weighted covariance matrix defined as

tn =

n∑
i=1

wi xi

n∑
i=1

wi

, Vn = β

n∑
i=1

wi (xi − tn) (xi − tn)′

n∑
i=1

wi

, (5)

where wi = w
(
r2 (xi,X)

)
with w a non–negative and usually non–increasing

weight function and β is a standardizing constant to obtain Fisher–consistency.

In order that tn and Vn be affine equivariant, we have to assume that
the univariate estimators m are s are equivariant. On the other hand, if we
wish to obtain Fisher–consistent estimates at the N (0, Id) distribution, we
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have to calibrate the univariate scale such that s(Φ) = 1 with Φ the distri-
bution function of a N(0, 1) random variable and β must be choosen equal
to β = d E (w (Wd)) /E (w (Wd)Wd), with Wd ∼ χ2

d. Table 4 gives the
values of β in order to get Fisher-consistency for multivariate normal data
corresponding to the Huber function, i.e., w(t2) = wH (t) = min(t2, c2)/t2

with c = (χ2
0.95,d)

1
2 .

The outlyingness measure cannot be computed exactly, then according
to the proposal given in Stahel (1981) and studied in Maronna and Yohai
(1995), the supremum is approximated taking the maximum over all the
directions orthogonal to the linear spaces spanned by M subsamples of d
points choosen among the n original ones. In dimension d = 2, it is possible
to avoid resampling by maximizing over κ equally spaced directions (with
angle � · 2π/κ, 1 ≤ � ≤ κ).

Using the Donoho–Stahel estimators we can define a robust tolerance
region as described in Section 3.1. The region will be denoted as

Rds =
{
y : (y − tn)′ V−1

n (y − tn) ≤ Kds
}

(6)

where tn = tn (x1, . . . ,xn) and Vn = Vn (x1, . . . ,xn) are given in (5).

Tables 5 to 7 give the values of the tolerance factor Kds when the
weights are computed using the Huber function. On the other hand, as lo-
cation and scale estimates we have choosen the median of the observations
m(y1, . . . , yn) = median

1≤i≤n
(yi), and s(y1, . . . , yn) = (1/Φ−1(0.75))mad(y1, . . . , yn),

the median of the absolute deviations with respect to the median, calibrated
such that it is Fisher–consistent when yi ∼ N(0, 1).

Larger regions are expected due to the smaller efficiency of the robust
location and scatter estimates. To compare the volumes of both regions
we calculate the 1/d root of the ratio between the robust region volume
and the classical region volume. The comparisons for training samples
of sizes n = 20, 30, 50, 100, dimensions d = 2, 3, 4, 5, 8, coverage probability
q = 0.95 and confidence level δ = 0.95 are given in Table 8. The calculations
were carried out following steps i) to iv) for the computation of the actual
coverage described in Section 2.1, obtained with N = 1000, R = 1000 and
M = 1000.

It can be seen that the price paid for robustness is not excessive, ex-
cept for extreme settings as n = 20 and d = 8, where the number of the
observations does not allow to obtain a good approximation of the overall
outlyingness measure.

4 MONTE CARLO STUDY

4.1 Sensitivity study of the robust tolerance region

In this section, we study the behavior of the robust regions when anomalous
data are present in the training sample, in a similar way as it was done for
the classical regions. We considered the regions Rds defined in (6) with
the tolerance factors given in Tables 5, 6 and 7. As in for classical regions,
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we have contaminated training samples of size n = 30 with distribution
N (0, Id), by replacing one observation by an outlier x at distance ‖x‖ = 2,
4, 8 and 16 from the center of the distribution. The effect of adding this
outlier is reported in Table 9, which is the counterpart of Table 2.

We see a mild increase in the volume of the tolerance region, joined
with an increase of the coverage probability, as a result of the accurate
centering of the region due to the robust estimate of location. In the case
of the classical region the mild increase in coverage was the result of a
huge increase in volume. The impact of the addition of inliers turned out
to be more important in the robust tolerance region than in the classical
one. This is reasonable because an inlier data being so central receives
a higher weight than a typical data, reducing the estimated generalized
variance through the sample weighted covariance matrix. Table 10 shows
this phenomena.

4.2 Coverage study for the robust and classical region
under alternative distributions

Both in the classical case as in the robust case the tolerance factors were
computed with the aim of achieving actual coverage probability and actual
confidence level equal to the theoretical values, when the training sample
comes from a multivariate normal distribution. It seems interesting to
analyze the behavior of these regions under alternative distributions G
other than the normal, e.g., the multivariate t distribution with g degrees
of freedom (Tg(d)).

To study the actual coverage probability for the classical and robust
regions when the training sample comes from alternative distributions (G),
we used the algorithm of Section 2.1.

We will denote by πc and πds the content of the classical and of the
robust tolerance regions, respectively. The last one, being computed with
the Donoho-Stahel estimators.

The results of actual coverage for the classical and robust regions, with
δ = 0.95 and q = 0.95, are shown in the Tables indicated between brackets
for the following distributions G

• normal distribution with no contamination G = N(0, Id) (Table 8).

• multivariate t distribution with g degrees of freedom G = Tg(d), with
g = 1, 2, 3 (Tables 11, 12 and 13, respectively).

• distribution G = (1 − ε) N(0, Id) + ε Cd with ε = 0.05 y 0.10 (Tables
14 and 15, respectively).

• distribution G = (1 − ε) N(0, Id) + εN(0, 25 Id) with ε = 0.05 y 0.10
(Tables 16 y 17, respectively).

We used training samples in dimensions d = 2, 3, 4, 5 y 8 and sizes
n = 20, 30, 50 y 100.
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To get a better insight of the difference of the two regions, and knowing
that in the case of a Cauchy distribution the sample mean follows a Cauchy
distribution too, we study the centering of the two regions. We do so by
computing the ratio between the norm of the center of the classical region
(‖x‖) and the norm of the center of the robust region (‖tn‖). We also show
in the tables the 1/d root of the ratio of volumes of the two regions.

Table 11 shows that, for the Cauchy distribution, both regions the ac-
tual coverage is smaller than the theoretical coverage. Nevertheless the
outstanding feature to point out is the remarkable increase in volume of
the classical region related to the robust region, due to the lack of robust-
ness of the estimates involved in the former region. The other important
feature is the improvement in the centering of the robust region as a result
of the robustness of the Stahel-Donoho estimate of location, as seen in the
last column of table 11. Focusing on d = 4 and n = 30, we see, at a 95%
confidence level that both regions cover less than 95% (79% for the classical
region and 67% for the robust region). The bigger coverage of the classical
region is paid with an increase of more than 81 times (3.054) the volume
and its center almost 6 times further away from 0 than the center of the
classical region.

Tables 12 and 13 give the results when the training samples are gen-
erated with distributions T2(d) and T3(d), respectively. As expected, in-
creasing the degrees of freedom in the t distribution reduces the ratio of
the volume of the classical region related to the volume of the robust re-
gion. The same effect is observed in the centering of both regions. This
is so because when we increase the degrees of freedom we get closer to
the normal distribution, where the opposite behavior occurs, though more
moderate, as a result of the lower efficiency of the robust location and
scatter estimates.

In a more realistic setting, in which just a minor proportion of the
training sample is expected to be far form normality, we contaminate the
training sample with a 5% and 10% of observations following a Cauchy
distribution. Tables 14 and 15, show that,in most cases, the robust region
is closer to the theoretical coverage with smaller volumes and a better cen-
tering. This phenomena becomes more important when we increase the
dimension, the size of the sample and the proportion of contamination.
The case n = 20 deserves special attention because the amount of conta-
mination is not important enough as to reverse the effect of bigger volume
and coverage probability of the robust region, already observed in Table
8. Similar conclusions are obtained when the contaminated observations
come from a normal distribution, but with a bigger scatter matrix (25 Id),
(Tables 16 and 17, respectively).

5 INFLUENCE FUNCTION OF THE COV-
ERAGE PROBABILITY

From now on, we will assume that the estimators, from which the tolerance
regions are defined, are functionals over the space of distribution functions
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evaluated at the empirical distribution.

Influence functions are a measure of robustness with respect to single
outliers. The importance of the influence function lies in its heuristic in-
terpretation. It describes the effect of an infinitesimal contamination at a
single point on the estimate, standarized by the amount of contamination
and it is essentially the first derivative of the functional version of the es-
timator. Besides being of theoretical interest and helpful to calibrate the
efficiency of the robust estimates measuring the influence of an observa-
tion on the classical estimates can be used as a diagnostic tool to detect
influential observations.

We are interested in computing the influence function of the coverage
probability (Pc), for a given confidence level δ fixed, a fixed theoretical
coverage q, and a tolerance factor K, i.e,

Pc (G, F ) = PF

(
(x− T (G))′ V (G)−1 (x − T (G)) ≤ K

)
with x ∼ F

=
∫

IR(G) (x) dF (x)

where

• R(G) = {x : (x− T (G))′ V (G)−1 (x − T (G)) ≤ K}

• T (G) is the location functional at the distribution G,

• V (G) is the scatter functional at G and

• K is the tolerance factor, which is assumed to be fixed.

It is important to notice that this functional depend on two distribu-
tions, F and G. More precisely, the coverage probability Pc (G, F ) depends
on the distribution with respect to which we evaluate the coverage F and
on the distribution of the training sample G which allows to estimate the
location and scatter parameters. We do not make assumptions on the dis-
tribution G, since the tolerance region can be evaluated for any data set,
even if we expect that if we use the classical estimates the tolerance region
will give poor results if the data distribution is far away from normality, as
shown in Section 4. In many situations, as the one we have considered, it is
assumed that F = G = Nd(µ,Σ). Then, under the model, the observations
from which the region is constructed, have a multivariate normal distribu-
tion and in that case, we will assume that T (G) = µ, V (G) = Σ, which
means that the functionals are Fisher–consistent. To evaluate the influ-
ence function we will only consider contaminations on the training sample
G and not on the future data distribution F which allows to compute the
coverage probability, since we are interested in knowing the effect on the
coverage probability of deviations from normality in the training sample,
which is the sample at hand. When, we evaluate the influence function
we will assume, as in discrimination (see, Croux and Joossens (2004)) that
F = G.

To simplify the computation of the influence function we will assume
F = Nd (µ,Σ). The following Lemma gives an expression for the coverage
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probability, which is analogous to that given by Croux and Joossens (2004)
for the total missclassification probability.

Lemma 5.1. Let F be an ellipsoidal distribution with location parameter
µ and scatter matrix Σ. Let T be V multivariate location and sactter
functionals. Assume that x = µ + Cz where Σ = CC′ and z ∼ F0 is
spherically distributed. Denote A(G) = C−1V(G)(C−1)′ and let us define
β(G) as the matrix of eigenvectors of A(G), β(G)′β(G) = Id, Λ(G) =
diag (λ1(G), . . . , λd(G)), the eigenvalues matrix, λ1(G) ≥ · · · ≥ λd(G) ≥ 0,
i.e, A(G) = β(G)Λ(G)β(G)′. Then,

Pc(G, F ) = PF0

(
(z− τ (G))′A(G)−1(z − τ (G)) ≤ K

)
= PF0

 d∑
i=1

(
zi − τi(G)√

λi(G)

)2

≤ K

 (7)

where τ (G) = β(G)′C−1 (T(G) − µ).

In particular, if F0 = Nd (0, Id), we have

Pc(G, F ) =
∫

IS (y)
d∏

i=1

√
λi (G) ϕ

(√
λi (G) yi + τi (G)

)
dy. (8)

with S = {y :
d∑

i=1

y2
i ≤ K} and ϕ(t) denotes the denisty of a random

variable with distribution N(0, 1).

Using Hampel’s (1974) definition, we have that the influence function
for the functional Pc at the point x and the distribution G is defined as

IF (x, P c, G) = lim
ε→0

Pc ((1 − ε) G + ε∆x, F ) − Pc (G, F )
ε

=
∂

∂ε
Pc (Gε,x, F )

∣∣∣∣
ε=0

where, from now on, Gε,x = (1 − ε) G + ε∆x denotes the distribution con-
taminated with a point mass ∆x at x.

We will evaluate the influence function in two different situations. In
the first one, the distributions G and F are such that the eigenvalues of
A(G) are all different. In the second one, F = G and T and V are Fisher–
consistentes functionals, i.e., T(G) = µ y V(G) = Σ. In this case, τ (G) =
0 and A(G) = Id. Thus, there is a problem to compute the influence
function of the eigenvectors of A(G) at G = F since they are not uniquely
defined. To overcome this problem, we define the eigenvalues of A(Gε,x),
for small ε, such that the diagonal elements of the matrix β(Gε,x) are
positive. This ensures the continuity at G = F of β(G).
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Theorem 5.1. Let T and V multivariate location and scatter functionals.
Let F = Nd (µ,Σ), with Σ = CC′ and G be such that the eigenvalues,
λ1 ≥ · · · ≥ λd, of A(G) = C−1V(G)(C−1)′ are different. Let βj be the

eigenvector related to λj . Denote τ = τ (G) = β′C−1(T(G) − µ) and F1

The distribution of y = (y1, . . . , yd)′, where y1, . . . , yd are independent and

such that yi ∼ N
(
−τi (G)λi (G)−

1
2 , λi (G)−1

)
for 1 ≤ i ≤ d.

Assume that IF(x,T, G) and IF (x,V, G) exist. Then, the influence
function of Pc(G) is given by

IF (x, Pc, G) =
d∑

j=1

β′
jC

−1IF (x,V, G) (C−1)′βj ×

× 1
2λj

[
PF1 (S) − EF1

(
IS(y)yj

(
λj yj +

√
λjτj

))]
−

−
d∑

j=1

(√
λjEF1 (yiIS (y)) + τjPF1 (S)

)
×

×

∑
i �=j

β′
iC

−1IF (x,V, G) (C−1)′βj

λj − λi
τi + β′

jC
−1IF(x,T, G)

 .

Reamrk 5.1. When T(G) = µ, τi = 0 for all 1 ≤ i ≤ d, and then

IF (x, Pc, G) =
d∑

j=1

β′
jC

−1IF (x,V, G) (C−1)′βj

PF1 (S) − λjEF1

(
IS(y)y2

j

)
2λj

.

Therefore, the influence function of the coverage probability does not de-
pend on the influence function of the location functional nor on the expres-
sion related to the influence function of the eigenvectors. The problem of
having close eigenvalues seems to be overcome. This will be the expression
for the influence function which will be derived in Theorem 5.2 which gives
the influence function when G = F . In particular, if Σ = Id, T(G) = µ
and V(G) = diag(λ1, . . . , λd), with λ1 > · · · > λd, we have

IF (x, Pc, G) =
d∑

j=1

IF (x,V, G)jj

PF1 (S) − λjEF1

(
IS(y)y2

j

)
2λj

.

Theorem 5.2. Let F = G = Nd (µ,Σ), with Σ = CC′. Let T and V be
Fisher–consistent functionals at G, i.e., T(G) = µ and V(G) = Σ.

Assume that IF(x,T, G) and IF (x,V, G) exist. Thn, the influence
function of Pc(G) is given by

IF (x, Pc, G) =
1
2

(
P (Wd ≤ K) − 1

d
E
(
WdI(0,K] (Wd)

))
tr
(
IF (x,V, G)Σ−1

)
=

1
2

(P (Wd ≤ K) − P (Wd+2 ≤ K)) tr
(
IF (x,V, G)Σ−1

)
,

13



where Wd denotes a random variable with distribution χ2
d.

In particular, if Σ = Id it holds that

IF (x, Pc, G) =
1
2

(P (Wd ≤ K) − P (Wd+2 ≤ K)) tr (IF (x,V, G)) .

Theorem 5.2 shows that the coverage probability will have bounded
influence function if the scatter functional has bounded influence.

Corollary 5.1. Let F = G = Nd (µ,Σ), T(G) =
∫

x dG and
V(G) =

∫
(x− T (G)) (x − T (G))′ dG be the classical location and scat-

ter functionals. Then, the influence function of Pc(G, F ) is given by

IF (x, Pc, G) =
1
2

cd

(
(x − µ)′ Σ−1 (x − µ) − d

)
,

where cd = P (Wd ≤ K)−P (Wd+2 ≤ K) with Wd a random variable with
χ2

d distribution.

From the expression of the influence function, we can conclude that the
influence function of the coverage probability of the classical region only
depends on x through the Mahalanobis norm, being an increasing function
of it. With respect to the constant K, the larger K the closer to 0 is
the constant cd, and so the influence function. Therefore, fixing K, the
influence function is unbounded showing the sensitivity to outliers of the
classical procedure.

Figure 1.(a) shows the influence of the coverage probability of the clas-
sical region when d = 2 for 5 tolerance factors (K = 2, 4, 6, 8 and 10). It
is worth noticing that points with Mahalanobis norm equal to d

1
2 do not

have any influence on the coverage probability, while contaminations with
norm smaller than d

1
2 have a negative influence and those with norm larger

than d
1
2 have a positive one. We can then conclude that the impact of an

inlier will be a reduction on the coverage probability, corresponding x = µ,
where the function takes the value −1

2 d cd, to the greatest effect. On the
other hand, the impact of an outlier produces an unbounded increase of
the coverage probability.

For general scatter functionals, the influence function when F = G =
Nd (µ,Σ), can be derived from Theorem 1 and Lemma 1 in Croux and
Haesbroek (2000) which gives an expression for the influence function of a
robust scatter functional. According to it, if G = N(µ,Σ) and D2(x) =
(x − µ)′Σ−1(x − µ), is the Mahalanobis distance, then, for any affine
equivariant scatter functional, V(G), such that its influence function exists,
there exist two functions αV and γV : [0,∞) → IR such that IF (x,V, G) =
αV (D(x)) (x − µ)(x − µ)′ − γV (D(x))Σ. From this property, we obtain
the following result.

14



Corollary 5.2. Let F = G = Nd (µ,Σ). Denote T and V robust affine
equivariant location and scatter functionals Fisher–consistents at G, i.e.,
T(G) = µ and V(G) = Σ. Then, the influence function of Pc(G, F ) is
given by

IF (x, Pc, G) =
1
2

cd

[
αV (D(x))D2(x) − d γV (D(x))

]
,

where cd = P (Wd ≤ K)−P (Wd+2 ≤ K) with Wd a random variable with
χ2

d distribution.

A review on multivariate location and scatter estimators can be found in
Maronna and Yohai (1998). Among them, we can mentioned the S−scatter
estimator (Lopuhaä (1990)). Thus, using S–estimators, the coverage prob-
ability will have bounded influence if the score function ρ and η(t) = tρ′(t)
are bounded functions, which is a usual requirement to obtain robust scat-
ter estimators with positive breakdown point. Figure 1.(c) shows the influ-
ence function of the coverage probability when an S–estimator estimator is
used in dimension d = 2 with 5 different tolerance factors (K = 2, 4, 6, 8
and 10). The score function ρ was taken as the biweight Tukey’s function
calibrated to attain 25% breakdown point for the S–scatter estimator. As
it can be seen the influence function is bounded.

The Donoho–Stahel estimator used in the previous Sections is a high–
breakdown point estimator and its influence function was obtained by
Gervini (2002). The following result gives the influence function of Pc(G, F )
when we use the median and the mad as the univariate location and scale
functionals.

Corollary 5.3. Let F = G = Nd (µ,Σ). Let T and V be the robust affine
equivariant functionals related to the Donoho–Stahel estimators, such that
T(G) = µ and V(G) = Σ. Assume that the following conditions hold

W1. w : [0,∞) → [0,∞) and w(u2)u2 are bounded functions.

W2. w is differentiable almost everywhere and η(u2) = w′(u2)u4 is bounded.

Then, if the univariate location functional is taken as the median m and
s(·) = (1/Φ−1(0.75))mad(·) is the univariate scale functional, the influence
function of Pc(G, F ) is given by

IF (µ, P c, G) = 0

IF (x, P c, G) = β
1
2

cd

[
c1

c0
g(D(x)) +

w
(
D2(x)

)
D2(x) − c2

c0

]
if x �= µ

=
d

2 c2
cd

[
c1 g(D(x)) + w

(
D2(x)

)
D2(x) − c2

]
if x �= µ ,
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with D2(x) = (x− µ)′Σ−1(x − µ),

β = d
c0

c2

cd = P (Wd ≤ K) − P (Wd+2 ≤ K)
c0 = E (w(Wd))
c1 = −2E

(
w′(Wd)W 2

d

)
= −2E (η(Wd))

c2 = E (w(Wd)Wd)

g(t) =

0.5 − FB( 1
2 , d−1

2 )

([
Φ−1(0.75)

]2
t2

)
2Φ−1(0.75) ϕ (Φ−1(0.75))

,

where Wd ∼ χ2
d, ϕ denotes the denisty of a random variable with distrib-

ution N(0, 1) and B (1/2, (d − 1)/2) stands for the Beta distribution with
parameters 1/2 and (d − 1)/2.

A similar result can be obtained for general univariate location and scale
functionals using Theorem 3 in Gervini (2002).

Condition W1 ensures that the influence function of the covergae prob-
ability is bounded. In particular, when w(t) = wH

(
t

1
2

)
, we have w′(t) =

w′
H

(
t

1
2

)
/(2t

1
2 ). Then, if d �= 2

c0 = P
(
Wd < c2

)
+ c2 E

(
1

Wd
I(c2,∞)(Wd)

)
= P

(
Wd < c2

)
+ c2 1

2 (d − 2)
(
1 − P

(
Wd−2 < c2

))
c1 = 2 c2 E

(
I(c2,∞)(Wd)

)
= 2 c2

(
1 − P

(
Wd < c2

))
c2 = E

(
WdI(0,c2)(Wd)

)
+ c2 E

(
I(c2,∞)(Wd)

)
= d P

(
Wd+2 < c2

)
+ c2

(
1 − P

(
Wd < c2

))
with c = (χ2

0.95,d)
1
2 .

Figure 1.(b) shows the influence function of the coverage probability
when the Donoho–Stahel estimators are used in dimension d = 2 with 5
different tolerance factors (K = 2, 4, 6, 8 and 10). As it can be seen
the influence function is bounded, with a discontinuity at 0 due to the
discontinuity of the influence of the univariate funcionals. Effectively, the
influence at x = µ is 0 but

lim
x→µ

IF (x, P c, G) = − d

2 c2
cd

[
c1

1
4Φ−1(0.75) ϕ (Φ−1(0.75))

+ c2

]
showing the discontinuity at 0.

Since the scale in Figure 1 does not allow to distinguish the effect of
inliers on the classical estimator, in Figure 2 we have plotted the influence
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function on a reduce range 0 ≤ D(x) ≤ 2, which allows to describe that
effect. As shown by Figure 2, the three estimators are sensitive to this
king of anomalous data, even if the effect of them is bounded and is larger
for the robust estimators as observed in Section 4.1 for the Donoho–Stahel
estimator.

It is worth noticing that the diagnostic measure related to the coverage
probability is defined as

DM(x) =
1
2

cd

(
(x− µ̂)′ Σ̂

−1
(x − µ̂) − d

)
,

where µ̂ and Σ̂ are robust location and scatter estimators. This measure
equals except for a constant the usual diagnostic measure used to detect
anomalous multivariate data and is simply a robust version of the Maha-
lanobis distance considered in Rousseeuw and van Zomeren (1990).
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6 APPENDIX: PROOFS

Proof of Lemma 5.1. Since x = µ+Cz and A(G) = C−1V(G)(C−1)′ =
β(G)Λ(G)β(G)′ it follows easily that

Pc(G, F ) = PF

(
(x− T(G))′V(G)−1(x− T(G)) ≤ K

)
= PF0

(
(z− C−1(T(G) − µ))′A(G)−1(z− C−1(T(G) − µ)) ≤ K

)
= PF0

(
(β(G)′z − τ (G))′Λ(G)−1(β(G)′z − τ (G)) ≤ K

)
.

Using that F0 is an spherical distribution we get that β(G)′z has the same
distribution as z then

Pc(G, F ) = PF0

(
(z− τ (G))′Λ(G)−1(z− τ (G)) ≤ K

)
= PF0

(
d∑

i=1

1
λi (G)

(zi − τi (G))2 ≤ K

)

= PF0

 d∑
i=1

(
zi − τi (G)√

λi (G)

)2

≤ K

 .

If F0 = Nd (0, Id), let yi = (zi − τi (G))λi (G)−
1
2 , then

yi ∼ N
(
−τi (G)λi (G)−

1
2 , λi (G)−1

)
and yi are independent. Denote F1
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the distribution of y. Using (7), we obtain

Pc (G, F ) = PF1

(
d∑

i=1

y2
i ≤ K

)
= EF1 (IS (y))

=
∫

IS (y)
d∏

i=1

fYi
(yi) dy

=
∫

IS (y)
d∏

i=1

√
λi (G) ϕ

(√
λi (G) yi + τi (G)

)
dy .

To prove Theorems 5.1 and 5.2, we will need the following Lemma.

Lemma 6.1. Let Λ = diag (λ1, . . . , λd) and τ = (τ1, . . . , τd)
′. Denote

H(Λ, τ ) =
∫

IS (y)
d∏

i=1

√
λi ϕ

(√
λi yi + τi

)
dy

where ϕ stands for the standard gaussian density and S = {y : ‖y‖2 ≤ K}.
Let F1 be the distribution of y = (y1, . . . , yd)′, where y1, . . . , yd are inde-

pendent random variables such that yi ∼ N
(
−τi (G)λi (G)−

1
2 , λi (G)−1

)
,

1 ≤ i ≤ d. Then, the function H is differentiable and

∂H

∂τi
= −

[√
λi EF1 (IS(y)yi) + τiPF1 (S)

]
∂H

∂λi
=

1
2λi

[
PF1 (S) − EF1

(
IS(y)yi

(
λiyi +

√
λi τi

))]
.

Proof. The proof follows the same ideas as the proof of Lemma 1 in
Croux and Joossens (2004). Using that ϕ′(t) = −tϕ(t), the definition of H
and the fact that we can differentiate under the integral we get

∂H

∂τi
=

∫
IS (y)

∏
j �=i

√
λj ϕ

(√
λj yj + τj

)√
λi

∂ϕ
(√

λi yi + τi

)
∂τi

dy

= −
∫

IS (y)
d∏

j=1

√
λj ϕ

(√
λj yj + τj

)(√
λi yi + τi

)
dy

= −
∫

IS (y)
(√

λi yi + τi

)
fY(y) dy .

Besides,

∂H

∂λi
=

∫
IS (y)

∏
j �=i

√
λj ϕ

(√
λj yj + τj

) ∂
{√

λi ϕ
(√

λi yi + τi

)}
∂λi

dy

=
∫

IS (y)
d∏

j=1

√
λj ϕ

(√
λj yj + τj

)[ 1
2λi

− 1
2λi

(
λi yi +

√
λiτi

)
yi

]
dy

=
1

2λi

[
PF1(S) −

∫
IS (y) yi

(
λi yi +

√
λiτi

)
fY(y) dy

]
,
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which concludes the proof.

Proof of Theorem 5.1. To evaluate the influence function we will use
(8). Since Pc(G, F ) = H(Λ(G), τ (G)), using the chain rule we obtain

IF (x, Pc, G) =
∂Pc (Gε,x, F )

∂ε

∣∣∣∣
ε=0

=
d∑

i=1

∂H

∂λi

∣∣∣∣∣
(Λ,τ )

∂λi (Gε,x)
∂ε

∣∣∣∣∣∣
ε=0

+
d∑

i=1

∂H

∂τi

∣∣∣∣∣
(Λ,τ )

∂τi (Gε,x)
∂ε

∣∣∣∣∣∣
ε=0

, (A.1)

where (Λ, τ ) = (Λ(G), τ (G)). Since the eigenvalues of A(G) = C−1V(G)(C−1)′

have multiplicity 1, Lemma 3 in Croux and Haesbroeck (2000) entails

IF
(
x, βj , G

)
=

∑
i �=j

β′
iIF (x,A, G)βj

λj − λi
βi

=
∑
i �=j

β′
iC

−1IF (x,V, G) (C−1)′βj

λj − λi
βi (A.2)

IF (x, λj , G) = β′
jIF (x,A, G)βj

= β′
jC

−1IF (x,V, G) (C−1)′βj . (A.3)

Thus, using that τj (Gε,x) = βj (Gε,x)′ C−1 (T (Gε,x) − µ), where βj (Gε,x)
is the j−th eigenvector of the matrix A (Gε,x), we get

∂τj (Gε,x)
∂ε

∣∣∣∣
ε=0

=
∂

∂ε

{
βj (Gε,x)′ C−1 (T (Gε,x) − µ)

}∣∣∣∣
ε=0

= IF
(
x, βj , G

)′
C−1 (T (G) − µ) + β′

j C−1IF (x,T, G)

=
∑
i �=j

β′
iC

−1IF (x,V, G) (C−1)′βj

λj − λi
τi

+ β′
j C−1IF (x,T, G) . (A.4)

Therefore, using (A.3), (A.4), from (A.1) we obtain

IF (x, P c, G) =
d∑

j=1

∂H

∂λj

∣∣∣∣∣∣
(Λ,τ )

β′
jC

−1IF (x,V, G) (C−1)′βj

+
d∑

j=1

∂H

∂τj

∣∣∣∣∣∣
(Λ,τ )

∑
i �=j

β′
iC

−1IF (x,V, G) (C−1)′βj

λj − λi
τi

+ β′
j C−1IF (x,T, G)

]
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which together with Lemma 6.1, concludes the proof.

Proof of Theorem 5.2. Is similar to that of Theorem 5.1. Notice that
using (A.1) we only need to evaluate ∂τj (Gε,x)/∂ε|ε=0 and ∂λj (Gε,x)/∂ε|ε=0.
Using that τj (G) = 0 since T(G) = µ and that we have define the eigen-
vectors of A(G) in such a way that its diagonal elements are positive, from
the continuity of β (Gε,x) we get

∂τj (Gε,x)
∂ε

∣∣∣∣
ε=0

= lim
ε→0

βj (Gε,x)′ C−1 T (Gε,x) − T(G)
ε

= βj (G)′ C−1IF (x,T, G) . (A.5)

On the other hand, since A(G) = Ip, λj(G) = 1 and βj(G) = ej the j−th
canonical vector, using the orthogonality of the eigenvectors we obtain

∂λj (Gε,x)
∂ε

∣∣∣∣
ε=0

= lim
ε→0

βj (Gε,x)′ A(Gε,x)βj (Gε,x) − 1
ε

= lim
ε→0

βj (Gε,x)′
A(Gε,x) − Id

ε
βj (Gε,x)

= β′
jIF (x,A, G)βj = IF (x,A, G)jj . (A.6)

Finally, from (A.5) and (A.6) using (A.1) we derive

IF (x, P c, G) =
d∑

j=1

∂H

∂λj

∣∣∣∣∣∣
(Id,0)

(
C−1IF (x,V, G)

(
C−1

)′)
jj

+
d∑

j=1

∂H

∂τj

∣∣∣∣∣∣
(Id,0)

β′
j C−1IF (x,T, G) .

When F0 = Nd (0, Id), using Lemma 6.1 and the fact that τi(G) = 0, λi = 1
we conclude that

∂H

∂τi

∣∣∣∣
(Id,0)

= − EF0 (IS(y)yi) = 0

∂H

∂λi

∣∣∣∣
(Id,0)

=
1
2
PF0 (S) − 1

2
EF0

(
IS(y)y2

i

)
=

1
2
PF0 (S) − 1

2d
EF0

(
IS(y)

d∑
i=1

y2
i

)
.

On the other hand, PF0 (S) = P (Wd ≤ K) and EF0

(
IS(y)

d∑
i=1

y2
i

)
=

E
(
WdI(0,K] (Wd)

)
, entail the desired result since E

(
WdI(0,K] (Wd)

)
=

d P (Wd+2 ≤ K).

Proof of Corollary 5.3.. Let F0 = Nd (0, Id), then ifΣ = CC′, we
have that IF(x,V, G) = CIF

(
C−1 (x − µ) ,V, F0

)
C′. Hence,

tr
(
IF (x,V, G)Σ−1

)
= tr

(
IF
(
C−1 (x − µ) ,V, F0

))
.
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The result follows now from Theorem 3 in Gervini (2002) and for the ex-
pression given in its Appendix for the situation of the median and the mad
since IF (0,V, F0) = 0 and if z �= 0

IF (z,V, F0) = β

{
α(‖z‖)

(
zz′

‖z‖2
− Id

d

)
+

[
c1

c0
g(‖z‖) +

w
(
‖z‖2

)
‖z‖2 − c2

c0

]
Id

d

}

for a function α. Taking trace we get the result since the first term of the
right hand side equals zero and β = d (c0/c2).
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7 TABLES

d 2 3 4 5
K 9.8752 13.1367 16.4330 20.0726

Table 1: Classical tolerance factors K when q = 0.95 and δ = 0.95 for
dimension d.

∆ d = 2 d = 3 d = 4 d = 5
π I (%) π I (%) π I (%) π I (%)

2 0.9570 1.0333 0.9570 1.0219 0.9557 1.0164 0.9534 1.0129
4 0.9697 1.1143 0.9641 1.0748 0.9614 1.0554 0.9606 1.0455
8 0.9783 1.3374 0.9715 1.2131 0.9685 1.1570 0.9658 1.1222
16 0.9806 1.7687 0.9752 1.4657 0.9708 1.3300 0.9676 1.2564

Table 2: Actual coverage (π) and volume increment (I) by the inclusion of
an anomalous data with norm ‖x‖.

Number d = 2 d = 3 d = 4 d = 5
of inliers π I (%) π I (%) π I (%) π I (%)

1 0.9439 0.9832 0.9427 0.9813 0.9411 0.9815 0.9407 0.9810
2 0.9359 0.9608 0.9333 0.9627 0.9303 0.9606 0.9295 0.9610
3 0.9293 0.9465 0.9276 0.9448 0.9204 0.9431 0.9180 0.9431
4 0.9206 0.9256 0.9137 0.9247 0.9082 0.9238 0.9064 0.9227

Table 3: Actual content (π) and size ratio (I) for the classical tolerance
regions by the replacement of one data with m inliers, when q = 0.95,
δ = 0.95 and n = 30.

d 2 3 4 5 6 7 8 9 10 15
β 1.0414 1.0070 1.0000 0.9957 0.9928 0.9907 0.9890 0.9878 0.9867 0.9835

Table 4: Calibrating constants β for the Donoho–Stahel estimator in di-
mensions d.
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Dimension d = 2

q = 0.90 q = 0.95 q = 0.99

n δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99

20 10.8320 12.3821 17.5341 14.5522 16.7106 24.5253 23.1711 27.8769 40.9653
25 9.3069 10.2947 13.2224 12.3985 13.9580 18.1720 19.9671 22.3422 29.4218
30 8.2326 9.2963 11.3772 10.9862 12.2417 15.4112 17.4303 19.8460 25.5177
35 7.9080 8.6992 10.1594 10.4656 11.4732 14.0209 16.5040 18.2180 22.6908
40 7.2711 7.8236 9.3063 9.7533 10.4301 12.1758 15.3556 16.8527 19.6146
45 7.1068 7.5837 8.6729 9.3606 10.0652 11.5020 14.7729 16.3259 19.1649
50 6.7816 7.2303 8.1386 8.8651 9.4666 11.0186 14.1042 15.2943 17.4805
55 6.5337 6.9445 7.7602 8.5696 9.1817 10.3032 13.6083 14.6165 17.0323
60 6.4745 7.0355 7.8174 8.6042 9.1507 10.3930 13.4796 14.5166 16.6398
65 6.3193 6.6702 7.5251 8.2748 8.7425 9.8564 12.8604 13.8477 15.9314
70 6.1470 6.6540 7.3719 8.1761 8.6563 9.8496 12.7697 13.5505 15.6173
75 6.1106 6.4738 7.2753 8.0202 8.5651 9.5449 12.7843 13.4542 15.2029
80 6.0064 6.2933 6.9345 7.8461 8.2518 9.1011 12.3369 13.0866 14.7179
85 5.9857 6.2590 6.8931 7.8599 8.1117 9.1025 12.2277 12.9145 14.3738
90 5.9770 6.3030 7.0116 7.8260 8.2017 9.2849 12.2239 12.8636 14.7869
95 5.9036 6.1823 6.7342 7.7652 8.1079 8.8956 12.1545 12.7148 13.8342
100 5.8052 6.0258 6.6421 7.6159 7.9355 8.6379 11.9852 12.4499 13.5771

Table 5: Robust tolerance factors Kds in dimension d = 2, for contents
q = 0.90, 0.95 and 0.99, and confidence levels δ = 0.90, 0.95 and 0.99.

Dimension d = 3

q = 0.90 q = 0.95 q = 0.99

n δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99

20 18.4888 21.1397 27.4670 24.2531 27.9458 36.5284 38.3513 44.9395 58.5057
25 14.5141 16.2015 21.2053 18.8563 21.4465 28.2591 29.2044 34.0270 45.4828
30 12.4591 13.6268 17.5833 16.0860 17.4503 23.0519 24.5519 27.5803 36.2613
35 11.3296 12.1778 15.2488 14.5182 15.6294 19.9587 22.2818 24.6301 30.5704
40 10.6179 11.4505 14.0012 13.5417 14.6996 17.9198 20.4660 22.4652 29.1666
45 10.1765 10.7696 12.3920 12.9928 13.7569 16.0137 19.5297 21.1643 24.4763
50 9.7695 10.2317 11.2996 12.3856 13.0009 14.5262 18.7228 19.8433 22.9663
55 9.3373 9.9091 11.1179 11.8649 12.5228 14.4079 17.8622 18.9811 22.5006
60 9.1459 9.8136 10.7406 11.6818 12.4917 13.7287 17.5797 19.0078 21.9252
65 8.8516 9.2392 10.7574 11.1660 11.7582 13.6343 16.7690 17.6115 20.9971
70 8.6261 9.1126 9.9451 10.9276 11.5222 12.5902 16.3966 17.4556 18.8966
75 8.6470 9.0168 9.6662 10.9072 11.5021 12.3449 16.3814 17.0689 18.5640
80 8.3896 8.8135 9.3718 10.7288 11.1830 11.9359 15.8844 16.5346 18.8273
85 8.3207 8.7319 9.4782 10.5832 11.0636 12.0174 15.8495 16.5357 17.7586
90 8.1590 8.5613 9.3359 10.3339 10.8568 11.9504 15.4399 16.0606 17.8178
95 8.1348 8.5243 9.1853 10.3238 10.6891 11.6131 15.3301 16.0695 18.0892
100 7.9569 8.2413 8.9158 10.0528 10.4174 11.2309 15.1451 15.7830 17.7933

Table 6: Robust tolerance factors Kds in dimension d = 3, for contents
q = 0.90, 0.95 and 0.99, and confidence levels δ = 0.90, 0.95 and 0.99.
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Dimension d = 4

q = 0.90 q = 0.95 q = 0.99

n δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99 δ= 0.90 δ= 0.95 δ= 0.99

20 27.4182 31.5431 44.5483 35.4487 41.4550 57.3808 55.7374 66.4408 92.8933
25 21.4547 24.6844 31.8190 27.4777 31.5780 42.3042 42.9968 49.9301 65.0356
30 16.9623 18.3120 21.6688 21.5732 23.2288 28.3680 32.7613 35.3599 44.2545
35 15.1949 16.6681 20.3717 19.0612 21.2592 26.2953 28.8685 32.1940 41.4370
40 13.5806 14.2707 16.4577 16.9452 18.0497 21.1071 24.9294 27.1523 33.2087
45 12.6335 13.3466 15.3875 15.8920 16.6360 19.7838 23.3600 25.0936 29.0160
50 12.3287 13.0614 14.1136 15.4366 16.2419 17.9883 22.6729 24.0837 27.8435
55 11.6009 12.1972 13.8174 14.5084 15.2489 17.5803 21.2475 22.5057 25.8496
60 11.4914 11.9824 13.1846 14.1753 14.9044 16.5707 20.7960 22.0699 24.7157
65 11.1283 11.6137 12.5504 13.7444 14.3994 15.5499 19.8585 21.0003 22.9426
70 10.7022 11.1047 12.1436 13.1528 13.7946 15.1036 19.0215 19.8970 22.1491
75 10.6953 11.0952 11.8944 13.1943 13.7044 14.7181 19.0660 20.0513 21.7096
80 10.3104 10.7255 11.3242 12.7346 13.3265 14.0519 18.5037 19.1277 20.5951
85 10.3025 10.6632 11.5255 12.6941 13.1263 14.0832 18.3106 19.0707 20.5999
90 10.2673 10.6312 11.4723 12.6865 13.1973 14.2593 18.2493 19.1498 20.6151
95 10.1159 10.4224 11.0732 12.4098 12.8850 13.6946 17.9134 18.7162 20.1619
100 9.9515 10.2544 10.7488 12.2488 12.6392 13.4576 17.7022 18.4893 19.9511

Table 7: Robust tolerance factors Kds in dimension d = 4, for contents
q = 0.90, 0.95 and 0.99, and confidence levels δ = 0.90, 0.95 and 0.99.

Classical Robust

d n Kc πc Kds πds
d

√ Vc.

Vds
2 20 12.1744 0.9525 16.7106 0.9540 1.0754
2 30 9.8752 0.9460 12.2417 0.9500 1.0455
2 50 8.3989 0.9440 9.4666 0.9470 1.0206
2 100 7.4187 0.9470 7.9355 0.9500 1.0137
3 20 16.6939 0.9480 27.9458 0.9520 1.1030
3 30 13.2222 0.9485 17.4503 0.9470 1.0440
3 50 10.4174 0.9485 13.0009 0.9530 1.0240
3 100 9.6736 0.9490 10.1994 0.9475 1.0023
4 20 21.3464 0.9480 41.4550 0.9475 1.1409
4 30 16.9176 0.9510 23.2288 0.9525 1.0453
4 50 13.4051 0.9480 16.2419 0.9535 1.0341
4 100 11.6219 0.9490 12.6392 0.9490 1.0075
5 20 27.2366 0.9445 64.0125 0.9400 1.2097
5 30 20.0054 0.9490 29.1497 0.9440 1.0571
5 50 15.9508 0.9510 19.1330 0.9525 1.0224
5 100 13.6632 0.9480 14.8441 0.9505 1.0085
8 20 56.1119 0.9520 240.0697 0.9375 1.5496
8 30 32.9768 0.9455 57.5583 0.9490 1.1159
8 50 23.9586 0.9475 28.8758 0.9500 1.0228
8 100 20.8338 0.9480 20.5229 0.9490 1.0062

Table 8: Classical and Robust tolerance factors (Kc and Kds) and ratio
of the volumes among both regions. Normal observations, q = 0.95 and
δ = 0.95.
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∆ d = 2 d = 3 d = 4 d = 5
π I (%) π I (%) π I (%) π I (%)

2 0.9583 1.0309 0.9516 1.0183 0.9499 1.0119 0.9575 1.0077
4 0.9607 1.0467 0.9575 1.0321 0.9542 1.0247 0.9583 1.0226
8 0.9633 1.0508 0.9592 1.0383 0.9566 1.0311 0.9616 1.0263
16 0.9608 1.0535 0.9616 1.0362 0.9600 1.0295 0.9608 1.0230

Table 9: Actual content (π) and size ratio (I) for the robust tolerance
regions by the replacement of one data with an observation with norm
‖x‖, when q = 0.95, δ = 0.95 and n = 30.

m d = 2 d = 3 d = 4 d = 5
π I (%) π I (%) π I (%) π I (%)

1 0.9455 0.9727 0.9355 0.9669 0.9310 0.9648 0.9250 0.9628
2 0.9285 0.9434 0.9120 0.9314 0.9090 0.9228 0.8930 0.9185
3 0.9050 0.9106 0.8865 0.8878 0.8625 0.8701 0.8465 0.8540
4 0.8800 0.8701 0.8440 0.8422 0.8025 0.8176 0.7600 0.7872

Table 10: Actual content (π) and size ratio (I) for the robust tolerance
regions by the replacement of one data with m inliers, when q = 0.95,
δ = 0.95 and n = 30.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 1.0000 16.7106 0.9960 2.7778 4.3498
2 30 9.7920 1.0000 12.2417 0.9980 3.1331 4.9244
2 50 8.3989 1.0000 9.4666 0.9980 4.0020 6.1716
2 100 7.4187 1.0000 7.9355 0.9990 5.9750 9.4369
3 20 16.6939 1.0000 27.9458 0.9940 2.4637 4.7695
3 30 13.2222 1.0000 17.4503 0.9970 3.0593 5.7492
3 50 10.9711 1.0000 13.0009 0.9980 3.9036 6.6528
3 100 9.6736 1.0000 10.4174 0.9990 5.3589 8.8928
4 20 21.3464 0.9990 41.4550 0.9930 2.3600 5.1893
4 30 16.9176 1.0000 23.2288 0.9940 2.9915 6.0277
4 50 13.4051 1.0000 16.2419 0.9980 3.6996 7.4199
4 100 11.6219 1.0000 12.6392 0.9990 4.9280 9.1556
5 20 27.2366 0.9985 64.0125 0.9860 2.1726 5.0921
5 30 20.0054 1.0000 29.1497 0.9935 2.7466 5.8958
5 50 15.9508 1.0000 19.1330 0.9980 3.4553 6.9667
5 100 13.6632 1.0000 14.8441 1.0000 4.8052 9.7124
8 20 56.1119 0.9960 240.0697 0.9425 1.7047 4.7189
8 30 32.9768 1.0000 57.5583 0.9865 2.4991 6.9566
8 50 23.9586 1.0000 28.8758 0.9970 3.0707 7.6931
8 100 19.5602 1.0000 20.8338 1.0000 4.0777 10.6633

Table 11: Actual content of the classical and robust tolerance regions (πc
and πds, respectively) related to the tolerance factors Kc and Kds, ob-
tained when the observations have a Cauchy d− dimensional distribution.
The tolerance factors are those corresponding to a normal distribution with
δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9950 16.7106 0.9805 1.2756 1.5943
2 30 9.7920 0.9960 12.2417 0.9850 1.3770 1.6817
2 50 8.3989 0.9980 9.4666 0.9880 1.5240 1.7894
2 100 7.4187 1.0000 7.9355 0.9930 1.6028 1.8072
3 20 16.6939 0.9920 27.9458 0.9820 1.2870 1.6639
3 30 13.2222 0.9960 17.4503 0.9840 1.4265 1.7984
3 50 10.9711 0.9990 13.0009 0.9905 1.5235 1.8929
3 100 9.6736 1.0000 10.4174 0.9920 1.6523 1.9467
4 20 21.3464 0.9920 41.4550 0.9715 1.2753 1.7438
4 30 16.9176 0.9970 23.2288 0.9825 1.4347 1.7523
4 50 13.4051 0.9990 16.2419 0.9890 1.5223 1.8904
4 100 11.6219 1.0000 12.6392 0.9930 1.6210 1.8976
5 20 27.2366 0.9860 64.0125 0.9750 1.2133 1.6914
5 30 20.0054 0.9940 29.1497 0.9785 1.3951 1.8109
5 50 15.9508 0.9980 19.1330 0.9860 1.5054 1.8997
5 100 13.6632 1.0000 14.8441 0.9940 1.6286 1.9849
8 20 56.1119 0.9850 240.0697 0.9455 0.9877 1.5191
8 30 32.9768 0.9920 57.5583 0.9720 1.3502 1.8526
8 50 23.9586 0.9980 28.8758 0.9860 1.4794 1.9352
8 100 19.5602 1.0000 20.8338 0.9950 1.5556 1.9178

Table 12: Actual content of the classical and robust tolerance regions (πc
and πds, respectively) related to the tolerance factors Kc and Kds, ob-
tained when the observations have a T2(d) distribution. The tolerance
factors are those corresponding to a normal distribution with δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9880 16.7106 0.9760 1.1260 1.2941
2 30 9.7920 0.9880 12.2417 0.9765 1.1477 1.2558
2 50 8.3989 0.9935 9.4666 0.9810 1.2231 1.3065
2 100 7.4187 0.9960 7.9355 0.9835 1.2583 1.3278
3 20 16.6939 0.9875 27.9458 0.9780 1.0994 1.2331
3 30 13.2222 0.9890 17.4503 0.9770 1.1938 1.3162
3 50 10.9711 0.9940 13.0009 0.9815 1.2263 1.3501
3 100 9.6736 0.9970 10.4174 0.9850 1.2856 1.3747
4 20 21.3464 0.9860 41.4550 0.9690 1.0709 1.2550
4 30 16.9176 0.9910 23.2288 0.9770 1.1946 1.3047
4 50 13.4051 0.9930 16.2419 0.9805 1.2134 1.3738
4 100 11.6219 0.9970 12.6392 0.9860 1.2690 1.3459
5 20 27.2366 0.9795 64.0125 0.9575 1.0263 1.2297
5 30 20.0054 0.9875 29.1497 0.9700 1.1920 1.3743
5 50 15.9508 0.9950 19.1330 0.9830 1.2418 1.3721
5 100 13.6632 0.9980 14.8441 0.9880 1.2659 1.4181
8 20 56.1119 0.9765 240.0697 0.9525 0.8367 1.1343
8 30 32.9768 0.9840 57.5583 0.9705 1.1424 1.3359
8 50 23.9586 0.9930 28.8758 0.9780 1.2349 1.4239
8 100 19.5602 0.9980 20.8338 0.9890 1.2502 1.3946

Table 13: Actual content of the classical and robust tolerance regions (πc
and πds, respectively) related to the tolerance factors Kc and Kds, ob-
tained when the observations have a T3(d) distribution. The tolerance
factors are those corresponding to a normal distribution with δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9610 16.7106 0.9600 0.9599 1.0483
2 30 9.7920 0.9570 12.2417 0.9580 0.9986 1.1352
2 50 8.3989 0.9530 9.4666 0.9530 1.0328 1.1408
2 100 7.4187 0.9610 7.9355 0.9530 1.1008 1.3178
3 20 16.6939 0.9545 27.9458 0.9495 0.9235 1.0183
3 30 13.2222 0.9590 17.4503 0.9545 1.0018 1.1108
3 50 10.9711 0.9545 13.0009 0.9530 1.0324 1.1956
3 100 9.6736 0.9620 10.4174 0.9540 1.0973 1.3717
4 20 21.3464 0.9520 41.4550 0.9480 0.8991 0.9963
4 30 16.9176 0.9580 23.2288 0.9450 0.9923 1.0702
4 50 13.4051 0.9585 16.2419 0.9570 1.0219 1.1730
4 100 11.6219 0.9600 12.6392 0.9545 1.1054 1.2708
5 20 27.2366 0.9530 64.0125 0.9500 0.8489 0.8987
5 30 20.0054 0.9540 29.1497 0.9500 0.9834 1.0300
5 50 15.9508 0.9580 19.1330 0.9525 1.0322 1.1578
5 100 13.6632 0.9630 14.8441 0.9560 1.0940 1.2787
8 20 56.1119 0.9555 240.0697 0.9605 0.6659 0.7926
8 30 32.9768 0.9520 57.5583 0.9445 0.9262 0.9483
8 50 23.9586 0.9570 28.8758 0.9545 1.0175 1.1092
8 100 19.5602 0.9600 20.8338 0.9550 1.0896 1.2826

Table 14: Actual coverage probability for the classical and robust tolerance
regions (πc and πds, respectively) related to the tolerance factors Kc and
Kds, for a sample coming from a dsitribution 0.95 N(0, Id) + 0.05 Cd. The
tolerance factors are those corresponding to a normal distribution with
δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9620 16.7106 0.9595 1.0092 1.2260
2 30 9.7920 0.9610 12.2417 0.9595 1.0547 1.3079
2 50 8.3989 0.9630 9.4666 0.9560 1.1900 1.4578
2 100 7.4187 0.9700 7.9355 0.9590 1.3981 1.8004
3 20 16.6939 0.9610 27.9458 0.9580 0.9582 1.1489
3 30 13.2222 0.9620 17.4503 0.9540 1.0727 1.2395
3 50 10.9711 0.9670 13.0009 0.9605 1.1840 1.4368
3 100 9.6736 0.9750 10.4174 0.9580 1.3780 1.7698
4 20 21.3464 0.9510 41.4550 0.9445 0.9386 1.0944
4 30 16.9176 0.9670 23.2288 0.9610 1.0745 1.2703
4 50 13.4051 0.9650 16.2419 0.9595 1.1698 1.4181
4 100 11.6219 0.9715 12.6392 0.9580 1.3426 1.8048
5 20 27.2366 0.9510 64.0125 0.9470 0.8749 1.0057
5 30 20.0054 0.9590 29.1497 0.9485 1.0385 1.1910
5 50 15.9508 0.9650 19.1330 0.9580 1.1630 1.4284
5 100 13.6632 0.9730 14.8441 0.9600 1.2988 1.6645
8 20 56.1119 0.9580 240.0697 0.9485 0.6895 0.8779
8 30 32.9768 0.9590 57.5583 0.9530 0.9795 1.0942
8 50 23.9586 0.9645 28.8758 0.9565 1.1337 1.3902
8 100 19.5602 0.9710 20.8338 0.9600 1.2704 1.7727

Table 15: Actual coverage probability for the classical and robust tolerance
regions (πc and πds, respectively) related to the tolerance factors Kc and
Kds, for a sample coming from a dsitribution 0.90 N(0, Id) + 0.10 Cd. The
tolerance factors are those corresponding to a normal distribution with
δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9645 16.7106 0.9595 1.0519 1.2873
2 30 9.7920 0.9670 12.2417 0.9580 1.1511 1.3146
2 50 8.3989 0.9720 9.4666 0.9610 1.2108 1.3870
2 100 7.4187 0.9800 7.9355 0.9620 1.3020 1.3716
3 20 16.6939 0.9610 27.9458 0.9625 1.0102 1.1857
3 30 13.2222 0.9680 17.4503 0.9605 1.1352 1.3027
3 50 10.9711 0.9705 13.0009 0.9625 1.2299 1.2912
3 100 9.6736 0.9830 10.4174 0.9630 1.3061 1.3384
4 20 21.3464 0.9640 41.4550 0.9550 0.9911 1.1543
4 30 16.9176 0.9720 23.2288 0.9610 1.1435 1.2454
4 50 13.4051 0.9700 16.2419 0.9630 1.2111 1.3921
4 100 11.6219 0.9815 12.6392 0.9630 1.2903 1.3609
5 20 27.2366 0.9580 64.0125 0.9610 0.9253 1.0750
5 30 20.0054 0.9650 29.1497 0.9580 1.1070 1.2912
5 50 15.9508 0.9730 19.1330 0.9630 1.2069 1.4072
5 100 13.6632 0.9810 14.8441 0.9660 1.2875 1.3973
8 20 56.1119 0.9595 240.0697 0.9475 0.7188 0.9663
8 30 32.9768 0.9610 57.5583 0.9615 1.0201 1.1362
8 50 23.9586 0.9700 28.8758 0.9610 1.1644 1.3456
8 100 19.5602 0.9800 20.8338 0.9660 1.2477 1.3736

Table 16: Actual coverage probability for the classical and robust toler-
ance regions (πc and πds, respectively) related to the tolerance factors
Kc and Kds, for a sample coming from a dsitribution 0.95 N(0, Id) +
0.05 N(0, 25 Id). The tolerance factors are those corresponding to a nor-
mal distribution with δ = q = 0.95.
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Classical Robust Relations

d n Kc πc Kds πds
d

√ Vc.

Vds

‖x‖
‖tn‖

2 20 12.1744 0.9770 16.7106 0.9715 1.2718 1.5478
2 30 9.7920 0.9820 12.2417 0.9750 1.3477 1.6342
2 50 8.3989 0.9890 9.4666 0.9730 1.4440 1.6286
2 100 7.4187 0.9960 7.9355 0.9750 1.5147 1.6865
3 20 16.6939 0.9780 27.9458 0.9665 1.1768 1.4892
3 30 13.2222 0.9820 17.4503 0.9660 1.3355 1.5747
3 50 10.9711 0.9880 13.0009 0.9725 1.4306 1.6146
3 100 9.6736 0.9960 10.4174 0.9750 1.5457 1.6508
4 20 21.3464 0.9715 41.4550 0.9660 1.1350 1.4800
4 30 16.9176 0.9790 23.2288 0.9660 1.3155 1.5700
4 50 13.4051 0.9870 16.2419 0.9730 1.4421 1.6532
4 100 11.6219 0.9955 12.6392 0.9750 1.5272 1.6767
5 20 27.2366 0.9765 64.0125 0.9630 1.0739 1.3234
5 30 20.0054 0.9770 29.1497 0.9670 1.2821 1.5510
5 50 15.9508 0.9860 19.1330 0.9730 1.4193 1.6428
5 100 13.6632 0.9960 14.8441 0.9770 1.5274 1.7042
8 20 56.1119 0.9690 240.0697 0.9640 0.7895 1.2064
8 30 32.9768 0.9740 57.5583 0.9665 1.1723 1.4651
8 50 23.9586 0.9840 28.8758 0.9700 1.3610 1.6582
8 100 19.5602 0.9960 20.8338 0.9770 1.4863 1.6779

Table 17: Actual coverage probability for the classical and robust toler-
ance regions (πc and πds, respectively) related to the tolerance factors
Kc and Kds, for a sample coming from a dsitribution 0.90 N(0, Id) +
0.10 N(0, 25 Id). The tolerance factors are those corresponding to a nor-
mal distribution with δ = q = 0.95.
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Figure 1: Influence function of the coverage probablity when we use the classical
estimators (a), the Donoho–Stahel estimators (b) and the S–estimator (c). The
lines in black correspond to K = 2, while those in green, light blue, red and dark
blue correspond to K = 4, K = 6, K = 8 and K = 10, respectively.
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Figure 2: Influence function of the coverage probablity when we use the classical
estimators (a) and the Donoho–Stahel estimators (b) and the S–estimator (c).
The lines in black correspond to K = 2, while those in green, light blue, red and
dark blue correspond to K = 4, K = 6, K = 8 and K = 10, respectively.
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