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1 Introduction

Generalized linear models, introduced by [30], are extensively used in statistical applications due
to their flexibility to fit a large variety of regression problems, whenever the response is continuous
or discrete. They have been proposed as a natural extension of the classical linear model. Many
aspects of these models, such as the estimation of the parameters using iterative procedures and
resistant methods, have been studied to a great extent. However, a trend in the last few years
has been to determine the underlying model or to check a parametric model, via nonparametric
techniques. In the nonparametric situation, classical estimators of the regression function are based
on local means and so, they are very sensitive to outliers. The effect of a single outlier depends on
how far it lies from the point of interest, that is, only the observations in a neighbourhood of this
point need to be considered when studying the sensitivity of the procedure. Thus, robust concepts
should be thought in terms of local resistance properties. In this paper, our concern is to estimate
robustly and nonparametrically the regression function in the presence of anomalous data.

More precisely, from now on we assume that the response variables {Yi : 1 ≤ i ≤ n} are
independent random variables, related to covariates which may be fixed or random. In the case of
fixed or deterministic carriers, we assume that there exists a smooth function g : ℝd → � ⊂ ℝ such
that Yi has distribution F (y, g(xi)), where xi ∈ A ⊂ ℝ

d, 1 ≤ i ≤ n and A is a compact set. If we
observe random carriers {Xi : 1 ≤ i ≤ n}, we assume that Yi∣Xi = xi has distribution F (y, g(xi))
with g : ℝd → � ⊂ ℝ. In the generalized lineal model the regression function g depends on a vector
of parameters, i.e., g(x) = H(xt�), where H is known and � must be estimated. In our setting, we
only assume that g is a smooth function. In most situations, the function g satisfies g(xi) = E(Yi)
in the case of fixed covariates and g(x) = E(Yi∣Xi = x) for random ones.

Many authors have considered the problem of the estimation of the regression function g,
for instance [12], [16], [21] and [32]. In the fixed design case, asymptotic properties for linear
estimates were obtained by [20] without assuming a regression model. Local polynomial kernel
smoothers for one parameter exponential families were introduced by [17]. Their estimators are
based on quasi–likelihood functions which are linear in the response variables. They include as
a particular case local constants kernel estimators, but their approach turns to be non resistant
in most cases. In regression models with fixed carriers, a first resistant proposal was given by
[10] who considered a robust locally weighted regression scatterplot (see also, [11]) and asymptotic
results for the univariate case were obtained by [23]. Robust methods for estimating g(x) under a
nonparametric regression model have been proposed by [22], [24] and [4]. All these methods have
been designed in order to include the regression model Y = g(x) + " s(x) where " has a continuous
and symmetric distribution function and s is a scale function. In logistic models, the first paper
which applied kernel methods is due to [13]. Later on, [18] used this smoothing technique for
diagnostics in logistic regression. More recently, [8] have considered nonparametric regression in
exponential families using a mean-matching variance stabilizing transformation so as to turn the
estimating issue in a standard homoscedastic Gaussian regression problem.

From now on, we focus on nonparametric regression on the parameters of a discrete or continuous
distribution, such as the Poisson or Gamma distributions, when anomalous data are present and
our aim is to estimate the regression function g in a robust fashion. Our resistant proposals are
nonparametric versions of robust estimators that have been proposed in the parametric setting,
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such as those considered by [3] for logistic regression, [2] for the Gamma distribution and [26] and
[9] for generalized linear models.

In Section 2, two families of estimators are introduced and some applications are described.
Their asymptotic behaviour is studied in both Sections 3 and 4. In Section 5, we present the
results of a Monte Carlo Study and we introduce a resistant cross–validation method to choose the
smoothing parameter. Proofs are relegated to the Appendix.

2 The estimators

2.1 General Definitions

As mentioned in the Introduction our aim is to extend to general nonparametric models robust
estimators that have been developed in the parametric setting. We propose two families of local
M−estimators that can be defined through a loss function � or through a score function  .

We begin by fixing some notation. From now on, Xn
a.s.−→ X means thatXn −→ X almost surely,

while
p−→ stands for convergence in probability. Besides, IA will denote the indicator function for

the set A.

To fix ideas, let us focus on the deterministic design case first. Assume that we observe {Yi :
1 ≤ i ≤ n} which are independent random variables such that Yi ∼ F (y, g(xi)) with g : ℝd → � ⊂ ℝ

and related to fixed carriers xi ∈ A ⊂ ℝ
d, 1 ≤ i ≤ n, where A is a compact set.

Consider a generic random variable Y with distribution F (y, g(x)), for a given continuity point
x ∈ A of g. In order to introduce a local M−estimator, let � : ℝ2 → ℝ>0 be a loss function. In
some situations, for instance when �(Y, t) = ∣Y − t∣, E(�(Y, t)) may not exist. For that reason, to
ensure a proper definition for the target functionals, we include a term a(Y ), and so, we define a
function  : ℝ → ℝ as (t) = E[�(Y, t)− a(Y )]. Without loss of generality, to define the estimators
we will assume that a(Y ) ≡ 0, since we can absorb it on the function �. Assume that

(g(x)) = min
t∈�

(t) .

Now, to estimate the function  at any point t, we consider a sample version of  given by

n(t) =

n∑

i=1

wni(x)�(Yi, t) , (1)

where wni(x) = wni(x,x1, . . . ,xn) is a probability weight function, i.e., wni(x) ≥ 0 and
∑n

i=1 wni(x) =
1, as for kernel, k−nearest neighbour, nearest neighbour and nearest neighbour with kernel weights.
These local weights give more emphasis to those observations closest to x. Then, in order to esti-
mate g(x) it seems natural to minimize (1) over t ∈ � . We will call gn(x) the value where n(t)
attains its minimum, that is

n(gn(x)) = min
t∈�

n(t) . (2)

More generally, as in [25], one can define estimates of g(x) as any sequence gn(x) satisfying

n(gn(x)) − inf
t∈�

n(t)
a.s.−→ 0 . (3)
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Instead of defining gn(x) as the solution of an optimization problem, one can define it through
the relative differentiating equation by considering Ψ(y, t) = ∂�(y, t)/∂t and so gn(x) satisfies

�n(gn(x)) = 0, (4)

where for t ∈ �

�n(t) =

n∑

i=1

wni(x)Ψ(Yi, t) (5)

and wni(x) are as in (1). These two approaches are equivalent if (4) has a unique solution. Besides,
for generalized linear models in the parametric setting, M−estimators have been defined through
several choices of Ψ which are not necessarily obtained by differentiating a loss function. Thus, we
will consider a general function Ψ : ℝ2 → ℝ and the solution gn(x) of (4), where we suspect that
this solution will converge to the solution g(x) of

�(t) = E [Ψ(Y, t)] = 0 . (6)

In the case of random carriers, the definitions of these two families of estimators follow straight-
forwardly by considering suitable functions (t) and �(t) and their sample versions n(t) and
�n(t). Indeed, assume that (Xt

1 , Y1) . . . (X
t
n , Yn) are independent random vectors in ℝ

d+1, such
that Yi∣Xi = xi has distribution F (y, g(xi)) with g : ℝd → � ⊂ ℝ. Consider a generic vector
(Xt, Y ) with the same distribution of the sample, that is

Y ∣X = x ∼ F (y, g(x)). (7)

Given a loss function � define (t) = E[�(Y, t)∣X = x] for t ∈ � ⊂ ℝ, where x is a continuity point
of g . Assume that (g(x)) = mint∈� (t). Then, it is quite natural to estimate g(x) by gn(x) where
gn(x) minimizes

n(t) =
n∑

i=1

Wni(x) �(Yi, t) , t ∈ � , (8)

where Wni(x) =Wni(x,X1, . . . ,Xn) are local weights as those mentioned above.

On the other hand, for a score function Ψ define

�(t) = E [Ψ(Y, t)∣X = x] . (9)

Therefore, we define gn(x) as the solution of the equation

�n(gn(x)) = 0 , (10)

where

�n(t) =

n∑

i=1

Wni(x)Ψ(Yi, t) , t ∈ � . (11)
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2.2 Some applications

In regression models, robust estimates can be obtained by taking �(y, t) = �(y − t) where � is,
for instance, the Huber or the bisquare �−function. In generalized regression models, typically
in order to attain robustness, � will be a bounded function performing like the log–likelihood for
central values. In this last case, instead of bringing in large observations in the derivative of the
log–likelihood function, one option is to smoothly truncate the log–likelihood function and then
correct it by an additive term only depending on the parameter in order to obtain both robustness
and Fisher–consistency. Thus, in order to estimate g(x) in generalized exponential families, we
propose to minimize (1) or (8) using

�(y, t) = �[− ln f(y, t) +H(y)] +G(t) ,

where � is an odd and bounded non–decreasing function. Typically, � is a function performing like
the identity function in a neighbourhood of 0, the function H(y) is used to remove a term from
the log–likelihood that is independent of the parameter, while G is a correction term introduced to
achieve Fisher–consistency.

When dealing with a one parameter exponential family ln f(y, t) = y t − b(t) + c(y) and H(y)
can be taken as ln f(y, y). Thus, we can choose

�(y, t) = �(ln f(y, y)− ln f(y, t)) +G(t) , (12)

with G ′(t) =
∫
' (ln f(y, y)− ln f(y, t)) f ′(y, t)d�(y) to obtain Fisher–consistency, where ' stands

for the derivative of �, f ′(y, t) = ∂/∂t f(y, t) and f(⋅, t) is the density with respect to the measure
� of the distribution function F (⋅, t). The function � can be chosen as the bisquare function or
as in [14]. This approach is in the spirit of [3] where a robustified version of the deviance with a
correction term is introduced to achieve Fisher-consistency.

To illustrate with some examples, let us consider first the Poisson regression problem. Assume
that Y follows a Poisson distribution, Y ∼ P (t). Then, we have that

f(y, t) =

{
exp(−t)ty/y! y ∈ N ∪ {0}

0 in other case

and thus, E(Y ) = t, V(Y ) = t. In this case, if � is a loss function, from (12) we get that

�(y, t) = �(ln(f(y, y)− ln(f(y, t)) +G(t) = �(−y + y ln y + t− y ln t) +G(t) . (13)

Moreover, if, as above, � has first derivative ', we have that

Ψ(y, t) =

⎧
⎨
⎩

'(−y + y ln y + t− y ln t)
(t− y)

t
+G′(t) if y > 0

'(t) +G′(t) if y = 0
,

where

G′(t) = −E [Ψ(Y, t)] = −'(t) exp(−t)−
∞∑

j=1

'(j ln j − j + t− j ln t)

(
t− y

t

)
exp(−t)tj/j! .

5



Another interesting example is the case of the Gamma regression model. Let us assume that Y
follows a Gamma distribution, Y ∼ Γ(�, t), with parameters � and t. Hence, we have that

f(y, �, t) =
��y�−1

t�Γ(�)
exp(−�y/t)I{y≥0} .

This parametrization implies that E(Y ) = t and V(Y ) = t2/�, where � is assumed to be known.
In the case of a continuous response, we have that G(t) = 0, see [2]. Thus, �(y, t) = �(ln(f(y, y)−
ln(f(y, t)) = � (�(y/t − ln (y/t)− 1)) which implies that

�(y, t) =

{
� (�(y/t− ln (y/t)− 1)) if y > 0

limy→0 � (�(− ln(y/t)− 1)) if y = 0 ,

where � is a loss function as above.

On the other hand, if we define the estimator by solving an implicit equation, one can follow
the approach introduced by [9] where a robustified quasi-likelihood estimator is developed. The
estimator gn(x) satisfies (4) or (10) using

Ψ(y, t) =  

(
y − t√
V (�(t))

)
� ′(t)√
V (�(t))

− �(t) , (14)

where �(t) = E

[
 
(
(Y − t)/

√
V (�(t))

)
� ′(t)/

√
V (�(t))

]
for �(t) = E(Y ) and V (�(t)) = V(Y ).

The function �(t) is a correction term introduced to obtain Fisher–consistent estimators, while  ,
that may be the Huber’s  function, controls the Pearson residuals. For instance, in the particular
case of the Gamma distribution, we have that the Pearson residuals are of the form

√
� (y − t) /t,

so
Ψ(y, t) =  

(√
� ((y − t)/t)

)√
�/t− �(t)

where �(t) = E [ (
√
� ((Y − t)/t))

√
�/t].

In Section 5, we will apply these families of estimators to Poisson and Gamma regression models.

3 Consistency

We will begin by proving consistency results for both families of estimators in the case of fixed
carriers. Analogous results were obtained for the case of random carriers in [1]. We will assume
the following set of assumptions.

Conditions on the weight function

The conditions stated below are the usual assumptions required to the weights in nonparametric
regression (see, for instance, [20]).

W1. (i) limn→∞
∑n

i=1wni(x) = 1
(ii) limn→∞

∑n
i=1 ∣wni(x)∣I{∥xi−x∥>a} = 0 for all a > 0

(iii) There exists M > 0 such that
∑n

i=1 ∣wni(x)∣ ≤M for all n ≥ 1.
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W2. limn→∞max1≤i≤n ∣wni(x)∣ = 0.

W3. limn→∞

{
max1≤i≤nw

2
ni(x)

}
n log log n = 0.

W4. limn→∞ {max1≤i≤n ∣wni(x)∣} log n = 0.

W5. wni(x) ≥ 0 for all 1 ≤ i ≤ n, n ≥ 1.

Conditions on the loss function �

We will fix some extra notation. Given a compact set C ⊂ � , let �(C) = E [inft/∈C �(Y, t)] and
�n(C) =

∑n
i=1 wni(x) inft/∈C �(Yi, t). In the Appendix, it will be shown that Assumptions W1,

W2, A1, A2, A5 and A7 imply that �n(C)
p−→ �(C).

The conditions for the loss function are quite similar to those given by [25]. However, some of
them have been customized to our setting since the observations are not identically distributed.

A1. For each t ∈ � , �(y, t) is a measurable function and �(y, t) is separable in the sense of Doob.

A2. There exists a measurable function a(y) such that E∣�(Y, t)− a(Y )∣ <∞ for all t ∈ � .
Then, (t) = E(�(Y, t)− a(Y )) is well defined for each t, where Y ∼ F (⋅, g(x)).

A3. The function � is almost surely lower semicontinuous in t.

A4. For all t ∕= g(x), (t) > (g(x)).

A5. For all t ∈ � we have that for some p ≥ 2. supi E∣�(Yi, t)− a(Yi)∣p < M1 =M1(t) <∞.

A6. For all t ∈ � we have that supi E∣�(Yi, t)− a(Yi)∣2+s ≤M2 =M2(t) <∞ for some s > 0.

A7. For any set U ⊂ � the function r(u) =
∫
inft∈U [�(y, t)− a(y)] dF (y, g(u)) is continuous at x.

A8. For any sequence of compact sets Cn converging to � , lim infn→∞ �(Cn) > (g(x)).

Without loss of generality, as in [25], we can assume a(y) = 0 and we have that assumptions
A2, A3 and A4 imply

A4’. E inft∈U �(Y, t) → (g(x)) as the neighbourhood U of t shrinks to {g(x)}.

Assumption A5 may be relaxed by requiring p > 1, but additional constraints are needed. Besides,
assumptions A5 and A6 are not restrictive due to the term a(Yi). For instance, by taking �(y, t) =
∣y − t∣, a(y) = ∣y∣ we include local medians even for Cauchy distributions.

Conditions on the function Ψ.

B1. For each t ∈ � , Ψ(y, t) is a measurable function and Ψ(y, t) is separable in the sense of Doob.

B2. The function Ψ is continuous almost everywhere in t.
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B3. The expected value �(t) = EΨ(Y, t) exists for all t ∈ � and it has a unique zero at g(x).
More generally, inf{t : �(t) < 0} = sup{t : �(t) > 0}.

B3’. The expected value �(t) = EΨ(Y, t) exists for all t ∈ � , �(g(x)) = 0 and there exists a
neighbourhood of g(x) in which �(t) has a unique change of sign.

B4. There exists a continuous function b : ℝ → ℝ bounded away from 0 in � , i.e., b(t) ≥ b0 > 0
for all t ∈ � such that
(i) E supt∈� [∣Ψ(Y, t)∣/b(t)] <∞ ,
(ii) lim inft→∞ [∣�(t)∣/b(t)] ≥ 1 ,
(iii) E lim supt→∞ [∣Ψ(Y, t)− �(t)∣/b(t)] < 1,
where if � is not compact, ∞ denotes the point at infinity in its one–point compactification.

B5. Ψ(y, t) is a bounded function such that
(i) for each fixed t ∈ � , Ψ(⋅, t) is of bounded variation,
(ii) �(t) is strictly monotone in a neighbourhood of g(x).

B6. There exist s > 0 and M > 0 such that
(i) sup1≤i≤n E∣Ψ(Yi, t)∣2+s ≤M .

(ii) For any compact set C ⊂ � , sup1≤i≤n E {supt/∈C (∣Ψ(Yi, t)− �(t)∣/b(t))}2+s ≤M .
(iii) For any neighbourhood U ⊂ � of t and for all n ≥ 1

sup
1≤i≤n

E

[
sup
t′∈U

∣Ψ(Yi, t)−Ψ(Yi, t
′)∣
]2+s

≤M .

B7. For a compact set C and a neighbourhood U of t, the functions
r1(u) =

∫
supt/∈C [∣Ψ(y, t)− �(t)∣/b(t)] dF (y, g(u)), r2(u, t) =

∫
Ψ(y, t)dF (y, g(u)) and

r3(u) =
∫
supt′∈U ∣Ψ(y, t)−Ψ(y, t′)∣dF (y, g(u)) are continuous at x.

B8. F (y, g(⋅)) is continuous at x for each fixed y.

It is worth noticing that when � is compact, (ii) and (iii) in B4 are not necessary. As noted by
[25] if there is a function b verifying B4, one may choose b(t) = max{∣�(t)∣, b0}. If Ψ is a bounded
function, as is usual with M−estimates, assumptions B4 and B6 are obviously fulfilled. However,
we set the assumptions in a more general way in order to include, for instance, regression models
with simultaneous scale estimation, or exponential models with location and scale functions. In
this case, � ⊂ ℝ

2 and the assumptions must be extended to the multidimensional case in order to
obtain the conclusions of the Theorems.

Lemma 3.1. Let gn(x) be any value satisfying (3). Assume that W1, W2, W5, A1, A2, A7
and A8 hold. If in addition,

i) W3 and A6 hold
or

ii) W4 holds and � is bounded,
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then, there exists a compact set K ⊂ � such that limm→∞ ℙ

(∩
n≥m gn(x) ∈ K

)
= 1.

Note that even if assumption A8 seems very restrictive, the conclusion of Lemma 3.1 can be
directly verified for many families of estimates including, for instance, local medians.

Theorem 3.1. Under A1 to A4, A6, A7, W1 to W3, W5 and if the conclusion of Lemma 3.1
holds, we have that gn(x)

a.s.−→ g(x) as n→ ∞.

Remark 3.1. If � is bounded we can replace W3 by W4, in Theorem 3.1. On the other hand, if
we are looking for convergence in probability we can replace A6 and W3 by A5 with p ≥ 2 and
the conclusion of Lemma 3.1 by the assumption that there exists a compact set K ⊂ � such that
limn→∞ ℙ(gn(x) ∈ K) = 1.

The following Theorem can be proved as in [7] using Proposition 6.1 which can be found in the
Appendix.

Theorem 3.2. Assume W1, W2, W4, B1, B2, B3’, B5 and B8, then there exists a solution,
gn(x), of (4) such that gn(x)

a.s.−→ g(x) as n→ ∞.

Remark 3.2. If Ψ(y, ⋅) is monotone, any solution of (4) will converge to g(x).

We now state consistency results for the case of a unique solution. These results can be extended
to the multiparameter situation.

Theorem 3.3. Under W1, W3, B1 to B3, B4, B6 and B7 we have that gn(x)
a.s.−→ g(x) almost

everywhere as n→ ∞.

Remark 3.3. Note that if Ψ is bounded W3 can be replaced by W4.

4 Asymptotic Normality

In this section, we derive the asymptotic distribution of the proposed estimators. In order to study
the asymptotic behaviour, we will need some additional assumptions. First, we introduce some
notation. Denote by Ψ′(y, t) = ∂Ψ(y, t)/∂t, Ψ′′(y, t) = ∂2Ψ(y, t)/∂t2, �1(t) = E(Ψ′(Y, t)) and
cn =

∑n
i=1 w

2
ni(x). In most situations, �1(t) = ∂�(t)/∂t.

N1. Ψ is twice continuously differentiable in t and for any neighbourhood U of g(x), there exists
c > 0 such that
i) supt∈U ∣Ψ′′(y, t)∣ ≤ c for all y
or
ii) sup1≤i≤n E supt∈U ∣Ψ′′(Yi, t)∣ ≤ c for all n ≥ 1

N2. �1(g(x)) ∕= 0.
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N3. For some positive constant c, sup1≤i≤n E∣Ψ′(Yi, g(x))∣2 ≤ c for all n ≥ 1.

N4. Ψ′ satisfies one of the following conditions
i) r4(u) =

∫
Ψ′(y, t)dF (y, g(u)) is continuous at x for each fixed t ∈ � .

ii) For each t ∈ � , Ψ′(⋅, t) is of bounded variation.

Theorem 4.1. Let r2 be the function defined in B7. Assume that gn(x)
p−→ g(x) and W1,

W2, N1 to N4 hold. If in addition, limn→∞ c
−1/2
n max ∣wni(x)∣ = 0 and limn→∞ c

−1/2
n

∑n
i=1wni(x)

r2(xi, g(xi)) = �, we have that

c−1/2
n (gn(x)− g(x))

w−→ N(�1, �
2
1(x)) ,

where �1 = �/�1(g(x)) and �21(x) = �2(x)/[�1(g(x))]
2 with �2(u) =

∫
Ψ2(y, g(x))dF (y, g(u)) and

w−→ stands for convergence in law.

Remark 4.1. Even though the asymptotic bias seems to depend on the Ψ function, it can be
seen that, under N1 and N4(i), it performs as in the usual nonparametric regression model, if

limn→∞ c
−1/2
n

∑n
i=1wni(x)I{∥xi−x∥>a} = 0. That is, the asymptotic bias equals

limn→∞ c
−1/2
n

∑n
i=1wni(x)[g(xi) − g(x)]. Assumption N1 requires differentiability of the Ψ func-

tion which in many situations is not satisfied (for instance, if we take Ψ as the Huber or the sign
function). This assumption can be relaxed, as is usual for M−estimators, by requiring that the
finite discontinuities of the derivative are continuity points of F (⋅, g(x)). The proof is essentially
the same with some technical modifications.

We will now give an additional result of asymptotic normality which holds only if � ⊂ ℝ, but
does not require smoothness conditions on Ψ. We will obtain it under the following assumptions

W6.
∑n

i=1wni(x) = 1.

W7. There exists a constantM > 0 such that c
−1/2
n

∑n
i=1 ∣wni(x)∣ ∣g(xi)−g(x)∣ ≤M for all n ≥ 1.

N5. �′(g(x)) = ∂�(t)/∂t∣t=g(x) ∕= 0.

N6. F (y, t) is Lipschitz as a function of t uniformly in y, i.e., there exists L > 0 such that
∣F (y, t)− F (y, t′)∣ ≤ L∣t− t′∣ for all y ∈ ℝ, t, t′ ∈ � .

Remark 4.2. The Lipschitz condition required in N6 is easily verified for the most of the standard
distributional families.

Theorem 4.2. UnderB2, B5(i), W6, W7, N5, N6 we have that c
−1/2
n (gn(x)−g(x)) has the same

asymptotic distribution as c
−1/2
n

∑n
i=1wni(x)Ψ(Yi, g(x))/�

′(g(x)), provided that limt→g(x) ∥Ψ(⋅, t)−
Ψ(⋅, g(x))∥V = 0, where ∥.∥V stands for the variation norm.

10



5 Monte Carlo Study

5.1 Simulation

A Monte Carlo study was carried out in order to assess the performance of the proposed robust
estimators for finite contaminated and non–contaminated samples. We considered a Poisson and
a Gamma regression model with one-dimensional covariate x. In both situations, we performed
N = 5000 replications and we generated, at each replication, n = 100 observations, Y1, . . . , Yn,
such that Yi ∼ F (⋅, g(xi)) with xi = (i− 0.5)/100. To avoid boundary effects, we considered the
weights introduced in [19] using the Epanechnikov kernel with bandwidth ℎ. Boundary kernels were
considered to improve the performance of the regression estimators. We considered three regression
estimators of the regression function g

ĝcl: the classical estimator,

ĝrd: the robustified version of the deviance estimator obtained by minimizing (1) using (12), with
� the loss function considered in [14] with tuning constant d = 2,

ĝrql: the robustified quasi-likelihood obtained as solution of (4) using (14) with  =  c the
Huber’ s score function with c = 1.6.

For each generic estimator ĝ we computed the following two summary measures

MSEj(ĝ, g) =
1

n

n∑

i=1

(ĝ(xi)− g(xi))
2 (15)

AMSE(ĝ, g) =
1

N

N∑

j=1

MSEj(ĝ, g) , (16)

which measure the square error in the j−th replication and the square error along all the replica-
tions, respectively. For each robust estimators ĝ, we compared the behaviour of the estimator with
respect of the classical one by computing a summary measure of the efficiency given by

EF(ĝ, ĝcl) =
AMSE(ĝcl, g)

AMSE(ĝ, g)
.

5.1.1 Poisson regression

As mentioned above, we generated observations Yi following a Poisson distribution P(g(xi)) with
g(x) = exp(2 sin 4�x) + 1. We contaminated the original samples by replacing m = 1 and m = 3
responses by arbitrary values y∗ = 0, 12 or 20. These contaminating data were located at fixed
positions of the covariate x and when m = 3 the outliers were located at successive values of x, so
as to obtain a more severe contamination pattern. We chose ℎ = 0.05 as smoothing parameter.

To illustrate the fit of the considered regression estimators, Figure 1 presents the different
estimators applied to one simulated sample in its original version and when m = 3 responses are

11



replaced by y∗ = 20. The black line corresponds to the true function g, while the blue and the red
lines correspond to the classical and robust estimators, respectively. The plots on the right side show
that the robust and the classical estimators overlap in the non–contaminated sample. However,
under contamination, the proposed estimators are very close to the classical estimator in all the
range of the covariate, except for the region where the outlying responses were located. In this
crucial area the classical estimator ĝcl suffers from the effect of the outliers leading to a fit far from
the expected curve g. Indeed, in presence of the three outliers, ĝcl is pulled up by the anomalous
observations deviating from the true curve g. Instead, the proposed estimators remain more stable,
especially ĝrd which looks much more insensitive than ĝrql to the severe outlying points. These
conclusions can be extended to the whole simulation study whose results are summarized in Table
1. In fact, when there are no outliers (m = 0) the proposed estimators achieve a 95% efficiency with
respect to the classical estimator. On the contrary, for the contaminated samples the AMSE of ĝcl
increases according to the size of the outlier y∗ and also tom. The proposed estimators, in particular
ĝrd, are much more stable in presence of anomalous data. This behaviour is also observed in Figure
2 that shows the density estimates of the mean square error MSE of the computed estimators.

Original Data Contaminated Data

(a) ĝcl and ĝrd
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(b) ĝcl and ĝrql
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Figure 1: Simulated data from Poisson regression. The plots on the left correspond to original samples,
while plots on the right to contaminated ones with m = 3 outlying observations with y∗ = 20. The black
lines correspond to the true function g(x), the red one to the classical estimator ĝcl while the blue one to
the robust estimators ĝrd and ĝrql in (a) and (b), respectively. Green points represent the outliers.
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Figure 2: Density estimates of the mean square error MSE over N = 5000 Poisson samples with m = 1
and m = 3 outliers. The black line correspond to the classical estimators ĝcl, while the blue and red ones
to ĝrd and ĝrql, respectively.
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y
∗ = 0 y

∗ = 12 y
∗ = 20

m ĝrd ĝrql ĝrd ĝrql ĝrd ĝrql

0 0.954 0.954 0.954 0.954 0.954 0.954
1 1.123 1.032 1.232 1.216 1.831 1.794
3 1.447 0.944 1.426 2.115 8.229 5.198

Table 1: Poisson regression. Values of EF(ĝ, ĝcl) for contaminated and non–contaminated samples

5.1.2 Gamma regression

In this section, we report the results obtained under Gamma regression model. We generated
n = 100 observations Yi ∼ Γ(16, 8(sin 4�xi + 3)−1), and so E(Yi) = g(xi) = 2(sin 4�xi + 3),
1 ≤ i ≤ n. We contaminated the original samples by replacing m = 1 and m = 3 responses by
arbitrary values y∗ = 0. As before, these outliers were located at fixed positions of covariate x
and when m = 3 they were located at successive values of x. We choose ℎ = 0.1 as smoothing
parameter.

As an example, in Figure 3 we plot the classical estimator ĝcl and the robust estimator ĝrd
when they are applied to one simulated sample without outliers and withm = 1 andm = 3 outliers.
As above, the lines in black correspond to the true regression function g(x), while those in red and
blue to the classical estimator ĝcl and to the robust estimator ĝrd, respectively. The robust and
the classical estimators again overlap in the non–contaminated case, but the classical estimator
seems to be affected even by just one outlier since it deviates form the true regression function g
in presence of just one outlying observation. Instead, the fit obtained from ĝrd is very stable in all
the range in the three cases considered.

Table 2 summarizes the results over the N = 5000 samples. In fact, when there are no outliers
(m = 0) the proposed estimators are very efficient with respect to the classical estimator. Under
contamination theAMSE of ĝcl increases withm, while the proposed estimators resist the presence
of outliers. Besides, we conclude that when three values of the response variable are replaced by
outliers, ĝrd is more stable than ĝrql, sinceAMSE(ĝrql, g) is around 1.6 times theAMSE(ĝrd, g).

m = 0 m = 1 m = 3
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Figure 3: Simulated data from Gamma regression. Samples with m outyling responses. The black line
correspond to the true function g(x), while the red and blue ones to the classical, ĝcl, and robust, ĝrd,
estimators. Green points represent the outliers.
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y
∗ 0
m ĝrd ĝrql

0 0.976 0.976
1 1.272 1.147
3 2.666 1.652

Table 2: Gamma regression. Values of EF(ĝ, ĝcl) for contaminated and non–contaminated samples.

5.2 Resistant choice of the smoothing parameter

As in any smoothing procedure the selection of the bandwidth parameter is an important task.
Classical procedures for the choice of the smoothing parameter, such as cross–validation or plug–in
methods, may be very sensitive to the presence of outliers. This sensitivity has been discussed in
the literature of nonparametric regression; among others, we can mention [28], [27], [33], [6] and
[9]. Least squares cross-validation method may be severely affected by outliers, even when the
nonparametric regression estimators are based on local M−estimators and this is due to the fact
that it is based on an L2−norm. One outlier may cause the bandwidth to break down, in the sense
that it may result in oversmoothing or undersmoothing. When a small bandwidth is considered,
few outlying responses with similar covariates xi could damage the estimate seriously. [5] pointed
out that robust cross-validation methods should be an alternative. In the following, we describe a
resistant cross–validation procedure based on robustified deviances

1. For each given bandwidth ℎ compute

ŷ−i
ℎ = argmin

t

n∑

j ∕=i

wnj(xi, ℎ)�(yj , t) ,

where � is taken as in (1) and the weights are given by

wnj(x, ℎ) =

⎧
⎨
⎩
∑

ℓ ∕=i

K(x− xℓ/ℎ)

⎫
⎬
⎭

−1

K(x− xj/ℎ) .

2. Choose the robust bandwidth as

ℎ̂n,r = argmin
ℎ

n∑

i=1

�(yi, ŷ
−i
ℎ ) .

To study the performance of the CV procedure, we carried out a Monte Carlo study for the
case of the Gamma regression model. We also intend to compare it with the classical cross–
validation method based on the deviance. As in Section 5.1.2, we generated n = 100 observations
Yi ∼ Γ(16, 8(sin 4�xi + 3)−1) and so the regression function is g(xi) = 2(sin 4�xi + 3) in the non–
contaminated samples. We followed the contamination scheme with m = 3 outliers described in
Section 5.1.2. For each non–contaminated sample, we computed the classical bandwidth ℎ̂n and the

15



resistant one ℎ̂n,r. For the contaminated samples, we performed the same computations obtaining

classical and resistant bandwidths denoted ℎ̂cn and ℎ̂cn,r, respectively. We replicated N = 500 times.

Figure 4 displays the histograms for the differences ℎ̂n − ℎ̂cn and ℎ̂n,r − ℎ̂cn,r. These histograms
show that in most cases the windows achieved by the resistant method in contaminated samples
are very similar to those obtained by the same method in the corresponding non–contaminated
samples. On the contrary, the classical selection procedure seems to be much more unstable.

In order to assess the performance of the regression estimates, we computed the mean square
error defined in (15) for each estimator. Figure 5 shows, with a solid line, the density estimator of
the mean squared errors for the original samples using the cross validation bandwidths and with
a dashed line those obtained for the contaminated samples. As we can see, the mean squared
errors achieved using the resistant bandwidth parameters for contaminated and non–contaminated
samples are comparable, while those obtained using the classical cross–validation method are larger
when the samples have outliers.
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Figure 4: Histograms of the differences ℎ̂n − ℎ̂c
n
on the left and ℎ̂n,r − ℎ̂c

n,r on the right.

6 Appendix

6.1 Proofs of the results in Section 3.

In order to prove Lemma 3.1 we will first establish some auxiliary results.

Lemma 6.1. Let {Zj : j ≥ 1} be independent random variables such that Zj ∼ F (z,xj)
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Figure 5: Density estimator of the mean squared errors for the original samples using the cross validation
bandwidths. The solid line correspond to those computed with the original samples while the dashed line to
those obtained for the contaminated samples.

and E(Zj) = r(xj). Assume that r is continuous at x and that there exists C > 0 such that
sup1≤i≤n E∣Zj ∣p ≤ C for some p ≥ 2. Let rn(x) =

∑n
i=1wni(x)Zi. Then, if W1 and W2 hold, we

have that limn→∞ E [∣rn(x)− r(x)∣p] = 0.

Proof. By Minkowsky’s inequality, we have that

E∣rn(x)− r(x)∣p ≤
{
[E∣rn(x)− Ern(x)∣p]1/p + ∣Ern(x)− r(x)∣

}p
.

Thus, using that Ern(x) converges to r(x), it is enough to show that E∣rn(x)−Ern(x)∣p converges
to 0.

Let "i = Zi − EZi then supi E∣"i∣p ≤ 2p−1C = M1. The inequality given in [29] (see also [15])
implies that there exists a constant A > 0 depending only upon p such that

E∣rn(x)− Ern(x)∣p ≤ AE

∣∣∣∣∣

n∑

i=1

w2
ni(x)"

2
i

∣∣∣∣∣

p/2

≤ A [max ∣wni(x)∣]p/2
[

n∑

i=1

wni(x) (E∣"i∣p)2/p
]p/2

≤ M1AM
p/2 (max ∣wni(x)∣)p/2

from Minkowsky’s inequality and W1. Then,W2 entails now the desired result.

Denote by n(U) =
∑n

i=1 wni(x) inf t∈U �(Yi, t) and (U) = E (inft∈U �(Y, t)) where U ⊂ � .

Lemma 6.2. Under W1, W2, A1, A2 and A7 we have that for any t ∈ � and any set U ⊂ �
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(i) n(t)
p−→ (t) and n(U)

p−→ (U), if, in addition, A5 holds.

(ii) n(t)
a.s.−→ (t) and n(U) a.s.−→ (U), if A6 and W3 hold.

Proof. We will just prove the desired results for a given set U . Denote by Zi = inft∈U �(Yi, t),
then we have

n(U)− (U) =
n∑

i=1

wni(x)[Zi − E(Zi)] +

n∑

i=1

wni(x)[E(Zi)− (U)] +
[

n∑

i=1

wni(x)− 1

]
(U) . (17)

(i) Since E(Zi) = r(xi) and (U) = r(x) where r, given in A7, is continuous, A5 and W1 imply
that the last two terms in (17) converge to 0. Thus, from Lemma 6.1, we get the desired result.

(ii) follows easily from Theorem 4 of [20].

Proof of Lemma 3.1. The proof is quite similar to that given in Lemma 1 of [25]. Indeed,
assumption A8 implies that given " > 0 there exists a compact set C such that �(C) > (g(x))+".

Denote byAn = {∑n
i=1 wni(x) inft/∈C �(Yi, t) > �(C)− "/2 > (g(x)) + "/2}. Then, from Lemma

6.2 limm→∞ ℙ

(∩
n≥mAn

)
= 1. Thus, we can find n0 ∈ ℕ such that ℙ

(∩
n≥n0

An

)
> 1−"/2, which

implies, together with A5, that

ℙ

⎛
⎝ ∩

n≥n0

inf
t/∈C

n(t) > (g(x)) +
"

2

⎞
⎠ > 1− "

2
.

Now the proof follows as in [25] using Lemma 6.2 instead of the strong law of large numbers.

Proof of Theorem 3.1. The proof is similar to that of Theorem 1 in [25] using again Lemma
6.2.

Proposition 6.1. Under B1, B2, B5, B8, W1, W2 and W4, we have that for all t ∈ � ,
�n(t)

a.s.−→ �(t).

Proof. B5(i) entails that ∣�n(t) − �(t)∣ ≤ ∥Ψ(⋅, t)∥V ∥Fn − F∥∞. On the other hand, by B8,
Theorem 6 of [20] and a similar argument to the proof of Glivenko Cantelli’s Theorem we get that
∥Fn − F∥∞ = supy ∣Fn(y) − F (y, g(x))∣ converges to 0 almost surely as n → ∞ where Fn(y) =∑n

i=1wni(x)I(−∞,y](Yi). This concludes the proof.

In order to obtain consistency results for a multidimensional parameter or without requiring
B5, we will need the following Lemma.

Lemma 6.3. Under B1 to B3, B6 and B7, W1 and W3 , given t0 ∈ � , a compact set C and an
open set U , we have that �n(t0)

a.s.−→ �(t0) and besides,

n∑

i=1

wni(x) sup
t/∈C

[∣Ψ(Yi, t)− �(t)∣/b(t)] a.s.−→ E

{
sup
t/∈C

[∣Ψ(Y, t)− �(t)∣/b(t)]
}

n∑

i=1

wni(x) sup
t∈U

∣Ψ(Yi, t)−Ψ(Yi, t0)∣ a.s.−→ E

[
sup
t∈U

∣Ψ(Y, t)−Ψ(Y, t0)∣
]
.
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Proof. Follows easily from Theorem 4 of [20].

Proposition 6.2. If W1, W3, B1 to B4, B6 and B7 hold, we have that there exists a compact
set K ⊂ � such that

lim
m→∞

ℙ

⎛
⎝
∩

n≥m

gn(x) ∈ K

⎞
⎠ = 1 .

Proof. As in [25] denote by v(y,C) = supt/∈C ∣Ψ(y, t) − �(t)∣/b(t). Given 0 < " < (2M)−1, where
M is given in W1, B4 and the dominated convergence theorem entail that there exists a compact
set C ⊂ � such that

Ev(Y,C) < 1− 3" and inf
t/∈C

∣�(t)∣
b(t)

> 1− " . (18)

Denote by w̃ni(x) = ∣wni(x)∣{
∑n

i=1 ∣wni(x)∣}−1. Then w̃ni(x) are probability weight functions
satisfying W1 and W3.

From Lemma 6.3 we have that
∑n

i=1 w̃ni(x)v(Yi,C) converges to E[v(Y,C)] almost surely as
n→ ∞. Therefore, with probability 1, for n large enough we obtain that

sup
t/∈C

n∑

i=1

w̃ni(x)
∣Ψ(Yi, t)− �(t)∣

b(t)
≤ 1− 2 "

which together with (18) implies that for all t /∈ C,
∑n

i=1 w̃ni(x)∣Ψ(Yi, t)− �(t)∣ ≤ (1− ")∣�(t)∣.
From W1(i), for n large enough we have that 1− "/2 ≤∑n

i=1wni(x). Thus, for all t /∈ C

∣�n(t)∣ ≥
∣∣∣

n∑

i=1

wni(x)
∣∣∣ ∣�(t)∣ −M

n∑

i=1

w̃ni(x)∣Ψ(Yi, t)− �(t)∣ >
(
1− "

2

)
∣�(t)∣ > 0 ,

which concludes the proof.

Proof of Theorem 3.3. This proof is a slight modification of Theorem 2 of [25] using Lemma
6.3 and working with w̃ni(x) = ∣wni(x)∣{

∑n
i=1 ∣wni(x)∣}−1 as in the proof of Proposition 6.2.

6.2 Proofs of the results in Section 4.

Proposition 6.3. (i) Assume that gn(x) converges to g(x) in probability as n→ ∞. Then, under

W1, W2, N1 to N4 we have that c
−1/2
n (gn(x) − g(x)) has the same asymptotic distribution as

c
−1/2
n

∑n
i=1 wni(x)Ψ(Yi, g(x))/�1(g(x)).

(ii) Let r2 be the function defined in B7, if

a) limn→∞ c
−1/2
n

∑n
i=1wni(x)r2(xi, g(xi)) = � and
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b) limn→∞ c
−1/2
n max ∣wni(x)∣ = 0

we have that c
−1/2
n

∑n
i=1 wni(x)Ψ(Yi, g(x))

w−→ N(�, �2(x)) , where �2(u) =
∫
Ψ2(y, g(x))dF (y, g(u)).

Proof. (i) Since �n(gn(x)) = 0, a second order Taylor’s expansion leads to

0 = c−1/2
n �n(g(x)) + c−1/2

n (gn(x)− g(x)) [�1n(g(x)) + (gn(x)− g(x)) �2n(�n)] ,

where �1n(t) =
∑n

i=1 wni(x)Ψ
′(Yi, t), �2n(t) =

∑n
i=1wni(x)Ψ

′′(Yi, t) and �n = �ngn(x)+(1−�n)g(x)
is an intermediate point.

W1, W2, N3 and N4 imply that �1n(g(x)) converges to �1(g(x)) in probability while N1, W1
and W2 ensure that �2n(�n) is bounded in probability since �n converges to g(x) in probability.
Thus, the conclusion is easily derived.

(ii) follows by applying Lindeberg’s central limit theorem.

Proof of Theorem 4.1. It is an immediate consequence of Proposition 6.3.

Proposition 6.4. Under W6, W7 and N6 we have that c
−1/2
n supy ∣Fn(y)−F (y, g(x))∣ = Op(1) ,

where Fn(y) =
∑n

i=1 wni(x)I(−∞,y](Yi).

Proof. From N6, we have that

c−1/2
n ∥Fn − F∥∞ ≤ c−1/2

n sup
y

∣∣∣∣∣

n∑

i=1

wni(x)[I(−∞,y](Yi)− F (y, g(xi)]

∣∣∣∣∣

+c−1/2
n L

n∑

i=1

∣wni(x)∣ ∣g(xi)− g(x)∣.

Thus, using W7, it is enough to show that c
−1/2
n supy

∣∣∣
∑n

i=1 wni(x)
[
I(−∞,y](Yi)− F (y, g(xi))

] ∣∣∣ =
Op(1), which follows easily using the transformation given in [31] (pp. 102-103) and the Marcus
and Zinn inequality (see [31] pp.820).

Proof of Theorem 4.2. Follows as in [7] using Proposition 6.4.
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