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1 Introduction

In many situations involving several populations, in multivariate analysis, such as discriminant analysis or
manova, equality of covariance matrices is often assumed. If this assumption does not hold, an alternative
to model the structure of the related scatter matrices of several populations, is to assume that they differ
just in a proportionality constant while a weaker assumption is that they are conmutable. In both situations,
the scatter matrices of the different populations have the same eigenvectors.

Assume that we have k populations in Rp, with covariance matrices Σ1, ...,Σk. The common principal
components (cpc) model (Flury (1984)) states that Σi = βΛiβ

′, 1 ≤ i ≤ k, where Λi is a diagonal matrix
and β is an orthogonal matrix, while the proportional model assumes that

Σi = ρiΣ1 , for 1 ≤ i ≤ k and ρ1 = 1 . (1)

Estimation for proportional covariance matrices in the two–sample case and for normal populations have
been studied by Khatri(1967) and by Pillai, Al–Ani and Jouris (1969) who studied the ratios of the charac-
teristic roots of S1S−1

2 where Si are the sample covariance matrices. An extensive study of proportionality
between covariance matrices was done by Kim (1971) and the solution for k = 2 populations was later
published by Guttman, Kim and Olkin (1985). Similar results were published independently by Rao (1983).
The case of several groups, has been considered independently by several authors. 0wen (1984) used propor-
tional scatter matrices in classification and gave an algorithm to find the maximum likelihood estimators.
Essentially the same algorithm was proposed by Manly and Rainer (1987) and by Eriksen (1987), who, in
addition, proved the convergence of the algorithm and the uniqueness of maximum likelihood estimates.
Flury (1986) using a parametrization based on the eigenvalues and eigenvectors of Σ1, obtained a system
of equations defining the maximum likelihood estimates and gave an algorithm to solve it. The asymptotic
behavior of the proportionality constants was first obtained by Kim (1971) and can be seen in Flury (1988).
Proportional matrices were used in discriminant analysis by Flury and Schmid (1992) and by Flury, Schmid
and Narayanan (1994) where better rates of correct classification are obtained if the most parsimonious
among all correct models is used for discrimination.

In many situations robust estimators of the proportionality constants and of the eigenvectors and eigen-
values, under proportionality of the scatter matrices, are desirable. As in the one–population setting and
in the cpc model, two approaches will be considered in this paper. The first one compute the principal
directions by plugging in robust scatter matrices in the equations defining the maximum likelihood estimates
for normal data. Robust plug–in estimates under the cpc model were proposed by Novi Inverardi and Flury
(1992) and studied by Boente and Orellana (2001). The second approach is a projection–based method,
which defines the principal axes by maximizing (or minimizing) a robust scale of the projected observations.
Boente and Orellana (2001) also considered a projection–pursuit approach under a cpc model while the
partial influence functions were computed by Boente, Pires and Rodrigues (2002) for both proposals.

Robust plug–in estimators for the principal axes, the proportionality constants and the eigenvalues were
proposed by Boente and Orellana (2004). These authors also considered three proposals for estimating
the proportionality constants, derived the asymptotic behavior of the robust estimates and proposed a
test for equality against proportionality. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from
k independent samples in Rp, with location parameter µi and scatter matrix Σi. We are interested in
estimating robustly the common eigenvectors β =

(
β1, . . . ,βp

)
of Σi, the eigenvalues λ1 ≥ . . . ≥ λp of Σ1

and the proportionality constants ρi under the proportionality model (1). In order to identify uniquely the
axes we will assume that the characteristic roots of Σ1 are distinct and that the the columns of β are arranged
according to decreasing values of the eigenvalues of Σ1. Let Vi be a robust affine equivariant estimate of the
scatter matrix of the i−th population. The so–called Proposal 1 in Boente and Orellana (2004), estimates
the parameters under a proportional model by plugging–in the matrices Vi in the equations defining the
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maximum likelihood estimates for normal data, which lead to the following system of equations

ρi =
1
p

p∑

j=1

β′
jViβj

λj
i = 2, . . . , k (2)

λj =
1
N

k∑

i=1

ni

ρi
β′

jViβj (3)

0 = β′
l

(
k∑

i=1

ni

ρi
Vi

)
βj l 6= j (4)

δmj = β′
mβj , (5)

where N =
k∑

i=1

ni, δmj = 1 when m = j and δmj = 0 when m 6= j. On the other hand, in their Proposal 2

and 3, the proportionality constants are estimated, respectively, as

ρ̂
(2)
i =

[
|Vi|
|V1|

] 1
p

ρ̂
(2)
1 = 1 , (6)

ρ̂
(3)
i =

tr(V−1
1 Vi)
p

ρ̂
(3)
1 = 1 . (7)

Once the estimates of the proportionality constants have been obtained, using (6) or (7) another family of
estimates for the eigenvectors β and the eigenvalues λi can be obtained by solving (3) and (4).

As mentioned above, Boente and Orellana (2001) considered, for the cpc model, a projection–pursuit
approach to estimate the common directions. This method can be also used under a proportional model.
Let s(.) be a univariate robust scale statistic, τi =

ni

N
for 1 ≤ i ≤ k and Xi = (xi1, . . . ,xini). The estimates

of the common principal axes defined in Boente and Orellana (2001) are obtained by solving iteratively




β̂1 = argmax
‖b‖=1

k∑

i=1

τi s
2(X′

ib)

β̂j = argmax
b∈Bj

k∑

i=1

τis
2(X′

ib) 2 ≤ j ≤ p ,

(8)

where Bj = {b : ‖b‖ = 1,b′β̂m = 0 for 1 ≤ m ≤ j − 1} and we include the weights τi to adapt for different
sample sizes. Once the common direction estimates have been obtained, the eigenvalues and the covariance
matrix of the i−th population can be defined as

λ̂ij = s2(X′
iβ̂j) for 1 ≤ j ≤ p Vi =

p∑

j=1

λ̂ij β̂jβ̂
′
j . (9)

Under proportionality of the scatter matrices, the estimates of the eigenvalues of the first population and
of the proportionality constants can be computed in two different ways:

a) Solve (2) and (3) with the estimated directions obtained in (8) and the matrices Vi defined in (9).

b) Define the estimators of the proportionality constants through Proposal 2 or Proposal 3, given in
(6) and (7) respectively. Then, define the estimate of j−th eigenvalue for the i−th population as ρ̂iλ̂1j .

The axes can be reordered in such a way that λ̂1 > . . . > λ̂p. In Boente and Orellana (2001), an algorithm
similar to that given by Croux and Ruiz–Gazen (1996), is described in order to obtain the estimates defined
through (8).
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The projection pursuit estimates are rotational equivariant if the same rotation is applied to all the
populations in order to preserve the proportional structure. The eigenvectors are also Fisher–consistent if all
the populations have the same elliptical distribution except for changes in the scatter matrices, if the scale
functional related to the scale estimate is scale equivariant and if the eigenvalues of Σ1 are distinct, as was
shown in Proposition 1 of Boente and Orellana (2001). Note that the scale functional need to be calibrated
in order to obtain also Fisher consistent estimates of the eigenvalues.

If a preliminary estimate, ρ̂i, of ρi is available, a new class of projection-pursuit estimates can be defined.
More precisely, in this paper, we will consider a generalization of (8) where the common principal axes are
estimated by solving





β̂1 = argmax
‖b‖=1

k∑

i=1

τi
ρ̂i
s2(X′

ib)

β̂j = argmax
b∈Bj

k∑

i=1

τi
ρ̂i
s2(X′

ib) 2 ≤ j ≤ p ,

(10)

The eigenvalues of the first population and of the proportionality constants can then, be estimated as decribed
above. This new class of estimators has an advantage over the one defined in (8). As it will be shown in
Section 3, the projection–pursuit estimates of the common directions defined in (8), have an efficiencie which
depend on the relative size among populations. However, by introducing the preliminary estimates ρ̂i, we
will solve this problem and we will attain the same efficiencies as in the one–population setting.

Influence functions are a measure of robustness with respect to single outliers. When dealing with one
population, the influence function is essentially the first derivative of the functional version of the estimator.
When dealing with several populations, partial influence functions should be considered as a way to measure
resistance towards pointwise contaminations at each population.

This paper focus on how observations belonging to each population affect the estimation of the parameters
under a proportional model. An approach based on partial influence functions will be followed to quantified
this effect. Besides being of theoretical interest and helpful to calibrate the efficiency of the robust estimates
measuring the influence of an observation on the classical estimates can be used as a diagnostic tool to detect
influential observations, as was done under a cpc model by Boente, Pires and Rodrigues (2002). The paper
is organized as follows. In Section 2, we will derive, partial influence functions for the estimates obtained by
plugging in robust scatter matrices in the equations defining the maximum likelihood estimates and for those
defined through a projection–pursuit approach. From the partial influence functions, asymptotic variances
are obtained heuristically in Section 3. Finally, in Section 4, through a simulation study the performance of
the different proposals is compared. Proofs are given in the Appendix due to their tedious computations.

2 Partial Influence functions

As is well known, influence functions are a measure of robustness with respect to single outliers. The
importance of the influence function lies in its heuristic interpretation. It describes the effect of an in-
finitesimal contamination at a single point on the estimate, standarized by the amount of contamination.
When dealing with one population, the influence function is essentially the first derivative of the func-
tional version of the estimate. When dealing with several populations, partial influence functions were
introduced by Pires and Branco (2002), as a way to measure resistance towards pointwise contaminations
at each population. We remind its definition. For a given distribution F = F1 × . . . × Fk and a func-

tional T (F ), partial influence functions of are defined as PIFi0(x, T, F ) = lim
ε→0

T (Fε,x,i0) − T (F )
ε

, where

Fε,x,i0 = F1 × . . .× Fi0−1 ×Fi0,ε,x × Fi0+1 × . . . Fk and Fi,ε,x = (1− ε)Fi + εδx. In Pires and Branco (2002),
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it is shown that the asymptotic variance of the estimates can be evaluated as

ASVAR (T, F ) =
k∑

i=1

τi
−1EFi

(
PIFi (xi, T, F )PIFi (xi, T, F )′

)
. (11)

Therefore, from the partial influence functions, the asymptotic variances for the estimates of the common
eigenvectors, of the proportionality constants and of the eigenvalues of the first population can be derived
using the above heuristic formula. A proof of the asymptotic normality of the plug–in estimates can be
found in Boente and Orellana (2004) while the asymptotic distribution of the projection–pursuit estimates
is beyond the scope of this paper.

2.1 Partial influence functions for the Plug–in estimates

As described in the Introduction, these estimates are obtained by plugging–in robust scatter matrices in
the equation defining the maximum likelihood estimates for normal data. For a given distribution F =
F1 × . . . × Fk, and a robust scatter functional Vi = Vi(Fi), the functionals related to V = (V1, . . . ,Vk),
are defined as the solution of

ρ
(1)
V,i(F ) =

1
p

p∑

j=1

βV,j(F )′ Vi(Fi) βV,j(F )
λV,j(F )

i = 2, . . . , k ρ
(1)
V,1(F ) = 1 (12)

λV,j(F ) =
k∑

i=1

τi

ρ
(1)
V,i(F )

βV,j(F )′ Vi(Fi) βV,j(F ) 1 ≤ j ≤ p (13)

0 = βV,m(F )′
[

k∑

i=1

τi

ρ
(1)
V,i(F )

Vi(Fi)

]
βV,j(F ) m 6= j (14)

δmj = βV,m(F )′βV,j(F ) . (15)

The following Theorem gives the values of the partial influence functions for the plug–in estimates under
proportionality of the scatter matrices.

Theorem 2.1. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi = ρiΣ1, ρ1 = 1. Denote
by β1, . . . ,βp, λ1, . . . , λp the eigenvectors and eigenvalues of Σ1. Assume that λ1 > . . . > λp and that

IF (x,Vi, Fi) exists. Denote by Ai(x) =
1
p

p∑

j=1

β′
jIF (x,Vi, Fi) βj

λj
. Then, the partial influence functions of

the solution (ρ(1)
V,i(F ), λV,j(F ),βV,j(F )) of (12) to (15) are given by

PIFi(x, λV,j , F ) =
τi
ρi

β′
jIF (x,Vi, Fi) βj −

τi
ρi
λjAi(x) + λjA1(x)δi1 1 ≤ j ≤ p (16)

PIFi(x, ρ
(1)
V,`, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k (17)

PIFi(x,βV,j , F ) =
τi
ρi

∑

m 6=j

1
λj − λm

[
β′

jIF (x,Vi, Fi) βm

]
βm 1 ≤ j ≤ p . (18)

Remark 2.1. Except for the constant τi, the partial influence functions of the plug–in common eigenvectors
are equal to the influence function of the eigenvectors of Vi, which was obtained by Croux and Haesbroeck
(2000). On the other hand, the first term of partial influence function of the eigenvalues of the first population
equals the influence function of the eigenvalues of Vi, up to a constant. An extra term is added when several
populations are present. The expression Ai(x) can be viewed as weighted average of the influence functions
of the eigenvalues of Vi, the weights been inversely proportional to the size of the direction.
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Remark 2.2. Influence functions at the normal distribution can easily be derived from Lemma 1 from Croux
and Haesbroek (2000) which gives an expression for the influence function of a robust scatter functional.
According to it, if F = N(µ,Σ) and d2(x) = (x − µ)′Σ−1(x − µ), then, for any affine equivariant scatter
matrix functional V possesing an influence function, there exists two functions αV and γV : [0,∞) → R such
that IF (x,V, F ) = αV (d(x)) (x − µ)(x − µ)′ − γV (d(x)) Σ. So that under a proportional scatter model,
we have that PIFi(x,βV,j , F ) =

τi
ρi
αV (di(x))

∑

m 6=j

zijzim

λj − λm
βm, for 1 ≤ j ≤ p, where zij = β′

j (x − µi) and

d2
i (x) = (x − µi)

′Σ−1
i (x − µi) =

(x − µi)
′Σ−1

1 (x − µi)
ρi

. As in the one population setting, the function αV

can be interpreted as a downweighting function, which bounds the influence of the classical estimates for the
common directions since both functions αV and γV are equal to 1 for the sample covariance matrix. Thus,
the maximum likelihood estimates have partial influence functions given by

PIFi(x, λml,j , F ) =
τi
ρi

[
z2

ij − ρiλj

]
− τi
ρi
λjAml,i(x) + λjAml,1(x)δi1 1 ≤ j ≤ p

PIFi(x, ρ
(1)
ml,`, F ) = Aml,i(x) (1 − δi1) δ`i − ρ`Aml,1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k

PIFi(x,βml,j , F ) =
τi
ρi

∑

m 6=j

zijzim

λj − λm
βm 1 ≤ j ≤ p ,

where Aml,i(x) =
1
p

p∑

j=1

z2
ij

λj
− ρi = ρi

[
1
p
d2

i (x) − 1
]

are unbounded functions. Based on the partial influence

functions of the classical functionals, outlier detection measures can be defined as in Boente, Pires and
Rodrigues (2002).

Theorem 2.2 gives the partial influence functions for the estimates of the proportionality constants given
by Proposal 2 and 3. Its proof relies on Lemma 3 of Croux and Haesbroek (2000) which gives the expression
for the influence functions of the eigenvalues of a robust scatter functional.

Theorem 2.2. Let Vi(F ) be a scatter functional such that Vi(Fi) = Σi = ρiΣ1, ρ1 = 1. Denote by
β1, . . . ,βp, λ1, . . . , λp the eigenvectors and eigenvalues of Σ1 and by λVi,j(Fi) the eigenvalues of Vi(Fi).

Assume that λ1 > . . . > λp and that IF (x,Vi, Fi) exists. Then, if Ai(x) =
1
p

p∑

j=1

β′
jIF (x,Vi, Fi) βj

λj
, the

partial influence functions of the functionals ρ
(2)
V,i(F ) and ρ

(3)
V,i(F ) defined through

ρ
(2)
V,i(F ) =

[
|Vi(Fi)|
|V1(F1)|

] 1
p

ρ
(2)
V,1(F ) = 1 (19)

ρ
(3)
V,i(F ) =

tr(V1(F1)−1Vi(Fi))
p

ρ
(3)
V,1(F ) = 1 (20)

are given by

PIFi(x, ρ
(s)
V,`, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) s = 2, 3 (21)

From Theorem 2.2, we conclude that the three estimates of the proportionality constants have the same
partial influence functions and therefore, they will have the same asymptotic variance.

From the expressions given for the partial influence functions in Theorem 2.1 and using (11), one obtains
the expressions for the asymptotic variance of the plug–in estimates solution of (2) to (5), which were derived
in Boente and Orellana (2004), when the estimates of the scatter matrix Σi are asymptotically normally
distributed and spherically invariant.
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2.2 Partial influence functions for the Projection–Pursuit estimates

Let xi be independent vectors such that xi ∼ Fi, where Fi has location parameter µi and scatter matrix
Σi = CiC′

i satisfying (1). Denote by Fi[b] the distribution of b′ (xi − µi) and by F the product measure,
F = F1 × . . . × Fk. For the sake of simplicity and without loss of generality, we will assume µi = 0 when
computing influence functions. Two projection pursuit functionals will be studied, one related to the proposal
given by Boente and Orellana (2001) under a cpc model and another one adapted to the proportional model
as described in the Introduction.

Let ς(b) =
k∑

i=1

τi σ
2 (Fi[b]) and ςρ(b) =

k∑

i=1

τi
ρi(F )

σ2 (Fi[b]), where σ(·) is a univariate scale estimator,

which is equivariant under scale transformations and ρi(F ) are functionals related to preliminary estimates
of the proportionality constant.

The functionals related to the three proposals for the proportionality constants can be obtained as
follows. First, the projection–pursuit functional for the common directions Bσ(F ) = (βσ,1(F ), . . . ,βσ,p(F ))
are derived as the solution of





βσ, 1(F ) = argmax
‖b‖=1

ς(b)

βσ, j(F ) = argmax
b∈Bj

ς(b) 2 ≤ j ≤ p ,
(22)

with Bj = {b : ‖b‖ = 1,b′βσ, m(F ) = 0 for 1 ≤ m ≤ j − 1}. The eigenvalues and the covariance ma-

trices functionals are defined as λσ, ij(F ) = σ2
(
Fi

[
βσ, j(F )

])
and Vσ, i(F ) =

p∑

j=1

λσ, ij(F )βσ, j(F )βσ, j(F )′

respectively. Boente, Pires and Rodrigues (2002) derived the PIF of the principal directions defined by this
procedure, which will be reminded in the formula (29) in Theorem 2.3.

The functionals related to the estimates for the proportionality constants and for the eigenvalues of the
first population can be obtained by solving

ρ
(1)
σ, i(F ) =

1
p

p∑

j=1

βσ, j(F )′ Vσ, i(F ) βσ, j(F )
λσ, j(F )

=
1
p

p∑

j=1

λσ, ij(F )
λσ, j(F )

i = 2, . . . , k ρσ, 1(F ) = 1 (23)

λσ, j(F ) =
k∑

i=1

τi

ρ
(1)
σ, i(F )

βσ, j(F )′ Vσ, i(F ) βσ, j(F ) =
1
p

k∑

i=1

τi

ρ
(1)
σ, i(F )

λσ, ij(F ) (24)

Also, Proposals 2 and 3 can be considered using the scatter matrices Vσ, i(F ) defined above. More precisely,
the related functionals for the proportionality constants are

ρ
(2)
σ, i(F ) =

[
|Vσ, i(F )|
|Vσ, 1(F )|

] 1
p

=




p∏

j=1

λσ, ij(F )
λσ, 1j(F )




1
p

ρ
(2)
σ, 1(F ) = 1 (25)

ρ
(3)
σ, i(F ) =

1
p
tr(Vσ, 1(F )−1Vσ, i(F )) =

1
p

p∑

j=1

λσ, ij(F )
λσ, 1j(F )

ρ
(3)
σ, 1(F ) = 1 (26)

The following Theorem gives the partial influence functions, under proportionality of the scatter ma-
trices, for the common eigenvectors, the eigenvalues of the first populations and for each proposal for the
proportionality constants.

Theorem 2.3. Let xi be independent random vectors with ellipsoidal distribution Fi, with location para-
meters µi = 0 and scatter matrices Σi = CiC′

i satisfying (1) and such that C−1
i (xi − µi) = zi has the same
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spherical distribution G for all 1 ≤ i ≤ k. Assume that σ(G0) = 1 where G0 is the distribution of z11 and

that Σ = βdiag (ξ1, . . . , ξp) β′ where ξj = λj

k∑

i=1

τiρi and λ1 > λ2 > . . . > λp.

Then, if the function (ε, y) → σ ((1 − ε)G0 + εδy) is twice continuously differentiable at (0, y), we have
that for any x the partial influence functions of the projection–pursuit estimates for the common directions

defined through (22) and for the solution (ρ(1)
σ, i(F ), λσ, j(F )) of (23) and (24) are given by

PIFi(x, λσ, j , F ) =
τi
ρi

PIFi (x, λσ, ij , F ) −
τi
ρi
λjAi(x) + λjA1(x)δi1 1 ≤ j ≤ p (27)

PIFi(x, ρ
(1)
σ, `, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k (28)

PIFi(x,βσ, j , F ) =
τi
√
ρi

k∑

`=1

τ`ρ`


√λj DIF

(
x′βj√
ρiλj

;σ,G0

)
p∑

s=j+1

1
λj − λs

(x′βs) βs+

+
(
x′βj

) j−1∑

s=1

√
λs

λj − λs
DIF

(
x′βs√
ρiλs

;σ,G0

)
βs

]
1 ≤ j ≤ p (29)

where Ai(x) =
1
p

p∑

j=1

PIFi (x, λσ, ij , F )
λj

and PIFi (x, λσ, ij , F ) = 2ρiλjIF

(
x′β

j√
ρiλj

, σ,G0

)
. Moreover, the

partial influence functions of ρ
(2)
σ, i(F ) and ρ

(3)
σ, i(F ) defined in (25) and (26), are also given by (28).

Let us now consider a preliminary Fisher–consistent functional for the proportionality constants and the
functional ςρ(b). The projection–pursuit functional for the common directions Bσ,ρ(F ) = (βσ,ρ,1(F ), . . . ,βσ,ρ,p(F ))
are obtained as the solution of





βσ,ρ, 1(F ) = argmax
‖b‖=1

ςρ(b)

βσ,ρ, j(F ) = argmax
b∈Bj

ςρ(b) 2 ≤ j ≤ p ,
(30)

while the functionals for the eigenvalues and the covariance matrices functionals are λσ,ρ, ij(F ) = σ2
(
Fi

[
βσ,ρ, j(F )

])

and Vσ, i(F ) =
p∑

j=1

λσ,ρ, ij(F )βσ,ρ, j(F )βσ,ρ, j(F )′, respectively. As above, the functionals related to the es-

timates for the proportionality constants and for the eigenvalues of the first population solve

ρ
(1)
σ,ρ, i(F ) =

1
p

p∑

j=1

λσ,ρ, ij(F )
λσ,ρ, j(F )

i = 2, . . . , k ρσ,ρ, 1(F ) = 1 (31)

λσ,ρ, j(F ) =
1
p

k∑

i=1

τi

ρ
(1)
σ,ρ, i(F )

λσ,ρ, ij(F ) (32)

Also, Proposals 2 and 3 can be considered using the scatter matrices Vσ,ρ, i(F ) defined above, leading to
functionals ρ(2)

σ,ρ, i(F ) and ρ(3)
σ,ρ, i(F ).

The following Theorem shows that the preliminary estimate of the proportionality constant, modifies only
the partial influence functions of the common direction functionals, while those related to the eigenvalues of
the first population and to the proportionality constants remain the same.

Theorem 2.4. Let xi be independent random vectors with ellipsoidal distribution Fi, with location pa-
rameters µi = 0 and scatter matrices Σi = CiC′

i satisfying (1) and such that C−1
i (xi − µi) = zi has the

8



same spherical distribution G for all 1 ≤ i ≤ k. Assume that σ(G0) = 1 where G0 is the distribution of
z11, ρi(F ) = ρi and that Σ1 = βdiag (λ1, . . . , λp) β′ where λ1 > λ2 > . . . > λp. Moreover, assume that
PIFi (x, ρ`, F ) exists.

Then, if the function (ε, y) → σ ((1 − ε)G0 + εδy) is twice continuously differentiable at (0, y), we have
that for any x the partial influence functions of the projection–pursuit estimates for the common directions

defined by (30) and for the solution (ρ(1)
σ,ρ, i(F ), λσ,ρ, j(F )) of (31) and (32) are given by

PIFi(x, λσ,ρ, j , F ) =
τi
ρi

PIFi (x, λσ,ρ, ij , F ) − τi
ρi
λjAi(x) + λjA1(x)δi1 1 ≤ j ≤ p (33)

PIFi(x, ρ
(1)
σ,ρ, `, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k (34)

PIFi(x,βσ,ρ, j , F ) =
τi√
ρi


√λj DIF

(
x′βj√
ρiλj

;σ,G0

)
p∑

s=j+1

1
λj − λs

(x′βs) βs+

+
(
x′βj

) j−1∑

s=1

√
λs

λj − λs
DIF

(
x′βs√
ρiλs

;σ,G0

)
βs

]
1 ≤ j ≤ p (35)

where Ai(x) =
1
p

p∑

j=1

PIFi (x, λσ,ρ, ij , F )
λj

and PIFi (x, λσ,ρ, ij , F ) = 2ρiλjIF

(
x′βj√

ρiλj

, σ,G0

)
. Moreover, the

partial influence functions of ρ
(2)
σ,ρ, i(F ) and ρ

(3)
σ,ρ, i(F ) defined as in (25) and (26) respectively, are also given

by (34).

Remark 2.3. As for the plug–in estimates, Theorem 2.3 and 2.4 show that the partial influence functions
for the eigenvalues add an extra term to the influence function of the eigenvalues for the one population
case studied by Croux and Ruiz–Gazen (2000). On the other hand, the partial influence functions for the
proportionality constants can again be viewed as a weighted average of the partial influence functions of the
eigenvalues of Vσ, i. As in the one–population case, by using a scale estimator with bounded influence, we
get bounded influences for the proportionality constants and for the eigenvalues. However, as mentioned by
Boente, Pires and Rodrigues (2002) the partial influence functions of the eigenvectors may be unbounded.

Remark 2.4. When σ2(F ) = var(F ), Theorem 2.3 entails that the partial influence functions of the
projection–pursuit estimates of the eigenvalues of the first population and of the proportionality constants
are those given in Section 2.1 for the maximum likelihood estimates. On the other hand, as noted by Boente,
Pires and Rodrigues (2002) the partial influence functions of the common directions using the variance are
not those of the maximum likelihood, but they are the influence functions for the eigenvalues of the pooled
matrix, except for the factor τi.

2.3 Partial influence functions of the proportion of the variance explained

A useful index in principal component analysis is the proportion of the variance explained by the j−th

component, νj = λj

{
p∑

`=1

λ`

}−1

. From Theorems 2.1, 2.3 and 2.4, we easily obtain the partial influence

function of νj .

Proposition 2.1. Denote νV,j(F ) = λV,j(F )

{
p∑

`=1

λV,`(F )

}−1

, νσ, j(F ) = λσ, j(F )

{
p∑

`=1

λσ, `(F ))

}−1

and

νσ,ρ, j(F ) = λσ,ρ, j(F )

{
p∑

`=1

λσ,ρ, `(F ))

}−1

. Moreover, let Bij(x,V) = β′
jIF(x,Vi, Fi)βj and Bij(x, σ) =

9



2ρiλjIF

(
x′β

j√
ρiλj

, σ,G0

)
. Then,

(a) Under the conditions of Theorem 2.1, the partial influence function of νV,j(F ) is given by

PIFi(x, νV,j , F ) =
τi
ρi



Bij(x,V)

∑

6̀=j

λ` − λj

∑

6̀=j

Bi`(x,V)





{
p∑

`=1

λ`

}−2

.

(b) Under the conditions of Theorems 2.2 or 2.3 the partial influence function of νσ, j(F ) or νσ,ρ, j(F ) are
both given by

PIFi(x, νσ, j , F ) = PIFi(x, νσ,ρ, j , F )
τi
ρi



Bij(x, σ)

∑

6̀=j

λ` − λj

∑

6̀=j

Bi`(x, σ)





{
p∑

`=1

λ`

}−2

.

Remark 2.5. By using a scatter matrix with bounded influence or a scale estimator with bounded influence,
we get bounded influences for the proportion of the variance explained by the j−th component. On the other
hand, for the maximum likelihood estimates we get unbounded partial influence functions since

PIFi(x, νml,j , F ) =
τi
ρi

{
z2

ij

p∑

`=1

λ` − λj‖zi‖2

}{
p∑

`=1

λ`

}−2

,

where zij = β′
j(x − µi) and zi = (zi1, . . . , zip)

′. It is worthwhile noticing that even for large values of x,
along some directions the maximum likelihood estimators will lead to values of PIFi(x, νml,j , F ) equal to
0 and so outliers along these directions do not influence the percentage of variance explained by the j−th
component.

Figures 1 to 4 give the plots of the norm of the partial influence function PIF1 of the first eigenvector
and the partial influence function PIF1 for the proportionality constant and the eigenvalues when p = 2 at
F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4 diag(2, 1)). Figure 5 shows the partial influence

function PIF1 for the explained proportion ν1 =
λ1

λ1 + λ2
. We have considered the maximum likelihood

estimators, the plug–in estimators computed with an S-estimator using as ρ function the biweight Tukey’s
function calibrated to attain 25% breakdown point and the projection–pursuit estimate computed with an
M–estimator of scale using Huber’s function calibrated to attain 50% breakdown. In all cases, as in the
one–population case, the shape of the partial influence functions of the robust estimates is comparable to
that of their classical relatives at the center of the distribution, while the influence at points further away is
downweighted for the robust estimates while it is much more larger for the classical ones. Figures 2, 3 and
4 confirm the boundedness of the partial influence functions of both the plug–in and the projection–pursuit
estimates. On the other hand, for the first eigenvector, the norm of the partial influence function of the
plug–in estimate, as in the case k = 1, is largest along the bisectors while, as noted before, the projection–
pursuit estimates can still attain large values but only for smaller values of x1 combined with large values of
x2.

Figures 1

to 5 around here.

3 Asymptotic variances for the Projection–Pursuit estimates

When all the populations have a Gaussian distribution, the asymptotic variances of these estimates turn out
to be particularly simple. From Corollary 1 in Boente, Pires and Rodrigues (2002) we obtain that under the
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conditions of Proposition 3.1, the asymptotic variance of the projection–pursuit estimates of the common
eigenvectors is given by

ASVAR
(
β̂jm

)
=

k∑

i=1

τiρ
2
i

(
k∑

i=1

τiρi

)2

λjλm

(λj − λm)2
EG [DIF (z1j ;σ,G0) z1m]2 for m 6= j . (36)

In particular, when G = N (0, Ip), we have that ASCOV
(
β̂jm, β̂jr

)
= 0 for m 6= j, m 6= r, r 6= j and

ASVAR
(
β̂jm

)
=

k∑

i=1

τiρ
2
i

(
k∑

i=1

τiρi

)2

λjλm

(λj − λm)2
EΦ [DIF (Y ;σ,Φ)]2 for m 6= j

The asymptotic variance of the projection–pursuit estimates of the eigenvalues of the first population and
of the proportionality constants can be obtained heuristically using (11) and Theorem 2.3.

Proposition 3.1. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples
with distribution Fi, location parameter µi = 0 and scatter matrix Σi = Λi = ρiΛ1, i.e., Σi satisfies (1)

with β = Ip. Let ni = τiN with 0 < τi < 1 and

k∑

i=1

τi = 1.

Moreover, assume that Λ− 1
2

i xi1 = zi has the same spherical distribution G for all 1 ≤ i ≤ k. Assume that
σ(G0) = 1 where G0 is the distribution of z11 and that Σ = diag (ξ1, . . . , ξp) where ξ1 > ξ2 > . . . > ξp.

Let s(·) be a univariate robust scale statistic and Xi = (xi1, . . . ,xini), for 1 ≤ i ≤ k. Define the estimates

β̂j of the common principal axes by solving iteratively (8).

Let the estimates of the eigenvalues and the covariance matrix of the i-th population be

λ̂ij = s2(X′
iβ̂j) for 1 ≤ j ≤ p Vi =

p∑

j=1

λ̂ij β̂jβ̂
′
j .

Define the following estimates for the proportionality constants and for the eigenvalues of the first population

ρ̂i =
1
p

p∑

j=1

λ̂ij

λ̂j

i = 2, . . . , k ρ̂1 = 1

λ̂j =
1
N

k∑

i=1

ni

ρ̂i
λ̂ij

and the following two other estimates of the proportionality constants

ρ̂
(2)
i =

[
|Vi|
|V1|

] 1
p

=




p∏

j=1

λ̂ij

λ̂1j




1
p

ρ̂
(2)
1 = 1

ρ̂
(3)
i =

tr(V−1
1 Vi)
p

=
1
p

p∑

j=1

λ̂ij

λ̂1j

ρ̂
(3)
1 = 1 .

11



Then, the asymptotic variances of the projection–pursuit estimates of the proportionality constants and of
the eigenvalues of the first population are given by

ASCOV
(
λ̂j , λ̂s

)
= 4λjλs

{
1
τ1

γ

p
−
κ

p
+ κδjs

}
1 ≤ j , s ≤ p

ASVAR (ρ̂i) = ASVAR
(
ρ̂
(2)
i

)
= ASVAR

(
ρ̂
(3)
i

)
=

4γ
p

(
1
τ1

+
1
τi

)
ρ2

i 2 ≤ i ≤ k ,

where κ = ASVAR (σ,G0)−COVG (IF (z11, σ,G0) , IF (z12, σ,G0)) and γ = κ+p COVG (IF (z11, σ,G0) , IF (z12, σ,G0)).

Moreover, the asymptotic variance of the estimates, ν̂j = λ̂j

{
p∑

`=1

λ̂`

}−1

, of the proportion of variance ex-

plained by the j−th component is given by

ASCOV (ν̂j , ν̂s) = 4κ νjνs

(
p∑

`=1

ν2
` − νj − νs + δjs

)
1 ≤ j , s ≤ p .

In particular, when G = N (0, Ip), we have that

ASVAR
(
λ̂j

)
= 4ASVAR (σ,G0)

(
1 −

1
p

+
1
pτ1

)
λ2

j 1 ≤ j ≤ p

ASVAR (ν̂j) = 4 ASVAR (σ,G0) ν2
j


(1 − νj)

2 +
∑

6̀=j

ν2
`


 1 ≤ j ≤ p

ASVAR (ρ̂i) = ASVAR
(
ρ̂
(2)
i

)
= ASVAR

(
ρ̂
(3)
i

)
=

4
p
ASVAR (σ,G0)

(
1
τ1

+
1
τi

)
ρ2

i i = 2, . . . , k ,

Remark 3.1. As mentioned above, Boente and Orellana (2004) derived the asymptotic distribution of the
plug–in estimates of the eigenvalues of the first population, when the estimates of the scatter matrix Σi are
asymptotically normally distributed and spherically invariant. If all populations have the same ellipsoidal
distribution except for changes in the scatter matrices and we consider the same family of robust scatter
estimators for all of them, using the expressions of the asymptotic covariances they have obtained or the
heuristic expression (11) for the estimates of νj , we easily obtain that their asymptotic covariances are analo-
gous to those given in Proposition 3.1 replacing κ = ASVAR (σ,G0)−COVG (IF (z11, σ,G0) , IF (z12, σ,G0))
by κ =

σ1

2
, where σ1 gives the efficiencies of the off-diagonal elements of the matrices Vi. Moreover,

from these expressions for the asymptotic covariances, one can easily derive the asymptotic variance of the
estimates of the total amount of variance explained by considering the first q common directions as

ASVAR




q∑

j=1

ν̂j


 = 4κ





p∑

`=1

ν2
`

(
q∑

`=1

ν`

)2

+
q∑

`=1

ν2
`

(
1 − 2

q∑

`=1

ν`

)
 ,

which would allow to make inference on the number of common directions to be selected.

Proposition 3.2. Let xi1, . . . ,xini , 1 ≤ i ≤ k, be independent observations from k independent samples
with distribution Fi, location parameter µi = 0 and scatter matrix Σi = Λi = ρiΛ1, i.e., Σi satisfies (1)

with β = Ip. Let ni = τiN with 0 < τi < 1 and

k∑

i=1

τi = 1.

Moreover, assume that Λ− 1
2

i xi1 = zi has the same spherical distribution G for all 1 ≤ i ≤ k. Assume that
σ(G0) = 1 where G0 is the distribution of z11 and that Σ1 = diag (λ1, . . . , λp) where λ1 > . . . > λp.
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Let s(·) be a univariate robust scale statistic and Xi = (xi1, . . . ,xini), for 1 ≤ i ≤ k. Define the estimates

β̂j of common principal axes by solving iteratively (10).

Let the estimates of the eigenvalues and the covariance matrix of the i-th population be

λ̂ij = s2(X′
iβ̂j) for 1 ≤ j ≤ p Vi =

p∑

j=1

λ̂ij β̂jβ̂
′
j .

Define the estimates for the proportionality constants and for the eigenvalues of the first population as in
Proposition 3.1.

Then, the asymptotic variances of the projection–pursuit estimates of the proportionality constants and of
the eigenvalues of the first population are those given in Proposition 3.1, while

ASVAR
(
β̂jm

)
=

λjλm

(λj − λm)2
EG [DIF (z1j ;σ,G0) z1m]2 for m 6= j .

Remark 3.2. Note that, when G = N (0, Ip), the efficiencies of both the eigenvalues and the proportionality

constants estimates with respect to the maximum likelihood estimates are given by
1

2ASVAR (σ,G0)
, which

is the efficiency of the scale estimator used in the projection pursuit procedure. Moreover, it is worthwhile
noticing that for the projection–pursuit estimates the efficiency of the eigenvalue estimates do not depend on
the relative size among populations as it does for the plug–in ones. On the other hand, the plug–in estimates
of the principal directions have the same efficiencies as the off–diagonal elements of the scatter matrices used
while, as shown by (36) for the projection–pursuit estimates defined in (8), the efficiencies do depend on
the relative size among populations. Note that by introducing the preliminary estimates ρ̂i, we solve this
problem and we attain the same efficiencies as in the one–population setting.

4 Monte Carlo Study

We performed a simulation study in order to compare the behavior of the different proposals for small sample
sizes by considering k = 2 populations in dimension p = 4. The behavior of the following estimates was
studied: the plug–in estimates using the Donoho–Stahel matrix (Donoho (1982)–Stahel (1981)) or the M-
scatter estimate (Maronna (1976)) and two projection–pursuit estimates using different scale estimates. The
performance of these estimates is compared with that of maximum likelihood estimates. In all the Tables and
Figures MLE denotes the maximum likelihood estimates, ME and DSE the estimates obtained by plugging–
in an M-scatter matrix (with Huber score function with tuning constant 7.6176) and the Donoho–Stahel
matrix (with tuning constant

√
χ2

p(0.95) = 3.0803) respectively in (2) to (4). Meanwhile, PPEi denotes
the projection pursuit estimates. PPE1 was obtained using the mad, PPE2 using an scale M–estimate with
score function χ(t) = min

(
t2

c2 , 1
)
− 1

2 and c = 1.041 which gives a scale estimate with breakdown point 1
2

and efficiency 0.509.

We have performed 1000 replications generating two independent samples of size n1 = n2 = n = 100
with covariance matrices Σ2 = ρΣ1 with ρ = 4 and Σ1 = diag(4, 3, 2, 1). The results for normal data sets
will be indicated by C0 in the tables, while C1,ε and by C2,ε will denote the following two contaminations.

• C1,ε: For i = 1, 2, xi1, . . . ,xin, are i.i.d. (1 − ε)N(0,Σi) + εN(0, 9Σi). We present the results for
ε = 0.1. This contamination corresponds to inflating the covariance matrix and thus, will only affect
the variance of the axes at each population but not their direction.

• C2,ε: For i = 1, 2, xi1, . . . ,xin, are i.i.d. (1 − ε)N(0,Σi) + εN(µ,Σi) with µ = (0, 0, 0, 10)′. We
present the results for ε = 0.05 and ε = 0.1. This contamination corresponds to contaminating the first
population in the direction of the smaller eigenvalue with the aim to study changes in the directions.
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Tables 1, 2 and Figures 6 and 7 summarize the results of the simulations for the common eigenvectors and
the three estimates of the proportionality constants proposed in Section 2. Since the results for the eigenvalues
of the first population are similar to those described for the cpc model in Boente and Orellana (2001), they
are not reported here. Let θ̂j be the angle between the j-th estimated and true direction. In Figure 6, the
density estimates of cos(θ̂4), evaluated using the normal kernel with a bandwidth equal to 0.3, are plotted.
The plots given in black correspond to the densities of cos(θ̂4) evaluated over the 1000 normally distributed
samples, while those in light blue and in red correspond to the asymmetric contaminated samples generated
according to C2,0.05 and C2,0.1, respectively. On the other hand, Table 1 gives as a summary measure for
the eigenvectors estimation, the median over the replications of the distance between the estimated and the
target j−th eigenvector, ‖β̂j − βj‖2. Since Σ1 = diag(4, 3, 2, 1), the common directions are the vectors of
the canonical basis, ej , j = 1, . . . , 4. In all cases we ordered the eigenvectors according to a decreasing order
of the eigenvalues of the first population.

Table 2 gives means, standard deviations and mean square errors of the estimates for the proportionality
constants, while Figure 7 shows the boxplots of log(ρ̂(j)) − log(ρ), for j = 1 to 3.

Some Comments. As was expected the maximum likelihood estimates perform poorly in the presence of
outliers. With regard to eigenvectors estimation, Figure 6 shows, not only the poor behavior of the maximum
likelihood estimates and of the estimates obtained using an M–scatter estimate in the presence of asymmetric
outliers, but also the sensitivity of those obtained by using the Donoho–Stahel matrix. Moreover, as can be
seen also in Table 1, under C2,0.1, maximum likelihood and M–estimates interchange all the axes, while the
estimates based on the Donoho–Stahel scatter matrix and the projection–pursuit estimates are less sensitive.
With respect to the plug–in estimates based on the Donoho–Stahel matrix, the axis corresponding to the
larger eigenvalues are not modified but the two other ones are rotated with a median rotation absolute angle
around 58o. Note that the direction of the smaller eigenvalue was the one we have choosen to contaminate
the samples.

Table 1 and Figure 6

around here.

For the projection estimates, under the considered contaminations, the largest median rotation absolute
angle is 51o. Σ1 = diag(4, 3, 2, 1) and thus even the projection–pursuit estimates do not break down by
using the mad scale estimate they will breakdown with a 13% of contamination (see Boente and Orellana
(2001) for bias computations). Moreover, since the eigenvalues of Σ1 are quite close, the sample size does
not allow to distinct between them and thus the projection pursuit estimates produce a systematic bias for
normal data, specially when estimating the second and third direction.

Thus, when the aim is to obtain principal directions, under the model and contaminations considered,
the plug–in procedure using the Donoho Stahel estimators was the best procedure for mild contaminations
while the projection pursuit method seem to be the less sensitive for the higher ones.

Table 2 and Figure 7

around here.

With respect to the estimation of the proportionality constants, Proposal 3 shows the largest bias under
normality. In all situations, Proposal 1 and 2 for estimating ρ performed similarly.

The main effect observed with maximum likelihood estimates is a negative bias in C2, which can be
explained since this contamination increases the smallest eigenvalue of Σ1 and then the relation between the
two scatter matrices is modified. On the other hand, for normal and contaminated data, the projection–
pursuit estimates based on the mad are more biased than the other projection–procedures.

Under normal data sets, the statistic ρ̂(3) presents a slightly larger variance than ρ̂(1) and ρ̂(2), even if
the asymptotic variance is the same for all of them. The larger variances observed for the projection pursuit
estimates are due to the lack of efficiency of the scale–estimates used.
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Under C1 and C2,0.05 the estimates of the proportionality constant obtained using the Donoho–Stahel
scatter and those using the M–estimates perform similarly. Only a larger bias and standard deviation can
be observed for the M–estimate in C2,0.1.
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A Appendix

From now on, denote by Fi,ε,x = (1 − ε)Fi + εδx and by Fε,x,i = F1 × . . .× Fi−1 × Fi,ε,x × Fi+1 × . . .× Fk.
The influence functions for the eigenvalues of the first population and the proportionality constants solution
of (12) and (13) or (23) and (24) will be derived from the following Lemma.

Lemma A.1. Let ψij(G) be functionals such that ψij(F ) = ρiλi, where F = F1 × . . .× Fk. Assume that
λ1 > . . . > λp and that PIFi (x, ψ`j , F ) exists and PIFi(x, ψ`j , F ) = 0, when ` 6= i.

Then, the partial influence functions of the solution (ρi(G), λj (G)) of

ρi(G) =
1
p

p∑

j=1

ψij(G)
λj(G)

i = 2, . . . , k ρ
(1)
1 (G) = 1 (A.1)

λj(G) =
k∑

i=1

τi
ρi(G)

ψij(G) 1 ≤ j ≤ p (A.2)

are given by

PIFi(x, λj , F ) =
τi
ρi

PIFi (x, ψij , F ) − τi
ρi
λjAi(x) + λjA1(x)δi1 1 ≤ j ≤ p (A.3)

PIFi (x, ρ`, F ) = Ai(x) (1 − δi1) δ`i − ρ`A1(x)δi1 (1 − δ`i) 2 ≤ ` ≤ k (A.4)

where Ai(x) =
1
p

p∑

j=1

PIFi (x, ψij , Fi)
λj

and δ`i = 1 when i = ` and δ`i = 0 when i 6= `.

Proof. Let ρ`,ε,i = ρ` (Fε,x,i), ψ`j,ε,i = ψ`j (Fε,x,i) and λj,ε,i = λj (Fε,x,i). We have that

ρ`,ε,i =
1
p

p∑

j=1

ψ`j,ε,i

λj,ε,i
` = 2, . . . , k ` 6= i ρ1,ε,i = 1 (A.5)

λj,ε,i =
k∑

`=1

τ`
ρ`,ε,i

ψ`j,ε,i . (A.6)
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Deriving (A.5) and (A.6), we obtain PIFi(x, ρ1, F ) = 0 and

PIFi(x, ρ`, F ) =
1
p

p∑

j=1

1
λj

[PIFi(x, ψ`j , F ) − ρ`PIFi(x, λj , F )] for ` 6= 1

PIFi(x, λj , F ) =
k∑

`=1

τ`
ρ`

[PIFi(x, ψ`j , F ) − λjPIFi(x, ρ`, F )]

Since, PIFi(x, ψ`j , F ) = 0, when ` 6= i, we get

PIFi(x, ρ`, F ) = −ρ`
1
p

p∑

j=1

PIFi(x, λj , F )
λj

for ` 6= 1 and ` 6= i

PIFi(x, ρi, F ) = −ρi
1
p

p∑

j=1

PIFi(x, λj , F )
λj

+
1
p

p∑

j=1

PIFi(x, ψij , F )
λj

for i 6= 1

PIFi(x, λj , F ) = −λj

k∑

`=2

τ`
ρ`

PIFi(x, ρ`, F ) +
τi
ρi

PIFi(x, ψij , F ) .

Denote Bi(x) =
1
p

p∑

j=1

PIFi(x, λj , F )
λj

. Then, we have that

PIFi(x, ρ`, F ) = −ρ`Bi(x) ` 6= 1 and ` 6= i (A.7)
PIFi(x, ρi, F ) = [−ρiBi(x) +Ai(x)] (1 − δi1) (A.8)

PIFi(x, λj , F ) = −λj

k∑

`=2

τ`
ρ`

PIFi(x, ρ`, F ) +
τi
ρi

PIFi(x, ψij , F ) . (A.9)

Let us first consider the case when i 6= 1. In this case, from (A.7) and (A.8) it follows that

PIFi(x, ρ`, F ) =
ρ`

ρi
PIFi(x, ρi, F ) − ρ`

ρi
Ai(x) for ` 6= 1 and ` 6= i .

Therefore,
k∑

`=2

τ`
ρ`

PIFi(x, ρ`, F ) =
1 − τ1
ρi

PIFi(x, ρi, F ) − 1 − τ1 − τi
ρi

Ai(x) , which entails that

PIFi(x, λj , F ) = −λj
1 − τ1
ρi

PIFi(x, ρi, F ) +
1 − τ1 − τi

ρi
λjAi(x) +

τi
ρi

PIFi(x, ψij , F ) .

Thus, Bi(x) =
1 − τ1
ρi

[Ai(x) − PIFi(x, ρi, F )], and replacing in (A.7) to (A.9), we get the desired result.

Let us now study the case when i = 1. We have the equations

PIF1(x, ρ`, F ) = −ρ`B1(x) ` 6= 1
PIF1(x, ρ1, F ) = 0

PIF1(x, λj , F ) = −λj

k∑

`=2

τ`
ρ`

PIF1(x, ρ`, F ) + τ1PIF1(x, ψ1j , F ) ,

which led to
k∑

`=2

τ`
ρ`

PIF1(x, ρ`, F ) = −(1−τ1)B1(x) and thus, PIF1(x, λj , F ) = (1−τ1)λjB1(x)+τ1PIF1(x, ψ1j , F ) .

Therefore, B1(x) = (1 − τ1)B1(x) + τ1A1(x) and so A1(x) = B1(x), which proves (A.3) and (A.4).
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Proof of Theorem 2.1. The derivation of the partial influence function of the eigenvectors follows the
same steps as those used in the proof of Lemma 3 in Croux and Haesbroeck (2000) which can be found in
Croux and Haesbroeck (1999). For the sake of simplicity, we will denote ρV,i(F ) = ρ

(1)
V,i(F ).

Let βj,ε,i = βV,j (Fε,x,i), λj,ε,i = λV,j (Fε,x,i), ρ`,ε,i = ρV,` (Fε,x,i), Vi,ε = Vi (Fi,ε,x) and V` = V` (F`) .
Then, we have that

0 = β′
m,ε,i




k∑

`=1, 6̀=i

τ`
ρ`,ε,i

V`


βj,ε,i +

τi
ρi,ε,i

β′
m,ε,iVi,εβj,ε,i m 6= j (A.10)

δmj = β′
m,ε,iβj,ε,i . (A.11)

Therefore, deriving (A.11) with respect to ε, we get that

PIFi(x,βV,m, F )′βm = 0 (A.12)
PIFi(x,βV,m, F )′βj + PIFi(x,βV,j , F )′βm = 0 . (A.13)

Deriving (A.10) and using (A.13) and β′
mβj = 0 for m 6= j, after some algebra, we obtain

PIFi(x,βV,j , F )′βm =
τi
ρi

1
λj − λm

β′
jIF (x,Vi, Fi) βm for m 6= j

which together with (A.12) entail (18).

Let ψij(G) = βj(G)′Vi(Gi)βj(G). From (A.12) and V`βj = Σ`βj = ρ`λjβj we get that PIFi(x, ψij , F ) =
β′

jIF(x,Vi, Fi)βj . Now, using Lemma A.1, we obtain (16) and (17).

Proof of Theorem 2.2. Denote by λVi,1(Fi) > . . . > λVi,p(Fi) the eigenvalues of Vi(Fi). According to
Lemma 3 in Croux and Haesbroeck (2000), the influence functions of λVi,j(Fi) at a distribution Fi such that
Vi(Fi) = Σi = β′Λiβ, where Λi = diag (λi1, . . . , λip), is given by

IF (x, λVi,j , Fi) = β′
jIF (x,Vi, Fi) βj . (A.14)

As in Theorem 2.1, let ρ(s)
`,ε,i = ρ

(s)
V,` (Fε,x,i), for s = 2, 3, Vi,ε = Vi (Fi,ε,x) and V` = V` (F`) . Denote by

φV,`(F ) = ln
(
ρ
(2)
V,`(F )

)
and φ`,ε,i = ln

(
ρ
(2)
`,ε,i

)
. Then,

PIFi(x, φV,`, F ) =
1

ρ
(2)
V,`

PIFi(x, ρ
(2)
V,`, F ) . (A.15)

Let us first consider the case when i 6= 1. If ` 6= i ρ
(s)
`,ε,i = ρ

(s)
` and thus, PIFi(x, ρ

(s)
V,`, F ) = 0 for s = 2, 3.

When ` = i, we have,

φi,ε,i = ln
(
ρ
(2)
i,ε,i

)
=

1
p

p∑

j=1

[ln (λVi,j (Fi,ε,x)) − ln (λV1,j (F1))] (A.16)

ρ
(3)
i,ε,i =

1
p
tr(V1(F1)−1Vi,ε) . (A.17)

From (A.14) and (A.16), we get PIFi (x, φV,i, F ) =
1
p

p∑

j=1

1
ρiλj

β′
jIF (x,Vi, Fi) βj which together with (A.15)

entails (21).
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Using that V1 = β′Λ1β and (A.17), we obtain

PIFi

(
x, ρ(3)

V,i, F
)

=
1
p
tr
[
V−1

1 IF (x,Vi, Fi)
]

=
1
p
tr
[
Λ−1

1 β′IF (x,Vi, Fi) β
]

=
1
p

p∑

j=1

1
λj

β′
jIF (x,Vi, Fi) βj

which concludes the proof when i 6= 1.

Let us now consider the case when i = 1. Since ` 6= 1, we have,

φ`,ε,1 =
1
p

p∑

j=1

[ln (λV`,j (F`)) − ln (λV1,j (F1,ε,x))] (A.18)

ρ
(3)
`,ε,1 =

1
p
tr(V1(F1,ε,x)−1V`) . (A.19)

Now (21) follows deriving (A.18) with respect to ε and using (A.14) and (A.15).

Finally, from (A.17), using that V1 = β′Λ1β, V` = ρ`V1 and
∂

∂ε

[
V1(F1,ε,x)−1

] ∣∣∣
ε=0

= −V−1
1 IF (x,V1, F )V−1

1 ,
we get

PIF1

(
x, ρ(3)

V,`, F
)

=
1
p
tr
[
∂

∂ε

[
V−1

1

]
|ε=0V`

]
= −1

p
tr
[
V−1

1 IF (x,V1, F )V−1
1 V`

]

= −ρ`
1
p
tr
[
Λ−1

1 β′IF (x,V1, F ) β
]

= −ρ`
1
p

p∑

j=1

1
λj

β′
jIF (x,V1, F1) βj

which concludes the proof.

Proof of Theorem 2.3. The partial influence functions for the eigenvectors are obtained from Theorem
2 of Boente, Pires and Rodrigues (2002). The proof for the eigenvalues and for the proportionality constants
follows from Lemma A.1 taking ψij(F ) = λσ,ij(F ) and noticing that from Theorem 2 of Boente, Pires and
Rodrigues (2002),

PIFi(x, λσ,`j , F ) = 0 when ` 6= i (A.20)

PIFi(x, λσ,ij , F ) = 2λij IF

(
x′βj√
λij

;σ,G0

)
. (A.21)

On the other hand, (A.20) and (A.21) entail that, for ` 6= i,

PIFi

(
x, ρ(3)

` , F
)

=
1
p

p∑

j=1

[
PIFi(x, λσ,`j , F )

λ1j
−
λ`j

λ2
1j

PIFi(x, λσ,1j , F )

]
= −δi1

2
p
ρ`

p∑

j=1

IF

(
x′βj√
λj

;σ,G0

)

and, for i 6= 1,

PIFi

(
x, ρ(3)

i , F
)

=
1
p

p∑

j=1

[
PIFi(x, λσ,ij , F )

λ1j
− λij

λ2
1j

PIFi(x, λσ,1j , F )

]
=

2
p
ρi

p∑

j=1

IF

(
x′βj√
λij

;σ,G0

)
.

As in Theorem 2.2, since PIFi

(
x, ρ(2)

` , F
)

= ρ`PIFi (x, φ`, F ) = ρ`
1
p

p∑

j=1

[
PIFi(x, λσ,`j , F )

λ`j
− PIFi(x, λσ,1j , F )

λ1j

]
,

using (A.20) and (A.21), we get that PIFi

(
x, ρ(2)

i , F
)

=
2
p
ρi

p∑

j=1

IF

(
x′βj√
λij

;σ,G0

)
, for i 6= 1, and

PIFi

(
x, ρ(2)

` , F
)

= −δi1
2
p
ρ`

p∑

j=1

IF

(
x′βj√
λj

;σ,G0

)
, for ` 6= i.
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Proof of Theorem 2.4. The proof of the partial influnece function of the eigenvectors βσ,ρ,j will be derived
using analogous arguments as those considered in Boente, Pires and Rodrigues (2002). Let ρ`,ε,i = ρ (Fε,x,i),
βj,ε,i = βσ,ρ,j (Fε,x,i), λ`j,ε,i = σ2

(
F`

[
βj,ε,i

])
, for ` 6= i and λij,ε,i = σ2

(
Fi,ε,x

[
βj,ε,i

])
, where we avoid the

index ρ and σ for the sake of simplicity.

Now, βj,ε,i maximises ςρ (Fε,x,i [b]) under the constraints β′
j,ε,iβj,ε,i = 1 and β′

s,ε,iβj,ε,i = 0 for 1 ≤ s ≤ j−1.
Therefore, βj,ε,i maximises

L(b, γ,α) =
τi
ρi,ε,i

σ2 (Fi,ε,x [b]) +
∑

i0 6=i

τi0
ρi0,ε,i

σ2 (Fi0 [b]) − γ (b′b − 1) −
j−1∑

s=1

αsb′βs,ε,i ,

and so it should satisfy

0 =
∂

∂b
L(b, γ,α)|b=βj,ε,i

= ψ(ε) − 2γβj,ε,i −
j−1∑

s=1

αsβs,ε,i , (A.22)

with

ψ(ε) =
τi
ρi,ε,i

∂

∂b
σ2 (Fi,ε,x [b]) |b=βj,ε,i

+
∑

i0 6=i

τi0
ρi0,ε,i

∂

∂b
σ2 (Fi0 [b]) |b=βj,ε,i

. (A.23)

Since β′
j,ε,iβj,ε,i = 1 and β′

s,ε,iβj,ε,i = 0 for 1 ≤ s ≤ j − 1 we have that ψ(ε)′βj,ε,i = 2γ, ψ(ε)′βs,ε,i = αs,
for 1 ≤ s ≤ j − 1. Using this in (A.22) and differentiating with respect to ε we obtain

∂

∂ε
ψ(ε)|ε=0 =

j∑

s=1

[{
ψ(0)′PIFi

(
x,βσ,ρ,s, F

)}
βs +

{
β′

s

∂

∂ε
ψ(ε)|ε=0

}
βs+

+ {ψ(0)′βs}PIFi

(
x,βσ,ρ,s, F

)
]
. (A.24)

Since Fi is an elliptical distribution and σ(G0) = 1, using the fact that σ2 (Fi[b]) = b′Σib, we obtain

ψ(0) = 2 λjβj , which implies that ψ(0)′βs = 0 for 1 ≤ s ≤ j − 1. Write Pj+1 = Ip −
j∑

s=1

βsβ
′
s. Then (A.24)

can be written as

Pj+1
∂

∂ε
ψ(ε)|ε=0 = 2λj

j∑

s=1

β′
jPIFi(x,βσ,ρ,s, F )βs + 2λjPIFi(x,βσ,ρ,j , F ) . (A.25)

On the other hand, from (A.23) and since ςρ(F [b]) = b′Σ1b, we have that

∂

∂ε
ψ(ε)

∣∣∣
ε=0

= −2

[
k∑

`=1

τ`
ρ`(F )

PIFi(x, ρ`, F )

]
λjβj +

+ 2 Σ PIFi(x,βσ,ρ,j , F ) + τi
∂

∂b
IF
(
b′x, σ2, Fi[b]

) ∣∣∣
b=βj

. (A.26)

Again from the equivariance of the scale estimator, we have that

∂

∂b
IF
(
b′x, σ2, Fi[b]

)
|b=βj

= 2λijβjIF

(
β′

jx

λij
1
2
, σ2, G0

)
+

+ λijDIF

(
β′

jx

λij
1
2
, σ2, G0

)(
x

λij
1
2
−

β′
jx

λij
1
2
βj

)
. (A.27)
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From (A.25), (A.26) and (A.27) and using that PIFi(x,βσ,j , F )′βj = 0, we obtain

2 (Pj+1Σ1 − λjIp) PIFi(x,βσ,ρ,j , F ) = 2λj

j−1∑

s=1

β′
jPIFi(x,βσ,ρ,s, F )βs −

− τi
λj

1
2

ρi
1
2

DIF

(
β′

jx

λij
1
2
, σ2, G0

)
Pj+1x . (A.28)

The matrix Pj+1Σ1 − λjIp =
p∑

s=j+1

λsβsβ
′
s − λjIp is a full rank matrix with inverse

(Pj+1Σ− λjIp)
−1 =

p∑

s=j+1

1
λs − λj

βsβ
′
s −

j∑

s=1

1
λj

βsβ
′
s ,

so that, (Pj+1Σ1 − λjIp)
−1

βs = − 1
λj

βs for 1 ≤ s ≤ j−1 and (Pj+1Σ1 − λjIp)
−1 Pj+1 =

p∑

s=j+1

1
λs − λj

βsβ
′
s.

Thus, from (A.28), and since λij = ρiλj , after some calculations, we obtain for any s ≥ j + 1 that

PIFi(x,βσ,ρ,j , F )′βs =
1

2(λj − λs)
τi
λj

1
2

ρi
1
2

DIF

(
β′

jx

λij
1
2
, σ2, G0

)
β′

sx ,

which implies (35), using the fact that IF
(
y, σ2, G0

)
= 2 IF (y, σ,G0).

Since λij,ε,i = σ2
(
Fi,ε,x

[
βj,ε,i

])
and, for ` 6= i, λ`j,ε,i = σ2

(
F`

[
βj,ε,i

])
= β′

j,ε,iΣ`βj,ε,i, the chain rule easily
yields

PIFi(x, λσ,ρ,`j , F ) = 0 when ` 6= i

PIFi(x, λσ,ρ,ij , F ) = 2λij IF

(
x′βj√
λij

;σ,G0

)
.

Using Lemma A.1, the partial influence functions of the eigenvalues and for the proportionality constants
follows now as in Theorem 2.3.

Proof of Proposition 3.1. Using (11) and (28), we get that

ASVAR (ρ̂i) =
1
τ1
E
(
PIF1(x, ρσ,i, F )2

)
+

1
τi

VARFi


2ρi

p

p∑

j=1

IF

(
x′βj√
λij

, σ,G0

)


=
(

1
τ1

+
1
τi

)
4ρ2

i

p2
VARG




p∑

j=1

IF (z1j , σ,G0)


 .

When G = N (0, Ip), since z1j , z1m and z1r are independent for j 6= r, j 6= m and m 6= r which implies that

ASVAR (ρ̂i) =
4
p
ρ2

i ASVAR (σ,G0)
(

1
τ1

+
1
τi

)
.

On the other hand, using (11) and (27), it can easily be seen

ASVAR
(
λ̂j

)
=

1
τ1

VARF1 (τ1PIF1(x, λσ,1j , F ) + λj(1 − τ1)A1(x)) +
∑

i6=1

τi
ρ2

i

VARFi (PIFi(x, λσ,ij , F ) − λjAi(x))
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Since,

VARFi (PIFi(x, λσ,ij , F )) = 4ρ2
iλ

2
jVARG (IF (z1j , σ,G0)) = 4ρ2

iλ
2
jASVAR (σ,G0)

COVFi (PIFi(x, λσ,ij , F ),PIFi(x, λσ,is, F )) = 4ρ2
iλjλsCOVG (IF (z1j , σ,G0) , IF (z1s, σ,G0))

VARFi (Ai(x)) = 4
ρ2

i

p
[ASVAR (σ,G0) + (p− 1)COVG (IF (z11, σ,G0) , IF (z12, σ,G0))]

COV(PIFi (x, λσ,ij , F ) , Ai(x)) = 4
ρ2

i

p
λj [ASVAR (σ,G0) + (p− 1)COVG (IF (z11, σ,G0) , IF (z12, σ,G0))]

= 4
ρ2

i

p
λjγ

straightforward calculations led to

ASVAR
(
λ̂j

)
= 4λ2

j

{
1
τ1

γ

p
+
(

1 − 1
p

)
κ

}
ASCOV

(
λ̂j , λ̂s

)
= 4λjλs

{
1
τ1

γ

p
− κ

p

}
1 ≤ j 6= s ≤ p

ASVAR (ν̂j) = 4κ ν2
j

(
p∑

`=1

ν2
` − 2νj − +1

)
ASCOV (ν̂j , ν̂s) = 4κ νjνs

(
p∑

`=1

ν2
` − νj − νs

)
1 ≤ j 6= s ≤ p .

The proof of Proposition 3.2 follows analogously.
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Figure 1: ‖PIF1(x, β1, F )‖ at F = F1 × F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)). a) Max-
imum Likelihood Estimates b) Plug–in Estimates with an S–Scatter Matrix c) Projection Pursuit Estimates
with an M–Scale Estimate
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Figure 2: . PIF1(x, ρ, F ) at F = F1×F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)) a) Maximum
Likelihood Estimates b) Plug–in Estimates with an S–Scatter Matrix c) Projection Pursuit Estimates with
an M–Scale Estimate
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Figure 3: PIF1(x, λ1, F ) at F = F1×F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)). a) Maximum
Likelihood Estimates b) Plug–in Estimates with an S–Scatter Matrix c) Projection Pursuit Estimates with
an M–Scale Estimate
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Figure 4: PIF1(x, λ2, F ) at F = F1×F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)). a) Maximum
Likelihood Estimates b) Plug–in Estimates with an S–Scatter Matrix c) Projection Pursuit Estimates with
an M–Scale Estimate
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Figure 5: PIF1(x, ν1, F ) at F = F1×F2 with F1 = N (0, diag(2, 1)) and F2 = N (0, 4diag(2, 1)). a) Maximum
Likelihood Estimates b) Plug–in Estimates with an S–Scatter Matrix c) Projection Pursuit Estimates with
an M–Scale Estimate
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Figure 6: Density estimates of the cosinus of the angle between the estimated and the true direction related
to the smallest eigenvalue. The densities of the estimates obtained under C0, C2,0.05 and C2,0.1 are plotted
in black, in light blue and in red, respectively.
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Figure 7: Boxplots of the centered logarithm of the estimates of the proportional constants, log(ρ̂) − log(4)
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MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
λ C0 C1,0.1

4 0.0414 0.2833 0.2046 0.0449 0.0431 0.1167 0.2832 0.1986 0.0493 0.0549
C2,0.05 C2,0.1

0.3095 0.2932 0.2471 0.0479 0.0501 1.7748 0.3727 0.3421 0.0559 0.4399

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

3 0.0700 0.5535 0.4069 0.0747 0.0728 0.2057 0.5140 0.3779 0.0809 0.0829
C2,0.05 C2,0.1

1.3986 0.5893 0.4492 0.0816 0.0969 1.6549 0.7244 0.6642 0.1219 1.3372

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

2 0.0358 0.3443 0.2060 0.0417 0.0376 0.1055 0.3286 0.2128 0.0435 0.0446
C2,0.05 C2,0.1

1.7532 0.5070 0.3766 0.0721 0.1245 1.7628 0.7076 0.7313 0.9325 1.7135

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

1 0.0117 0.1268 0.0650 0.0128 0.0124 0.0307 0.1246 0.0712 0.0135 0.0142
C2,0.05 C2,0.1

1.8467 0.2740 0.2458 0.0326 0.0805 1.9208 0.5271 0.5820 0.9304 1.8625

Table 1: Median of the square distance between the estimated common principal directions and the true
principal axes under a proportional model

Estimates ρ̂(1)

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

Mean 4.0146 4.5030 4.1569 4.0131 4.0139 4.1511 4.5219 4.1880 4.0179 4.0287
SD 0.4170 0.7845 0.6092 0.4441 0.4494 0.9917 0.8405 0.6975 0.5604 0.5555

MSE 0.1741 0.8687 0.3957 0.1974 0.2021 1.0063 0.9791 0.5219 0.3144 0.3094
C2,0.05 C2,0.1

Mean 3.2287 4.4318 4.0927 3.9617 3.9523 3.0868 4.2491 3.8789 3.9212 3.6070
SD 0.4656 0.7908 0.6511 0.4865 0.5761 0.3749 0.5250 0.8374 0.7065 0.7502

MSE 0.8123 0.8119 0.4326 0.2381 0.3342 0.9754 0.7634 0.5138 0.2819 0.7174

Estimates ρ̂(2)

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

Mean 4.0147 4.5016 4.1563 4.0132 4.0140 4.1517 4.5202 4.1876 4.0180 4.0288
SD 0.4171 0.7848 0.6092 0.4443 0.4496 0.9903 0.8405 0.6977 0.5608 0.5557

MSE 0.1742 0.8678 0.3956 0.1976 0.2023 1.0037 0.9772 0.5220 0.3149 0.3096
C2,0.05 C2,0.1

Mean 3.1998 4.4304 4.0922 3.9616 3.9494 3.0503 4.2479 3.8786 3.9206 3.5841
SD 0.4794 0.7906 0.6512 0.4868 0.5817 0.3814 0.8371 0.7065 0.5260 0.7744

MSE 0.8708 0.8106 0.4326 0.2384 0.3409 1.0483 0.7622 0.5139 0.2830 0.7728

Estimates ρ̂(3)

MLE PPE1 PPE2 DSE ME MLE PPE1 PPE2 DSE ME
C0 C1,0.1

Mean 4.2009 4.7004 4.2909 4.2175 4.2074 4.6715 4.7287 4.3212 4.2391 4.2504
SD 0.4417 0.8300 0.6380 0.4719 0.4759 1.1294 0.8950 0.7254 0.6007 0.5945

MSE 0.2355 1.1800 0.4918 0.2700 0.2695 1.7268 1.3325 0.6294 0.4181 0.4161
C2,0.05 C2,0.1

Mean 3.6092 4.6361 4.2226 4.1665 4.1907 3.5129 4.4489 4.0107 4.1396 3.9566
SD 0.4729 0.8533 0.6818 0.5166 0.5988 0.4081 0.8931 0.7380 0.5557 0.7130

MSE 0.3765 1.1332 0.5145 0.2947 0.3950 0.4041 0.9994 0.5448 0.3283 0.5102

Table 2: Estimation of the proportionality constants
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