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Abstract

In this paper, under a nonparametric regression model, we introduce a family of robust
procedures to estimate the regression funtion when missing data occur in the response. Our
proposal is based on a local M —functional applied to the conditional distribution function esti-
mate adapted to the presence of missing data. We show that the robust procedure is consistent
and asymptotically normally distributed.
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1 Introduction

Nonparametric regression models assume that we have a response y; € IR and covariates or design
points x; € IR? satisfying
yi =m(x;) + o (x;) & 1<i<n, (1)

with the errors g; independent and independent of x;, with symmetric distribution F (). The
nonparametric nature of model (1) offers more flexibility than the standard linear model, when
modelling a complicated relationship between the response variable with the covariates.

Two of the most common methods in nonparametric regression are kernel and k-nearest neighbor
kernel methods, introduced by Nadaraya-Watson (1964) and Collomb (1981) respectively. But these
estimators are not robust. Robust estimators can be obtained via M-estimates. See Tsybakov
(1982) and Hérdle (1984), who studied pointwise asymptotic properties of a robust version of
the Nadaraya- Watson method and later they extended their results to M-type scale equivariant
kernel estimates (Héardle and Tsybakov (1988)); Boente and Fraiman (1989), who considered robust
equivariant nonparametric estimates using nearest neighbor weights and weights based on kernel
methods.

Most of the statistical methods in nonparametric regression are designed for complete data sets
and problems arise when missing obervations are present which is a common situation in biomedical
or socioeconomic studies, for example. Classic examples are found in the field of social sciences
with the problem of non-response in sample surveys, in Physics, in Genetics (Meng, 2000), among
others.

The objective of this paper is to introduce a robust nonparametric estimator of the regression
function when the response variable has missing observations but the covariate x is totally observed.
This pattern is common, for example, in the scheme of double sampling proposed by Neyman (1938),
where first a complete sample is obtained and then some additional covariate values are computed
since perhaps this is less expensive than to obtain more response values.

In the regression setting, a common method is to impute the incomplete observations and then
proceed to carry out the estimation of the conditional or unconditional mean of the response variable
with the completed sample. The methods considered include linear regression (Yates, 1933), kernel
smoothing (Cheng, 1994; Chu and Cheng, 1995) nearest neighbor imputation (Chen and Shao,
2000), semiparametric estimation (Wang et al., 2004), nonparametric multiple imputation (Aerts
et al., 2002), empirical likelihood over the imputed values (Wang and Rao, 2002), among others.
Gonzalez—Manteiga and Pérez—Gonzalez (2004) considered an approach based on local polynomials
to estimate the regression function when the response variable y is missing but the covariate x is
totally observed. All these proposals are very sensitive to anomalous observations since they are
based on a local least squares approach.

As is well known, most nonparametric regression estimates with complete data suffer from the
same lack of robustness that their linear counterparts in parametric models. In this setting, outlying
observations can be even more dangerous since the shape of the estimated curve is highly sensitive
to outlying observations. The treatment of outliers is an important step in highlighting features of
a data set. Extreme points affect the scale and the shape of any estimate of the regression function
based on local averaging, leading to possible wrong conclusions. This has motivated the interest in



combining the ideas of robustness with those of smoothed regression, to develop procedures which
will be resistant to deviations from the central model in nonparametric regression models. The
first proposal of robust estimates for nonparametric regression was given by Cleveland (1979) who
adapted a local polynomial fit by introducing weights to deal with large residuals. A review of
several methods leading to robust nonparametric regression estimators for complete data sets can
be seen in Hérdle (1990).

In this paper, we propose two robust nonparametric regression estimators when we are deal-
ing with missing observations in the response based on the robust nonparametric estimators for
complete data studied by Boente and Fraiman (1989). The first one is the simplified multivariate
local M —smoother which uses only the complete observations for the estimation and discards the
incomplete vectors. The second one is the imputed multivariate local M —smoother which uses the
simplified local M —smoother in order to impute the missing observations of the response y and
then estimates the regression function with the completed sample.

The paper is organized as follows. Section 2 introduces the Robust Nonparametric estimators.
The asymptotic properties of the Simplified estimator and for the Imputed estimator are studied
in the sections 3 and 4 respectively. In Section 5 we present results of a simulation study. The
concluding Remarks are in Section 6. And finally, technical proofs are in the Appendix.

2 Robust Proposals

We will consider robust inference with an incomplete data set (y;,%;,d;), 1 < i < n where §; = 1if y;
is observed and ¢; = 0 if y; is missing. Let (Y, X,d) be a random vector with the same distribution
as (vi,X;,0;). Our aim is to estimate the nonparametric regression function in a robust way with
the data set at hand. An ignorable missing mechanism will be imposed by assuming that 6 and Y
are conditionally independent given X, i.e.,

PG =1Y,X) =P =1X)=p(X) (2)

We will consider two type of smoothers. The first one is based on kernel weights which are

given by
K <xih— x> 5
= (3)

I

wl(x) ~n ]
Z K (th_ X) 5j
=1 n
with K a kernel function, i.e., a nonnegative integrable function on IR and h the bandwidth
parameter, while the nearest neighbor with kernel approach considers as weight function

(i) *

wi(x) = 55— (4)
> (G )
j=1 Hn(X)
with H,,(x) the distance between x and its k,—nearest neighbor among x1,...,Xp,.



2.1 Simplified Local M—Smoother

The simplified local M —smoother (SLMS) uses the information at hand and defines the estimator
with the complete observations only. Denote by F(y|X = x) the empirical conditional distribution
function which is defined as

n

FX=x) = > wix)( ooy (i), ()

i=1
with wz(zc) the kernel weights defined in (3) or the nearest neighbor with kernel weights given
in (4). F(y|X = x) provides an estimate of the distribution of ¥Y|X = x which will be denoted
F(y|X = x) and which has been studied by Cheng and Chu (1996). Note also that the kernel
weights are modified multiplying by the indicator of the missing variables in order to adapt to the
complete sample and avoid bias.

The simplest one is the local median, mygp(x), computed as the median of ﬁ’(y]X =x). An
interesting feature of this estimate is that it does not need any consistent scale estimate, when scale
is unknown.

On the Ether hand, the local M —type estimate, my(x) is defined as the location M —estimates
related to F(y|X = x). Thus, it is the solution of

> (M) <o, ()

where w;(x) are given in (3) or (4), ¢ is an odd, increasing, bounded and continuous function and
5(x) is a local robust scale estimate. Possible choices for the score function ¢ are the Huber or
the bisquare 1p—function, while the scale §(x) can be taken as the local median of the absolute
deviations from the local median (local MAD), i.e., the MAD (Huber (1981)) with respect to the
distribution F(y|X = x) defined in (5). Note that mygp(x) corresponds to the choice 1(t) = sg(t).

2.2 Imputed Local M—Smoother

As in the classical setting, see Gonzdlez—Manteiga and Pérez—Gonzélez (2004), an imputation
method can be developed. The imputed local M —smoother is constructed in two stages. In
the first step, the SLMS is used to predict the missing observations so as to complete the sample.
In this way, a complete sample of the form (x;,7;), 1 < ¢ < n, where g; = d; y; + (1 — §;)m(x;), is
obtained. The predictor m(x;) can be taken as the local median, mygp(x;), defined as the me-
dian of the empirical conditional distribution function given in (5), or as the local M —estimator,
mum(x;) defined through (6). Also, a local one-step, mog(x), or a reweighted estimator, mgw (x),
can be consider to improve the efficiency of the local median and to reduce computations. These
estimators are defined through

(s (Y TMED (X)
A i i ;wz( )¢< 5 )
mos(x) = MmmeD(X) + S(x)

iz:wi(x)d;/ (%W)




~ =1
mrw(x) = = —
Yi — MMED (X)
> wilx) 5
1=1 S(X)
. . () - .
respectively, with w(t) = 5 To make explicit the dependence on the smoothing parameter,

we will denote the preliminary robust simplified smoother as mg(x;, hy,), when dealing with kernel
weights and mg(x;, k,) when using nearest neighbor with kernel weights.

The kernel-based ILMS, m,1(x), is then defined as the solution of

(X () o, .

2

where 5(x, hy,) is the simplified estimator for the scale function, to avoid extra computations and
Ui = 0; y; + (1 — §;)ms(x;, hy,). Note that a different smoothing parameter and a different kernel L
can be used in this step. The nearest neighbor with kernel estimate is defined similarly.

3 Asymptotic Properties of the SLMS

3.1 Consistency

We will derive consistency for both kernel or nearest neighbor with kernel estimates. For this
reason, assumptions are split according to the weights used. Denote fx the density of X. When
dealing with kernel weights, there will be no need to require a density to the distribution p of X.
In that sense, as in the complete sample setting, the results will be robust and distribution free.
We will consider the following set of assumptions.

H1. 4 : IR — IR is an odd function, strictly increasing, bounded and continuous function.
H2. F(y|X = x) is symmetric around m(x) and a continuous function of y for each fixed x.
H3. 0<p(x)

H4. The kernel K : IR? — IR is a bounded nonnegative function such that

K(x) for somea >0, >0
K(x) < ag H(||x]))

aIjx<r(x) <

ap H(|jx])) <
where a1, as are positive numbers and H : IR" — IR™ is bounded decreasing and u? H (u) — 0
as u — 00.

M

H5. The sequence h = h,, is such that h, — 0, nh? — oo and

— Q.
logn



Note that H3 implies that, locally, some response variables are observed, which is a common
assumption in the literature. The following result ensures consistency of the regression function
estimator of m, when the smoothing is based either on local medians or local M —smoothers and
kernel weights.

Proposition 3.1.1. Assume that H1 to H5 hold. Then, we have that my(x) +% m(x), for
almost all x(p).

When dealing with nearest neighbor with kernel weights we will need the following additional
assumptions

H6. The vector X has a density fx positive at x.

H7. The kernel K : IRP? — IR is a bounded nonnegative function such that [ K(x)dx < oo and
either of the following hold

i) K(x) < c Ijx<,(x) for some ¢ >0 and r > 0
ii) fx is bounded and [ K%(x)dx < oo, lim |x|PK(x) = 0.

i
[|x[[ =00

H8. K(ux)> K(x) for u € (0,1).

H9. The sequence k = k,, is such that @ — 0, k, — oo and k—n — 00.
n logn

Proposition 3.1.2. Assume that H1 to H3 and that H6 to H8 hold. Then, we have that the
local M —smoothers based on nearest neighbor with kernel weights satisfy my(x) —% m(x), for
almost all x(u).

Remark 3.1.1. Using the continuity of the median, similar arguments allow to show the consis-
tency of local medians if F(y|X = x) has a unique median at m(x), for almost all x.

3.2 Strong Convergence Rates
In order to obtain strong consistency rates we will need some additional regularity conditions.

H10. F(y|X = x) is Lipschitz in x uniformly in y, i.e., there exists 7 > 0 and ¢ > 0 such that
lu —x|| < nentail |F(y|X =u)— F(y|X =x)| < c|Ju—x| for all y.

H11. p(x) and fx(x) satisfy a Lipschitz condition of order one.
H12. The function H defined in H4 satisfies uP*?H (u) is bounded.
log n> 3

H13. 0, 'h, < A < oo for all n with 0,, = (7
nhn

Proposition 3.2.1. Assume that H1 to H5 and that H10 to H13 hold. If in addition 1) is contin-

uously differentiable with derivative 1/ positive and bounded, we have that the local M —smoothers

based on kernel weights satisfy 0, | (x) — m(x)| = O(1), almost surely.



3.3 Uniform Consistency

We will now derive uniform consistency on a compact set C C IRP, for both kernel or nearest
neighbor with kernel estimates. We will consider the following set of assumptions.

Al. ¢ : IR — IR is an odd function, strictly increasing, bounded and continuous differentiable,
with bounded derivative ¢/ such that n(u) = ui/(u) < ¥(u).

A2. The functions fx(x) and p (x) are bounded functions on C such that A, = 1leafc p(x) > 0 and

Ap = iné’j fx(x) > 0. Moreover, p(x) is a continuous function in a neighborhood of C.
p<S

A3. F(y|X = x) is a continuous function of x in a neighborhood of C. Furthermore, it satisfies
the following equicontinuity condition:

Ve>0 36>0: Ju—v|<d=sup(|[FuX=x)—FwX=x)|)<e.
xeC

A4. The kernel K : IRP — IR is a bounded nonnegative function such that 0 < [ K(u)du < oo,
[ Ju|K(u) du < oo, ||ulPK(u) — 0 as ||u|| — oo and satisfies a Lipschitz condition of order
one.

A5. The function fx is a continuous function in a neighborhood of C.

Remark 3.3.1. This set of assumptions can be divided in three groups. The first one establishes
standard conditions on the score function . The second one states regularity conditions on the
marginal density of X and on the conditional distribution function which imply that, for any

compact set C, 0 < ingJ s(x) < sup s(x) < oo and that m(x) is a continuous function of x. The
xe xeC
third group restricts the class of kernel functions to be chosen and establishes conditions on the

rate of convergence of the smoothing parameters, which are standard in nonparametric regression.

The following result ensures uniform consistency of the regression function m, when the smooth-
ing is based either on local medians or local M —smoothers.

Proposition 3.3.1. Assume that A2 to A4 hold. Moreover, assume that H5 holds, for kernel
weights and that A5, H8 and H9 hold for nearest neighbor with kernel weights. Then, for any
compact set C,

a) under A1 and H2, we have that sup |my(x) — m(x)| <5 0,
xcC

b) if, in addition, F(y|X = x) have a unique median at m(x), we have that

sug |mMED (%) — m(x)| <25 0. (8)
xXE

Uniform strong convergence rates can also be derived similarly to the complete sample setting.



3.4 Asymptotic Distribution
We will state the result giving the asymptotic normality of the kernel-based estimates. The result

for the nearest neighbor with kernel weights can be derived similarly.

We will derive the asymptotic normality under the following set of assumptions

N1. The kernel K : IR? — IR is bounded, nonnegative, 0 < [ K(u)du < oo, 0 < [ ||u|? K(u)du <
oo and [[u|PK(u) — 0 as ||u]| — oc.

1
N2. There exists 0 < < oo such that h,nr»+2 — 3

N3. There exists a continuous symmetric function Fy such that the conditional distribution
y—m(u
Flyx = w) = Fy (L

o(u)
. . . i, .. m(x+eu) —m(x)
x and m satisfies a Lipschitz condition of order one and there exists lim =

e—0 €

) with m and o such that ¢ is continuous in a neighborhood of

m/(x,u).

N4. The function 1 is twice continuously differentiable with bounded derivatives and with second
derivative o verifying that there exists positive constants ¢, M and e such that ¥/(t) <
c|t|_2+E for [t| > M.

N5. Ag(v) = [r(w)dFy(u) # 0
N6. g (u) = p(u) fx(u) is positive and continuous at x. Moreover, fx(u) is a bounded function.
Proposition 3.4.1. Under H1, H2, N1 to N6, if in addition iy (x) —— m(x) and §(x) - o(x),

we have that

(nh2)? (i (x) — m(x)) = N (bl,

[ r(w)dFy(u)]?
with
b — BH_pfm/fou)K(u)du
o?(x) [ KZ%(u)du

e

Remark 3.4.1. It is worthwhile noticing that the asymptotic distribution of the simplified local
M —estimator is analogous to that of the kernel M —smoother based on the complete sample except
for the factor p(x) appearing in the asymptotic variance that corrects the effect of having missing
responses.



4 Asymptotic Properties of the ILMS

4.1 Consistency

We will derive consistency for the kernel estimates defined through (7), under mild conditions on
the smoother used to predict the missing observations, the results for nearest neighbor with kernel
weights follow similarly.

Proposition 4.1.1. Assume that H1 to H3, and that the kernel L satisfy H4 and the
bandwidth =, verify H5. Let mg(x) be the robust simplified estimator used to predict the missing
responses. Assume that for any compact set C, sup |mg(u) —m(u)] <2 0. Then, if in addition

ucC

8(x) % o(x), we have that f,1(x) =5 m(x).

Note that H2, H5 and A2 to A4 entail that the simplified local M —smoother mar s(x, h) can
be used as predictor.

4.2 Asymptotic Distribution

We will derive the asymptotic distribution under two different conditions on the robust estimators
used to predict the missing responses.

Proposition 4.2.1. Assume that H1, H2, N3 to N6 hold, that L satisfies N1 and that there

1
exists 0 < § < oo such that v,n?+¥2 — §. Moreover, assume that L has compact support and that
a1 (x) 2= m(x) and 3(x) 2 o(x).

i) If for any compact neighborhood C of x, ¥(C) = (n’y;‘;)% sup [mg(u) —m(u)| = op(1), we
ucC
have that

[ 4 () dFo(w) V“Q

D % m xX) —m(x L
(n72)? (Magi(x) = m(x)) — N <bl’[p(x)Ao(w)+(1—p(x))w/(0)12

with
142 [ mt(x,u)L(u)du
i =/ J L(u)du
Voo — P00 T

fx(x) [ L(u)du)?

ii) Assume now that mus(u) is the simplified local M—smoother defined in (6) with score

function v satisfying H1, N4 and N5, bandwidth h, and kernel K with compact support
g

satisfying IN1. Moreover, assume that h—n — k # 0, so that, for any compact neighborhood
n
C of x, 0(C) = (n’yﬁ)% sup |mu s(u) —m(u)| = Op(1). Denote A(x,u,v) = m/(x,u+KV) —

ueC



kml(x,v) and I'(v,a) = /L (u) K ((v —u) a)du. If, in addition, sup |3(u) — o(u)| = 0,
ucC
we have that

(bb J 2 (w)dFy (w) 2v<x>>
[p(x) Ao (1) + (1 — p(x))11(0)]

(nyﬁ)% (ﬁlM,I(X) —m(x)) DN

with

o /L )mI(x,v)dv s k™1 (1 — p(x))yr (0) /L(V)K(u) A(x,u,v)dvdu

[ p)Ao(w) + (1= p()r(0)] [ K(wdu [ Liv)av

on(x 2
o) p(x) [ [L ()90 + R (O ()] dFy(e) av

b1

Vix) = 2 ) 2
fx(x) [ (w)dEo(u) [f L(u)du]

Remark 4.2.1. Note that the asymptotic behavior of the imputed M —estimator depends on
the rate of convergence of the initial simplified estimator. If the initial estimate has a higher
rate of convergence, then the asymptotic bias does not depend on the score function, only the
asymptotic variance depends on the score function used and the efficiency involves now the value
Y1(0) weighted with the probability of having missing observations. On the other hand, if the
simplified M —estimator has rate of convergence (nyﬁ)% the bias depend on th score function used
to compute the imputed estimate while the asymptotic variance depend on the score functions used
in both steps. In particular, if the same score function is used, i.e., ¥ = 1, the expression for the
asymptotic variance reduces to [ 12 (u)dFp(u)[p(x)Ao(1) + (1 — p(x))yr(0)] "2V (x) with

— 2
o) | PO (1fK( )d)up< YO (v,k)] dv

fx(x) [ L(u

Vix) =

5 Monte Carlo Study

This section contains the results of a simulation study, in dimension p = 1, designed to evaluate
the performance of the robust procedure defined in Section 2 when there are missing observations
in the response variable. The S—code is available upon request to the authors. The aims of this
study are

e to compare the behavior of the classical and robust estimators under contamination and under
normal samples.

e to study the behavior of the two robust proposals, simplified and imputed, among them and
compared to that of the robust nonparametric regression estimator with complete data.

10



5.1 General Description

Once the smoothing parameter was selected, we performed 1000 replications generating independent
samples of size n = 100 following the model

z; = 0.25 7 sin (7x;) + &4, 1<i<n

where x; ~ U(0,1), ¢; are i.i.d. and independent of z;, & ~ (1 — a)N (0,0?) + aN (0,250?)
with ¢ = 0.5. We considered three contamination proportions a = 0, 0.1 and 0.2, the first one
corresponding to the central normal model.

We then define y; = z; if §; = 1 and missing otherwise to obtain the missing responses, where
the model for the missing probability considered, (2), is p () = 0.3 4+ 0.5 (sin (5 (x + 0.2)))? which
gives a proportion of missing data in each sample near the 40%.

The robust smoothing procedure uses local M —estimates with bisquare score function, with
tuning constant 4.685, and local medians as initial estimate. In both the classical and the robust
estimators, we have used the gaussian kernel with standard deviation %25 = (.37 such that the

0.675
interquartile range is 0.5.

The estimators considered were:

e The Nadaraya—Watson and the local M —estimates with the complete data set, denoted re-
spectively, mps.c and ma,c, in Tables and Figures

e The simplified version of the Nadaraya—Watson and M —estimates, denoted respectively, mys g
and Mg,

e The imputed Nadaraya—Watson and M —estimates with predictors the simplified ones, de-
noted respectively, mys 1 and 7 1.

5.2 Selection of the smoothing parameter

The smoothing parameters was selected for each of these estimators and for each contamination
using as goodness of fit criterium the mean integrated square error, MISE,

MISE (h) = E / (m () — g (2))? da,

where mj, denotes the estimator to be considered (classical or robust, with the complete data set,
simplified or imputed).

We performed 100 replications generating independent samples of size n = 100 following the

model described above. For each value of the smoothing parameter , the value of the MISE was
100

approximated by Monte Carlo as 100 Z M((h, k), where for each replication k,
k=1

l
M(h,k) = 23 (m (v;) =y, (v)))?
j=1

|

11



with v; = j/¢, 1 < j <, £ =>50. The smoothing parameter h was selected on a grid of 20 points in
[0.2,0.4] for the complete and the simplified estimators while for the imputed one, the minimization
for each parameter h and 7, was carried out over a two dimensional grid on [0.2,0.4] x [0.2,0.4].
When the minimization process, leads to a value on the boundary the search was carried on over
the limits of the interval. Table 1 reports the values obtained in each situation.

5.3 Results

Once the smoothing parameters were obtained, we compared the different estimators for sample
sizes n = 100, under the scenario described in Section 5.1. The performance of an estimate m of
m is measured using two measures computed over the replications

ISE(n) = E Eg (m (v;) — 7 (v)))”
¢
j=1

1 1000

and MSE(m, z) = 1060 M(h, x, k) where for each replication k, M(m, z, k) = (m (z) — i (z))*.
k=1

As above v; = j/¢, 1 < j < ¢, £ =50. An approximation to the MISE was obtained as the mean
over the 1000 replications of ISE. Note that ISE(m) is simply the value of M (hg, k) obtained for
the bandwidth hg at the k/th replication, where hy denotes the smoothing parameter used in the
estimation procedure and reported in Table 1.

Tables 2 to 4 summarize the results of the simulations. Table 2 gives the values of the MISE
for the linear and robust nonparametric estimators for complete data and when considering the
simplified and imputed estimators.

The reported efficiency of the robust estimators with respect to their linear relatives was com-

puted as

MISE; s — MISEy,
EF g — 100 .
LS,M MISELs x 100

where MISEg denotes the MISE of the local linear estimator and MISEy; that of the local
M —smoother for each method, complete data, simplified or imputed one that will be indicated,
respectively, by ¢, s and 1 after the comma.

Table 3 shows the percentage of times that the ISE for robust estimators is less than the ISE
of the classic estimators.

Table 4 gives the percentage of times that the imputed robust estimator is less than the ISE of
the simplified together with the efficiency of the first with respect to the latter

MISEp,s — MISEy ¢

EFy.s1 =
WS MISEws

x 100 ,

with MISEy; g the MISE of the local simplified M —estimator and MISEy; 1 that of the imputed
local M —smoother.

Figures 1 to 3, present the density estimation of ratio between ISE for robust estimator and
that of the classical estimators when o = 0, 0.1 and 0.2 for the complete data and the simplified

12



and imputed estimators, respectively. In order to compare the simplified and imputed robust
estimators, Figure 4 shows the density estimator ratio between the ISE for the imputed robust
estimator and that of the simplified robust one while Figure 6 represents the ratio betwen the MSE
of both estimators across the values of x. The density estimates were evaluated using the normal
kernel with bandwidth 0.6 in all cases.

Finally, Figure 7 shows the boxplots of the ISE for the simplified and imputed robust estimators.

The results reported in Tables 2 to 4 show that when there are no contamination, the linear
estimator performs better than the robust ones that show a loss of efficiency related to that of
the M —smoother used. On the other hand, the performance of the classical Nadaraya—Watson
estimator is highly sensitive to the presence of outliers in the sample. The MISE increases with the
contamination level. For instance, when o = 0.2, the MISE of the linear estimator computed with
complete data is almost four times that observed under no contamination. The robust estimators
are much more estable under contamination increasing at most a 50% their MISE. This explains
the better efficiency observed in Table 2 for the robust estimators as contamination increases. On
the other hand, this is also reflected in Table 3 that shows that under contamination the robust
procedure reaches more than 70% of the times lower ISE than the linear estimates. Note also, that
when there is no contamination only 60% of the times the classical estimator is better than the
robust one been this fact related to the efficiency of the M —smoother.

From Figures 1 to 3, it should be noticed that when there is no contamination (« = 0) the
behavior of all estimators is quite similar, improving, in some cases, the robust procedure the
performance of the classical ones as it was observed in Table 3. However, as the contamination
increases, Figures 1 to 3 clarify the phenomena observed in Table 3 with respect to the better
performance of the robust estimators, since the density functions move towards the left of the point
1. Notice that the behavior of ratio is less than 1 as long as « increases.

Figures 4 to 8 show that the imputed estimator has a better performance than the simplified,
both at each point and globally. Moreover, its behavior improves as the contamination « increases.

5.4 Data—driven selection of the smoothing parameter

An important issue in any smoothing procedure is the choice of the smoothing parameter. Under
a nonparametric regression model, two commonly used approaches are cross—validation and plug—
in. However, these procedures may not be robust and their sensitivity to anomalous data was
discussed by several authors, including Leung, Marrot and Wu (1993), Wang and Scott (1994),
Boente, Fraiman and Meloche (1997), Cantoni and Ronchetti (2001) and and Leung (2005). Wang
and Scott (1994) note that, in the presence of outliers, the least squares cross—validation function
is nearly constant on its whole domain and thus, essentially worthless for the purpose of choosing
a bandwidth. The robustness issue remains for the estimators considered in this paper, specially
since we are dealing with missing responses. With a small bandwidth, a small number of outliers
with similar values of x; could easily drive the estimate of m to dangerous levels. Therefore, we may
consider a robust cross-validation approach analogous to that described in Leung (2005) that takes
into account the missing observations. To avoid a complete search in both parameters (hy,,,), in
the first step, we choose the smoothing parameter for the simplified local M —estimator as follows
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e For each given h, compute m;;;s (x,h) as the solution of
ij(xvh)w <AZ ) =0,
i 5-i(x)
i.e., the estimator computed without the :—th observation where
X; — X
K ( L ) 5;
wj(x,h) =

ZK <Xg;x) 5,

(=1

e Calculate

n o~
RCVig(h) = 6% <ui(h)> w (x;)

i=1 In
where ¢ is the Huber’s function with tunning constant 1.345, @;(h) = y; — T?L{f’s (xi,h),
gy, is an estimator of the error’s scale that does relatively little smoothing (see Cantoni and
Ronchetti (2001) for the complete case), w (x;) is a function to control boundary effects.
As estimator of the scale and since we are dealing with an homocedastic model we can take
G, = median; |y;+1 —y;i|/(0.6745v/2) for the complete case if x € IR, x; < ... < X,, or a robust
scale estimator using the observations at hand and computed using a preliminary regression
estimator. To be more precise, let mueD,s (X, ho) the simplified local median computed with a
pilot bandwidth hg and @;(ho) = y;—mmEeD,s (X4, h), then &, can be taken as the median of the
absolute deviation with respect to the median of the residuals @;(hg), i.e., 6, = MAD; (u;(ho)).
The function w is a function that can be taken as w =1 or as

T — My
w(z) = 1 if .
0 otherwise

with m, = median;(z;) and s, =MAD(z;) to avoid boundary points to be influential in the
selection of the smoothing parameter.

<3

e Choose h, = argmin RCV; g(h).
h

With this data—driven bandwidth, to complete the sample the missing observations are imputed as

~

Ui = 0; yi+(1—0;)ms (xi, hn). In the second step, to select v, we apply the robust cross—validation
procedure described in Leung (2005) to the completed sample, i.e, we select 7, = argmin RCV; ()
h

with " ~
RCVit) = 3207 () )
=1 n

where () = §; — T?LK/IZ;I (xi,7) and T?LK/IZ;I (x,7) is the solution of

> (22w () -0

J#i
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It is worth noticing that this method is not a direct application of the cross—validation criteria but
it reduces considerably the computations and our results show that it worked favorably.

We have also considered a cross—validation criterium analogous to that defined in Bianco and
Boente (2006). As mentioned by these authors, the cross—validation criterium tries to provide a
measure both of bias and variance, and so it would make sense to introduce a new measure that
establishes a trade—off between bias and variance. The robust cross—validation criterium when
there are no missing observations is thus based on a robust estimator of the bias, defined through
a location estimator u,, and on a robust scale estimator o,, as follows,

RCVa(h) = oz, (@i(h)w (x:)) + oy, (@i(h)w (x:)) -

For the situation we are dealing with, it is enough, in the first step, to compute RCV, with the
observations at hand, i.e, using only the complete observations for the estimation and discarding
the incomplete vectors. In the second step we proceed as described above. We can consider as p,
the median and as o,, the MAD, the bisquare a—scale estimator or the Huber 7—scale estimator, in
our simulation study we choose the , the 7—scale estimator.

For this preliminary study, the search for the bandwidth parameter was performed searching
over a grid of step 0.02 on the interval [0.05,0.99], for the complete estimators and on the interval
[0.1,0.99], for the simplified and imputed one. So, too small or too large bandwidths are not
allowed in this procedure. Due to the expensive computing time, we have only performed 200
replications. We have also evaluate the performance of the classical estimators using least squares
cross—validation.

Table 7 shows the percentage of times that the ISE for the robust imputed estimator is less
than the ISE for the robust simplified estimator when using robust cross—validation together with
the efficiency of the first with respect to the latter while Table 5 shows the number of times that
the ISE for the robust estimators is less than that of their linear counterparts. The results given in
Table 5 show that RC'V5 is slightly better than RCV;. Figure 5 plots the density estimator of the
ratio between the ISE of the imputed robust estimator and that of the simplified robust one when
using the two robust cross—validation criterium while Figure 9 shows the boxplots of the ISE for
the simplified and the imputed robust estimators. The results are quite similar to those obtained
with the fixed bandwdiths and the comments given in Section 5.3 still hold.

On the other hand, to study the sensitivity of the data selector to the contamination con-
sidered, Figure 10 shows the boxplots of log(ﬁmcO /ﬁn,ol) and log(iAzn,cO /Emcz) for each scenario.
These boxplots show the sensitivity of least squares cross—validation and the stability of the robust
bandwidth selector when contaminating 10% or 20% of the data. The results being quite similar
with both robust cross—validation measures.

6 Concluding Remarks

We have introduced two robust procedures to estimate the regression function when there are
missing obervations in the response variable and it can be suspected that anomalous observations
are present in the sample. Both procedures are strongly consistent and asymptotically normally
distributed.
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Under the contaminations considered, they show their advantage over the Nadaraya-Watson
estimators. Moreover, the imputed local M —estimator, even if it is computationally more expensive,
should be used, since it performs better as contamination increases.
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A Appendix: Proofs.

PROOF OF PROPOSITION 3.1.1. Using Theorem 2.2 in Boente and Fraiman (1989), it will be
enough to show that

sup |F(y|X =x) — F(y|X = x)‘ 2%.0 for almost all x ,
yelR

which will follow easily, if we show that for any measurable A C IR
QGA(X) 2% pa(x) for almost all x ,

where

~

Pa(x) = Y wix)alw),

Note that ¢a(x) = i?((x);) where

?A(X) = ZWz,n(X)ézlA(yz)a (Al)

i=1
px) = > Win(x)di, (A.2)

i=1

K X; — X
Win(x) = = )’j’%_z (A.3)
2K (=)
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Theorem 1 of Greblicki, Krzyzak and Pawlak (1984) entails that

~

Fa(x) 2% p(x)pa(x) for almost all x,

-~

px) % p(x) for almost all x,

which concludes the proof. O

PROOF OF PROPOSITION 3.1.2. The proof follows as that of Proposition 3.1.1 using Proposition
2 in Collomb (1980). O

PROOF OF PROPOSITION 3.2.1. The proof follows from Theorem 2.3 in Boente and Fraiman (1988)
if we show that R
0" sup [ F(y[X = %) = F(y[X = x)| = O(1)

yelR

which is a consequence of Lemma 2.1 in Boente and Fraiman (1990b) using that
sup [7(y, x) — r(y,x)| + [p(x) — p(x)]

~ — ) — - yelR
yS;%IF(yIX— ) - FylX=x)| < e

with 7(y,x) = q@(_m,y] (x), where (JAS(_OO’y] (x) and p(x) defined in (A.1) and (A.2). O

PROOF OF PROPOSITION 3.3.1. a) Arguing as in Theorem 3.3 in Boente and Fraiman (1991) we
will only need to show that

sup sup |F(y|X =x) — F(y|X = x)| 2% 0,. (A.4)
Xecye_lR

Theorems 3.1 or 3.2 from Boente and Fraiman (1991), entail that

sup sup |7(y,x) — r(y,x)| == 0, (A.5)
xeC yER
sup [P(x) — p(x)] = 0, (A.6)
xeC

where 7(y,x) = qb(—oo,y} (x) = p(x) F(y|X = x), 7(y,x) = qg(—oo,y}(x)» with qg(—oo,y} (x) and p(x)
defined in (A.1) and (A.2), respectively. The weights W ,, are the kernel weights given by (A.3) or
the nearest with kernel weights

Note that (A.6) can be derived for kernel weights using Proposition 2 in Collomb (1979). Now,
(A.4) follows using A2 and the inequality

sup sup |7(y,x) — r(y,x)| + sup |p(x) — p(x)|
xeC yelR xeC

sup sup |F(y|X = x) — F(y|X =x)| < =
Xecyem ApAp
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where A, = ):Ielép(x) and A, = ):Ielép(x)

b) The equicontinuity condition required in A3 and the uniqueness of the conditional median
imply that m(x) is a continuous function of x and thus, for any fixed a € IR the function h,(x) =
F (a+ m(x)|X = x) will also be continuous as a function of x.

Given € > 0, let 0 < 6§ < € be such that

ju— vl < 8= sup (|F(uX =x) ~ F(oX =x)]) < ; (A.7)
xeC
Then, from the uniqueness of the conditional median and (A.7) we get that,
L Fm)+6X=x) <=%+% (A8)
2 - S92 ‘
S5 < Flme)-ox=x) < (4.9)
573 m(x =x 5 .
Write ¢(d) = i]eafCF(m(x) +9|X = x) and v(6) = sup F (m(x) — §|X = x).
X xeC
1
The continuity of hs(x) and h_s(x) together with (A.8) and (A.9) entail that, v(d) < 3 < (6) and
11
thus 7 = min (L(é) 55" (5)) > 0.
Since (A.4) holds, let N be such that P(N) = 0 and for any w ¢ N, sup sup |[F(y|X =
xeC yelR
x) — F(y|X = x)| — 0. Thus, for n large enough we have that sup sup |[F(y|X = x) — F(y|X =
xeC yglR
x)| < min ( ) . Therefore, for x € C, we have that

F(mx)+dX=x)—¢€ < }j(m(x)—i—é]X:x) < F(m(x)+ X =x)+ ¢
F(mx)—-46X=x)—€e < F(mx) —0X=x) <F(mx)—-4§X=x)+e,

which entail that 3 < F(m(x)+ 60X =x) < Tt+eandi—e< F(m(x) =X =x) < 1 and so,
sup |mmED(X) — ( )| < ¢ < € which concludes the proof. O
xeC

PrROOF OF PROPOSITION 3.4.1. Using a Taylor’s expansion of order one, we get that

with

) = g 38 (75 ()

" =1

1 & X; — X Y; — m(x
Ain(x,0) = nhpZK< h )5”( a( ))

e n

where £(x) is an intermediate point. It is enough to show that
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a) Agn(x) == p(x) fx(x)A0(¥)) [ K(u)du

1

b) (nh5)? (A1n(x,5(x)) = A1 a(x,0(x))) 50

¢) ()7 (Apn(x,5(x)) — A1 (x,5(x))) 2 an
d) (nht)% Ay u(x,0(x)) 2= N(0,01),
where

n

P(X)fx(x)Ao(¢) [K(u)du _ ﬁng(X)fx(X)Ao(w) J (%, W) K (u)du

o(x) o(x)

o = pefx(x) [ KA wdu [ dR (@)

Tin(xo) = %ZK(X%) o (e

a1:b1

a)and b) follows as in Boente and Fraiman (1990a). c) follows using a Taylor’s expansion of order
two. Effectively, denote Z;(o) = §;¢' <€ia(xi)> [m(x;) — m(x)], Z; = ;9 (&;) [m(x;) — m(x)]. We

have the following expansion

g

(012 (Avn (o 500)) = A1 (,500) = = 3K (2 (50 +

v ;K (55 v (55g) s =t

_ %\/;TZ;:K Xih;X) 5i2; +

TP T EK () avlote) =6 (5 ) ) —mi)
+ 55 709~ 300 = ;K () 60" (5 ) o) = m)
+ ST J:Wz; (557) b (g ) mto) = i

= Sln + S2n + S?m + S4n

with 6; and §; intermediate points. Using the boundness of ", the Lipschitz continuity of m
and the continuity of o() together with the consistency of the scale estimator, N1 and N2 we

get that S;, 2,0 for 2 < j < 4. On the other hand, using that A(u) = E (Z1|X; =u) =
p(u) Ao (¥) [m(u) — m(x)], we get that Si, —= a;.



In order to prove d) denote by Z; = 6;9 (%_(77;7/5}(1))’ E(Z11X1) = 0. Therefore, the results
o

follows using the asymptotic distribution for the classical Nadaraya—Watson estimates for bounded
variables applied to (x;, Z;) (see, for instance, Theorem 2 in Schuster (1972)). [

PROOF OF PROPOSITION 4.1.1. Let Wj,, 1,(x) be the kernel weights defined as

Winp(x) = L<X2’;X) (A.10)

n

Then, the imputed estimate are the solution of

[ o (P2 af ix = 20—

where
~ n

ﬁn(y|X = X) = Z Wi,n,L(X)I(—oo,y] (:Z/\Z) .
i=1
Denote by F(y|X = x) = p(x)F(y|X = x) +
and by F,(y|X = x) = ZW,HL X)I(— oo,y (T

the unique solution of )\(x a,o) =0 for all ¢ > 0 with

Ao a00) = 008 (0 (L2 ) =) + (1= poa (22221

(1 = p(x)Apx) With Ay, the point mass at m(x)
;) where y; = §;y; + (1 — 0;)m(x;). Note that m(x) is

It is easy to see that sup |F,(y|X = x) — F(y|X = x)| <% 0. Thus, in order to obtain the
yelR
strong consistency and using Theorem 2.2 in Boente and Fraiman (1989), it will be enough to show

that sup |Fy(y|X = x) — F(y|X = x)| <% 0, which will follow if we show that, there exists a
yelR
measurable set N with probability 0, such that, for any w ¢ A it holds that for any bounded and

Lipschitz f, we have that

/f Fo(y|X = x) /f VAE (yX = x) — 0 (A11)
Note that

Bns) = [ F@FuwIX =x) = [ F@dF X = x)

= > Winn(x) 1 — &) [f (Ms(x) — f (m(x;))]

1=1
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Let C be a compact set such that x € int(C). Denote

Bin = Y Winn(x)(1 = 6)Ice(xi) [f(Ms(x:)) — f(m(x:))]
i=1

Bon = Y Wint(®)(1—6)Ic(x) [f (Ms(xi) — f(m(x))]
i=1

Then, An #(x) = Bin + Bay. Using that the kernel K is a positive function, we get that |By,| <
HfHOOZWmL Jce(x;) and |Ba | < Cf sup |mg(u) —m(u)|, where C; denotes the Lipschitz

=1

constant of f. Note that Z Winn(x)Ice(x;) == 0 since x ¢ C. Let N the probability 0 set such
i=1
that, for any w ¢ N, we have

ZWan ICC Xz) — 0

sup |mg(u) —m(u)] — 0.

ueC
Then, the bounds given entail that, for w ¢ N, A, f(x) — 0, concluding the proof. (]
PROOF OF PROPOSITION 4.2.1. Using a Taylor’s expansion of order one, we get that

() — m(x) = 3(x) Ag 4 (x) A1 (x, 5(x))

with
Aonlx) = — ;L (57w (® ;<Z;(X)) ’
.\ %[m@{) P %g ( )wu( S(sx>>
Ax,30) = — ;L (57 (" } ~)
where £(x) is an intermediate point between 7 1(x) and m(x). It is enough to show that

a) Agn(x) == fx(x) [p(x)Ao(¥) + (1 — p(x))¢(0)] [ L(u)du
b) (nA2)2 Aqn(x,3(x)) -2 N(a1,01) with

2y 094w + (1= pl)ur(0)] [ Lw
[ wdrw veo (22 ) { / L<u>du]

[ wdFs(w) [ L (w)du under i)

~
=
x

a1:b1

= p(x)fx(x)

P (1 = p(x)) 97 (0) 1 (€) ? .
/ [L (v)¢(e) + Ao(on) [ K (u)du px) I'(v,k)| dv dFp(e) under ii)

21



a) follows using similar arguments to those considered in Proposition 4.1.1. To obtain b) note that

nyh A p(x,0) = ZL(XZ_ ) (yl_o_ (X)>
z":L( —X) { (Ni—m(X)) +a _5i)ﬁ%s(xz-) —m(xi)W(&(Xi) ;m(X)>](A~12)

g o

) [ (Bt st 5

g

n %Zn:L <Xi - X> (1—06) [ (xs) — m(Xi)]zw” <§(Xz’) ;m(x)) (A.13)
0

where y; = d;y; + (1 — d;)m(x;) and £(x;) denotes an intermediate point.

We begin by proving i).

For n large enough, we have that L (Xif—;") = 0 for x; ¢ C which entails that (n’yﬁ)% Aqp(x,5(x))
has the same asymptotic behavior as

o0 (55 o (B0

since from (A.12)

Now the proof follows as in Proposition 3.4.1 by showing that

o 4 S0 (S52) o () 0 (552 o (S50 2o
S () () S (5 () e

(nh)

< Ol o 22 (55.7)

= Tn o(x)
o = 0 X gy + (1 / L

o = [ WdRwpx) x(x / L2(u

al) and bl) are derived as in Proposition 3.4.1. On the other hand, to prove cl) let Z; =
P (w>, E (Z1]X1 =u) = 0. The result follows now from the asymptotic distribution
o(x

of the classical Nadaraya—Watson estimator.
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Let us derive ii).

Using (A.13) we obtain that (n’yﬁ)% Aj 5,(x,5(x)) has the same asymptotic behavior as
X; — Ui — X; — o s (xi) — mi(xi) (m(xz) - m(x))
(n2)" lZL( o (Bom = >+;L( %) (1) sl bl (B

Using the consistency of §(x) straightforward calculations allow to show that (n’yﬁ)% Aqp(x,5(x))
has the same asymptotic behavior as

(nym)”~ lZL (Xz ) (yz U(){)(X)) T zn:L (Xi - x) 1 5i)ﬁlM,S(}:()X_) m(Xi)wl (m(xi;(;)m(x)ﬂ

i=1 Tn

As in Proposition 3.4.1, denote

Ao s(x,91) = hpZK(Xl_ ) Zwl,( (6)(X)>.

Using that sup |5(u) — o(u)| - 0, and that sup
ueC xeC
0 and expanding as in Proposition 3.4.1, we get

s ) = m) 20 ([ duao(en) %EK (22 ) gy (U2 2

p(xi) fx(x

Ao s(x,101) — Ao (11)p(x) x (x) / K(u)du’ ,

=

where (nh?)?2 sug |R,(u)] £ 0. Since Z—" — K > 0, using the boundness of 1/, we obtain that
uec n

1
(nP)2 Ay p(x,5(x)) has the same asymptotic behavior as

Us = (mf) [B + (ot aoton) | K(u)du)_le,n]

B = i 3o (55 0= o (M) S (S ()

=1 =

We begin by splitting By, and B, in the terms leading to the bias and those leading to the
asymptotic disribution. Using that g; = d;y; + (1 — 6;)m(x;), we get

e = S (55 - (52 0o (2

B -n1L<Xiv;X>5””<Uc(:<{Q>Q>+§L<XZ% =)o (* (<x)>q> (m(Xici(;;n =)
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= D+ Digp + Dizn + Dy

where ;1 and &; 2 denote intermediate points. Using that v/ is bounded and that m satisfies a
Lipschitz condition of order one (with Lipschitz constant C,,) we get that

- |l PN (e x (= x]
P72 |D < m p+2) 2 L< - >( - >
(m98) % |Dasnl < U(X)Q ()" | g L (55,

Tn

b3 () () ) - o)

nfyn i=1 Tn

which together with ny?*2 — P2 the continuity of o and

I e TG RNy DT

1=

1
—x\ (i — XH) P
o(x;) —o(x — 0
n%’i;( )<7 (otx) = olx)
entail that (nvﬁ)_% D13, 2= 0. On the other hand, we have that

(%)% E Dz + Dian) = (%)2 E (L (le_ X) [p(xl)Ao(w) (M> N

: o o(x)
(1= pas (L))
= (mr)" [ @) [plct 0 wAggey s (R
+ (1—pE+m u))%fb (m(x : 7;(3 — mix) ﬂ fx(x + v, u)du

Using the continuity of p(u), the boundness pf fx, the Lipschitz continuity of m and ¢, N3 and
the fact that (0) = 0 and ny?T2 — BP*2, from the dominated convergence Theorem, we get that

p+2

(m72)"% E(Dign + Disn) — 8% [pe0Ap(®) + (1 — p))in(0)] X&)

u) m/(x,u)du

(A.14)
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Finally, since

nyn Yh o(x) o(x)

n

Var (D12, + Diap) _ —V (L (Xl — X) [51¢/(51) (w) + (1 =)y (M)]>
2

IN

o(x)

et o) P2
(1)2%E <L2 <X17; X) (HX17% XH>2>

< WG g [ 12 ) P e i

IN

< JwrlleCr,

we obtain that (nyﬁ)_l Var (D12, + D14,n) — 0 and so using (A.14), we have

l\.’)l)—l

(D12, + Dian) 2 fin i [p(x)Ao(¥) + (1 —

u) m/(x,u)du

(A.15)

(nyh)~

Moreover, note that

D1y, = ;:L (Xi,; X) 8iyp () + ;L <Xi - X) 0; {T/) <U:((Q)q> - (Ei)]

= Ayip+ A2,

with EF(A11,,) = 0and E(A12,,) = 0. We have the following bound for the variance of (nyﬁ)_% AN
1 X] — X o(x1)er
Var ((ny8)"2 Aja,) = —Var (L (7>(5 { <7) — (e D
(( ) 12, ) 7 - 1| () Y (e1)

- (2 () o [ () -vee])

< [ o (T DY ] st + 2.

Using the dominated convergence Theorem, we get that Var ((n’yﬁ)_% Alg,n) — 0, which together
with (A.15) entail that

p+2

(n,yp)—% By, = (n,},p)—% Ap +5T [p(x)Ao(¥) + (1 — p(x))¥1(0)] fx(x) /L(u) mi(x, w)duto,(1)
W e = i S g o,
(A.16)

n
where Aqq,, = ZL <XZ X

> > 3¢ (€;) and E(Aq1,) = 0.
i=1 n
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We will made an expansion to the term (nyﬁ)_% (o(x)Ao(¢1) [ K (u)du) ™! By, analogous to
that made for By ,. Using a Taylor’s expansion of order 2, we obtain

e = () g (M) S (55 (5 280)
- () a0 Uf}‘;ix»w'(m("i(;f“"))
X iK(thn )ﬂh( (XJ)EQ+Tr(L(X)J) m(Xz))

) dnm (") ok () (a5

>+
N Lp - L(xi—x) ((1—&) w/(m(xﬁ—m(x))

Tn p(xq) fx(x:) o(x)

<R (B 0 (622 (o) - )

j=1 "
+ nhl’ZL ) u-a S e ()
) ;K (2 (325 ) (M=)

= Do+ Doy + Daogn

where §;; 1 denote intermediate points. Using that 1)1/ is bounded and that m satisfies a Lipschitz
condition of order one (with Lipschitz constant C,,) we get that

l\'}l)—l

-1 o(xi) xj =%\ (%= %401\
(m92)72 Dzl < Coltblollee (m33)7 hpz ) monm 2 ) o)

1
< Cnllvlso s (m57)7 YaBosn

Ay = nwhpz (=) e Z (22 (sl

Thus, it will be enough to show that lim EAss ,, < 0o, since 7, — 0 and ny2+2 — gPF2,

1 —x 1 (X xa [ x = x)
BAmn = oy BL () (o) (b )
23, b nhh, In o(x1)p(x1) fx (x1) z:: fin n

B ’Y_lﬁh%nT_lE [L (Xl’Y; X) a(Xl)p(x11)fX(X1)K (X2h_"X1) (HX1’Y_"X2H> ]

1 1n-1 xl—x> 1 <><2—x1)<||><1—><2||)2
= ———— | L x9) K dxydx
A / ( ) sty XU, o 1




n—1/(h, 2 1 2
- Ta <’y_n> /L(u) o T mu)p(x + X ALV [ [Fdudy

Therefore, using L has compact support, Z—n — Kk # 0 and the dominated convergence Theorem we
n

get that EAg3,, — £ 2 fX(x fL( )du [ K (v)||v]*dv and so, (n’yﬁ)_% Doz 2 0.

o(x)p

Let us show that (nyE)~ 2 Dy; ,, converges in probability to the second component of the bias.
Denote

Hyis— I (Xi - X) ((1 — &) o (m(Xi) - m(X)) i (Xj - Xi) 550/ (qM) (m(x;) — m(xs))

) (i) fx (%) (%) hn o(xi)

EDQQ,? ()t nillpE[iL (xi - x) p((l —3;) " (m(x,-) - m(x)>

(nyh)? n | i= Tn x;) [x (%) (%)
y éK (xji;xi) 51/ (ej ZEZZ;) (m(x;) — m(x,))]
— () (= E (Haa)
- mﬁﬁnglﬁﬁﬁEF<mﬁ'>;¥ﬁi&3w(m@ﬁ;ﬁ@n
x K (xzh—nX1>p(X2)¢1/ (ezzgio ]
-t [ (5) 5 w'( )

x K (m;ﬂm)p(xz)%/ (EZEZD (m(xa) — m(x1)) fx (x2)dx1dxad Fy(e)

= et [ (M) S ()

x K (u)p(x1 + hyu)pr/ (e%) (m(x1 + hpu) — m(x1)) fx(x1 + hpu)dxidudFy(e)

. % -1 p(xX+ YV))p(X + v + hpu) | (m(x+ Yv) — m(x)

ey ek pOx+30v) ()

x K (u)yn/ (e o(x —i(_xfyivfy—i_\’}; )> (m(x + v + hpu) — m(x + V) fx(x + 1 v + hpu)dvdudFy(e)
= (ny :n+2 p(X + 7 V))p(X + YV + hpu) m(x + v, v) — m(x)

B ( n o /L P(X 4+ YnV) v ( o(x) >

x K (u)ir/ <€ (XJJ(FXW:VW:V};HH)> et h%:) UL fx (X + v + hpu)dvdudFy(e)

Using that ny2t2 — gr+2, :—: — k7!, N3 and the dominated convergence Theorem, we get that

(n’Yﬁ)_% E (D22r) — Ao(tn) fx(x)(1—p(x) 5T/<a_1 /L A(x,u,v)dvdu . (A.17)
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It remains to show that (n’yﬁ)_l Var (Daa,) — 0.

Var (Dys 1
# = P (ZZHn,z,j)

nYn Tl’}’g ( i=1 A

= P 22222007} n,8,79 nsé)

ny i=1 j#i s=1l#s
- P ZZZCOU nyijs Hri e +ZZZCOU n,3,5 n,s,z)
n% nh ) i=1 j#i LA i=1 j#i s#i
+ ZZ Z COU "7%]7 n,j,l +ZZ Z COU n,i,j» ns,y)
i=1 j#i {F#£i,j 1=1 j#i s#i,j
1 nn-1)

n—vﬁ (nhp)g [(n —2)Cov (Hyp,2, Hpy3) + Var (Hy2)

+ [(n—=2)Cov (Hp12,Hn31) + Cov(Hpi2, Hp21)]
+ (n—2)[Cov(Hp12,Hn23)+ Cov(Hpi2, Hp32)|]
1 n(n—1)
= n—ﬁW( ) [COU ( n,1,2, Hn,173) + Cov (Hn,l,27 Hn,3,1)
+ Cov(Hypa,2, Hn23) + Cov (Hy 9, Hy32)]
1 nin—1
+ —(72) [Var (Hp,1,2) + Cov (Hp 12, Hp2,1)]

Y (nhb)

From the equality

EDs —3
= =25 = ()" —pn(n — VE (Hy2)
(nyh)? "
and the fact that
L n(n—1) 5 1 n(n-1)
A, = — ™M= B, P ez W Hn
o (? T D E )l ¥ g et 1B (Ha2)
) 2
5 1 nin—1) ( 7%)%”}1% (n%)%nhg
= Qy,— 7% 2 ( _2)
Y (nhh) n(n—1) nn=b
n

using (A.17), we have that it will be enough to show that

1 nn—1
nyh (( hp)z) (n = 2)[E(Hna2Hn13) + E (Hnp2Hnp1) + E (Hpa2Hn2s) + E (Hnp2Hn32)]
n (nhn
1 n(n—1)
) (1) 00
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that follows easily using that 7* — k # 0, E (Hp12Hp23) = (h2)3o(1), E (HEL,IQ) = (h2)?o(1)
and the fact that ny? — oo.

Therefore, using (A.17), we have that

(i) )Ao(li?}K( Jia = (A (o600t / K(w) d“)_le
+ C prpe )}I)()(f); M _1/L A(x,u,v)dvdu + op(1) (A.18)
with
Dot = n—flﬁfz Z.ZZ;L (XiVZ X) (1- 5i)p(x;(;z)(x¢)w <m(xZ ) ]Z:K ( ) 0i¥1 (
Denote
s =2 (5F) S (M0 ) g (57, o o

Aoxop = Dojp— Doy

Using that E (Aggy) = 0 and bounding the variance of (nv% )_l Ags , as we have done with that
of (nyﬁ)_% Dy 5, replacing )/ (ej ‘;E;Z))) (m(x;) — ( i) by 11 (ej Z(x ) — 11 (€5), the continuity
of o and straightforward calculations lead to (ny2)~ 2 Ao p 2,0.

Thus, putting together (A.16), (A.18) and (A.19), we have the following expansion for U,

3B, + <0(X)A0(1,Z)1) / K(u)du>_1Bg7n]

U = (m3)”

— (p) lAILn+ <a(x)A0(¢1) / K(u)du>_1A21,n + a1+ o0p(1)
m = %{wxmowwa— ()0r0)] [ L (o) mie vy
+ (fl[; _l/L (x u,V)dvdu}
- f;‘(ﬁc)) PG A0fe) + (1~ p()(0)] [ Lo
Ay = ;:L(XZ% ) i (&)
Batn = %%EL(Xiv;X) (1_5i)p(xj)(;c>i)(Xi)w/<m(X2 )22: ( ) o3 (&)

It only remains to show that (n’yﬁ)_% [All’n + (0(x) Ao (¢1) [ K (u)du) ™ Aglm} 2, N(0,01).
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Let us begin by writting (ny?) ™" Ag1 , as a U—statistic with symmetric kernel. Denote L., (v) =
T
Y PL(v/v), Kp, (v) = h PK(v/hy,) and z; = (xiT,éi,e,-) . Then,

I - o(x;) m(x;) —m(x)
= — L, (x; —x)Kp, (x; —xi) (1 —09;)d; q/)/<
"2;; n { ) B (% ) )Jp(xi)fX(xi) o(x)
1 n n
= ﬁ ZZH'\/nyhn (Z“ZJ)
i=1j=1
o(x;) m(x;) — m(x)>
H, 1, (zi,z;) = L, (x;—x)Kp, (x; —%) (1 —9;)d; ¢/< P1 (€5
Tnsh ( J) o ( ) h ( Jj )( ) ]p(Xi)fx(Xi) a(x) 1( J)
Note that H.,, j, (zi,2;) = 0, thus if we denote
1
A'Y'mhn (Zi? Z,?) = 5 (H'Y'mhn (Zi? Z,?) H’Yn7 n (Zj7 Zl))
we obtain that
1 1 & n—1
n—%Aﬂ,n = F ;2/\%“}% (Ziazj) = n U)\,n
i=17=1
1 n n
U)\,TL = Y A 7L7h7l (Z747Z )
n(n—1) ;; 7 J
We have that E (A, 4, (2i,2;)) = 0 and for any j # i
EUxnlzi) = n(n — 1 E (M, b (2i25) |2i)
]:1
2
E(Usnlzi) = —B My, (2i,25) |2:)
1
E Mo (2iy25) |20) = SE ((Hyph, (2025) + Hop o (25, 20)) [2)
1
= S E(Hyh, (2),2:) |2) -
The last equality holds since Ev (ej) = 0. Therefore, for any j # i, we have
1
Eals) = B (o, (55,2) 51)
1 o(x;)(1—4;) (m(x;) —m(x)
= -4 () E|Ly, (x5 —x J W( )Knx,-—x- Z;
n 1( ) < 0 ( J ) p(xj)fX(X]) O'(X) h ( J)’
1 o(x;)(1 —p(xy)) (m(x;) —m(x)
= —0ith1(€&) B | Ly, (x5 —x ) /( )KnXi_X' Z;
it () (”“ i) T o) )]

> Y1 (€5)



_ % b1 (1) /L% (x; — %) U(Xj)(l—p(Xj))w,(m(Xj)—m(X))Khn (xi — x;) dx;

p(x;) o(x)
_ l 6 X + ’Ynu ( (X + ’Ynu)) m(x + ’Ynu) B m(x)
= G [ L PXF 30) o ()

XKh( — X — ypu) du
= 01 (&) /L u) o(x +mu)(1 — (X—I—%Lu))l/” (m(x+7nu)—m(x))

nhp p(x + Y1) o(x)
(52
= aun () [ Sy ) / 20 e (X ) 7Y+ i)
= s (o) [ o) [ i (B - w) 22) dut Ran)]
where (nv? %%2 Ry, (x;)] — 0. Let I'(v, a) /L K((v—u)a)duand 'y, (v,a) =7, PT(v/vn,a)

E (Uxplzi) = %p St (&) [WW(O) Ly, <Xi - ZZ) -I-Rzn(xz)]

- E 'Y'mhn(zl) + ; Z’lzbl (62) 2,n(xz) 3

with Ay, n, (2:) = ko (x) (1 — p(x))p~ ! (x)47 (0) 61 (€5) Ty, (Xi - % Z_nl)

Denote U An = —ZA% h,(zi). Then, standard U-statistic arguments allow to show that
1=1

nybE (UAn — U, n) (1/(n = 1))Var (A, h,(21,b22)). Using that h? v2 Var (\y, »,(21,22)) =
2

(1/2)E (H., p,(2z1,22)?) is bounded, we get that nvLE (UML - UA,n) < C/(nhP) — 0, and

o () Uy, and (n9h) ﬁk,n have the same asymptotic behavior. Therefore, we obtain that

(n’y;‘;)% A1 n(x,5(x)) has the same asymptotic behavior as

-1
W, = ()3 [Aun ((X)A0(¢1) / K(u)du) Agin| +ar
Ay = ;L( o )5ﬂ/}(€z)
— D - N - pa(x)(l—p(x)) ) ) Xi =X Un
Dot = D M) = T 0 T (%5 )

Wi = (o) E 30 1 (P ) v+ g e o (S e (o)
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Since

Var (Wi ) = _pE{ [ < )¢ €) +1@p

Hn)

(1-p(x)
Ao(¥1) IK( )du p(x)
(v

= [pvn +[L )6

P(1 - p(x)) T 2
T4 K (w)du p(x) wrO)r (V7 —) W1 (e )} Fx (VY + x)dv dFp(e) — oy
(1-p(x) 2

+/€p

v 1
o1 = p(x)fx(x) /{L(V)qﬁ(e)'ﬂ{ Ap(11) [ K(u)du p(x)
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Mrs.c 0.23 0.34 0.41

MaLc 0.23 0.27 0.3

MLs.s 0.25 0.39 0,49

ML 0.26 0.29 0.34
(h,7)

mrsy  (0.21,0.24)  (0.22,0.38)  (0.25,0.47)
g (0.19,0.25)  (0.21,0.28)  (0.25,0.3)

Table 1: Smoothing parameters for each scenario for the linear and the robust nonparametric
estimators.

a=0 aoa=01 a=0.2

mLs,c 0.01275 0.03034 0.04558
mM,C 0.01319 0.01566 0.02051
EFpsay;c -3.452  48.371 55.003

mLs,s 0.02187 0.05190 0.07309
mM,S 0.02264 0.02737 0.03504
EFpsa;s  -3.536 47.258 52.061

mLs,1 0.02088 0.05004 0.07133
MM, 1 0.02197 0.02592 0.03223
EFpsm;;  -5.207  48.197 54.809

Table 2: Mean Integrated Squared Error (MISE) for the linear and the robust nonparametric
estimators.
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my,c  Mams MM
a=0 39.1 39.7 41.7
a=0.1 1792 81.5 79.6
a=0.2 835 81.9 83.3

Table 3: Percentage of times that the ISE for the robust estimators is less than the ISE for their
linear counterparts.

% ISE(T/T\lMJ) < ISE(T/T\lMs) EFM; S,I

a=0 61.4 2.982
a=0.1 63.5 0.294
a=0.2 68.2 8.009

Table 4: Percentage of times that the ISE for the robust imputed estimator is less than the ISE for
the robust simplified estimator.

RCVl RCV2
ma,c  Mmas MM ma,e  Mams MM
Co 220 36.5 36.0 30.5 39.0 41.0
C7 655 74.0 75.0 71.5 76.0 77.0
Cy 75.5 79.5 78.5 79.5 81.0 81.0

Table 5: Percentage of times that the ISE for the robust estimators is less than the ISE for their
linear counterparts when using cross—validation.

RCV; RCV;
% ISE(mM,I) < ISE(’I:)\’LM’S) E]:_“l\/[7 S,I % ISE(T?LM’I) < ISE(mM’S) E]:_“l\/[7 S,
Co 51.5 —1.399 51.5 —0.953
Ch 56.5 2.827 54.0 1.480
Cy 61.0 5.601 58.0 3.270

Table 6: Percentage of times that the ISE for the robust imputed estimator is less than the ISE for
the robust simplified estimator when using robust cross—validation.

RCV; RCV,
% ISE(T/T\lMJ) < ISE(ff\lMs) E]:—“l\/[7 SI % ISE(T/T\lMJ) < ISE(T/T\lMs) E]:—“l\/[7 S,I
Co 51.5 —1.399 51.5 —0.953
Ch 56.5 2.827 54.0 1.480
Cy 61.0 5.601 58.0 3.270

Table 7: Percentage of times that the ISE for the robust imputed estimator is less than the ISE for
the robust simplified estimator when using robust cross—validation.
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1SE(My, ¢ ISE(M )

Figure 1: Density estimator of the ratio between the ISE of the robust estimator and that of the
linear estimator for the complete data estimator. The solid line corresponds to o = 0, while the
broken (— —) and dashed (—---—) lines correspond to o = 0.1 and 0.2, respectively.
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Figure 2: Density estimator of the ratio between the ISE of the robust estimator and that of the
linear estimator for the simplified estimator. The solid line corresponds to a = 0, while the broken
(— —) and dashed (— - - - —)lines correspond to o = 0.1 and 0.2, respectively.
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Figure 3: Density estimator of the ratio between the ISE of the robust estimator and that of the
linear estimator for the imputed estimator. The solid line corresponds to o = 0, while the broken
(— —) and dashed (— - - - —)lines correspond to o = 0.1 and 0.2, respectively.
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Figure 4: Density estimator of the ratio between the ISE of the imputed robust estimator and that
of the simplified robust one. The solid line corresponds to o = 0, while the broken (— —) and
dashed (—--- —)lines correspond to o = 0.1 and 0.2, respectively.
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RCV; RCV,

Figure 5: Density estimator of the ratio between the ISE of the imputed robust estimator and
that of the simplified robust one when using a robust cross—validation criterium. The solid line

corresponds to Cp, while the broken (— —) and dashed (—---—) lines correspond to Cy and Cy,
respectively.

10

0.9

MSE(mM‘I )/MSE(mM,s)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Ratio betwen the MSE of the imputed robust estimator and that of the simplified robust
one across the values of x. The solid line corresponds to Cp, while the broken (— —) and dashed
(= -+ —)lines correspond to C; and Cy, respectively.
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Figure 7: Boxplots of the ISE for the simplified and the imputed robust estimators for oo = 0, 0.1
and 0.2.
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Figure 8: Boxplots of the ISE for the simplified and the imputed robust estimators for a = 0, 0.1
and 0.2. Values larger than 0.10 are not plotted.
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Figure 9: Boxplots of the ISE for the simplified and the imputed robust estimators for a = 0, 0.1

and 0.2 using robust cross—validation.
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Figure 10: Boxplots of log(ﬁmcO /iALn,cl) and log(iAln,cO //ﬁn7c2) for the

and imputed (c) robust estimators.
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