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Abstract

In many situations, data follow a generalized linear model in which the mean of the

responses is modelled, through a link function, linearly on the covariates. In this paper,

robust estimators for the regression parameter are considered when missing data occur

in the responses. The estimators turn out to be consistent under mild assumptions.

In particular, resistant methods for Poisson and Gamma models are introduced. A

simulation study allows to compare the behaviour of the classical and robust tests,

under different contamination schemes. The procedure is also illustrated analysing

some real data sets.
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1 Introduction

Nelder and Wedderburn (1972) introduced the generalized linear model,glm, which became

a very popular technique for modelling a wide variety of data as an alternative to the linear

model (see, McCullagh and Nelder, 1989). It assumes that the observations (yi,x
t
i ), 1 ≤

i ≤ n, xi ∈ ℝ
k, are independent with the same distribution as (y,xt) ∈ ℝ

k+1 such that the

conditional distribution of y∣x belongs to the canonical exponential family

exp {[y�(x)−B (�(x))] /A(�) + C(y, �)} ,

for known functions A, B and C. In this situation, if we denote by B′ the derivative of B,

the mean �(x) = E(y∣(x)) = B′ (�(x)) is modelled linearly through a known link function,

g, i.e., g(� (x)) = �(x) = xt�.

In this setting, the classical estimators are based on the minimization of the deviance,

which is equivalent to the maximum likelihood method. It is very well known that theses

procedures can be affected by anomalous observations. To overcome this problem, robust

procedures have been developed and among others we can cite the methods proposed by Ste-

fanski et al. (1986), Künsch et al. (1989), Bianco and Yohai (1996), Cantoni and Ronchetti

(2001, 2006), Croux and Haesbroeck (2003) and Bianco et al. (2005), see also, Maronna et

al. (2006). Even when developing robust methods for glm has been an active research area

in the last decades, all these methods were designed for complete data sets. However, in

practice, missing data can arise and hence these procedures are no longer a useful tool.

Indeed, missing responses may be introduced just by design, as it is the case of two-stage

studies, or simply by chance. In some cases the responders may refuse to answer, for instance

about some private issues, or the responses y’s may be an expensive measure to be obtained.

In other cases, missing data may be caused by some loss of information due to uncontrollable

factors or by failure on recording the correct information. In this paper we will focus our

3



attention on robust inference when the response variable has missing observations but the

covariate x is totally observed.

We introduce a robust procedure to estimate the parameter �, under a glm model,

which includes, when there are no missing data, the family of estimators previously studied.

The robust estimates of � are consistent under mild assumptions. The paper is organized

as follows. The robust proposal is given in Section 2, consistency results are provided in

Section 3. Two real data sets are analysed in Section 5 while the results of a Monte Carlo

study are summarized in Section 4. Proofs are relegated to the Appendix.

2 Robust inference

2.1 The robust estimators

Suppose we obtain a random sample of incomplete data
(
yi,x

t
i , �i

)
, 1 ≤ i ≤ n , of a

generalized linear model where �i = 1 if yi is observed, �i = 0 if yi is missing and (yi,xi) ∈
ℝ

k+1 are such that yi∣xi ∼ F (⋅, �i, �) with �i = H(xti �) and Var(yi∣xi) = A2(�)V 2(�i) =

A2(�)B′′ (�(xi)) with B′′ the second derivative of B. Let (�, �) ∈ ℝ
k+1 denote the true

parameter values and EF the expectation under the true model, thus EF (y∣x) = H(xt�).

In a more general situation, we will think of � as a nuisance parameter such as the tuning

constant for the score function to be considered.

Let (y,xt, �) be a random vector with the same distribution as
(
yi,x

t
i , �i

)
. As mentioned

in the Introduction our aim is to define the robust estimators of the regression parameter

when missing responses occur. For that purpose, an ignorable missing mechanism will be

imposed by assuming that y is missing at random (MAR), that is, � and y are conditionally

independent given x, i.e.,

P (� = 1∣(y,x)) = P (� = 1∣x) = p (x) . (1)
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Usually, it is assumed that infx p (x) > 0 which means that at any value of the covariate

response variables are observed. This assumption can be avoided by introducing a weight

function with bounded support at the cost of some loss of efficiency.

Let w1 : ℝk → ℝ be a weight function to control leverage points on the carriers x and

� : ℝ3 → ℝ a loss function. Define

Sn(b, t) =
1

n

n∑

i=1

�i�
(
yi,x

t
i b, t

)
w1(xi) , (2)

S(b, t) = EF

[
��
(
y,xtb, t

)
w1(x)

]
= EF

[
p(x)�

(
y,xtb, t

)
w1(x)

]
. (3)

Let us assume that w1(⋅) and �(⋅) are such that, S(�, �) = min
b

S(b, �), then in order to

estimate � one can minimize Sn(b, �) that provides, a consistent estimator of S(b, �). Note

that � plays the role of a nuisance parameter.

Throughout the paper, we will assume Fisher–consistency, i.e., that S(�, �) = min
b

S(b, �),

� being the unique minimum (see Remark 2.1 below). The estimators can thus be defined

as follows.

Let �̂ = �̂n be robust consistent estimators of � , the robust simplified estimator �̂ of the

regression parameter is defined as

�̂ = argmin
b

Sn(b, �̂ ) . (4)

When � is continuously differentiable, if we denote by Ψ (y, u, t) = ∂�(y, u, t)/∂u, � and

�̂ satisfy the differentiated equations S(1)(�, �) = 0 and S
(1)
n (b, �̂) = 0, respectively, where

S(1)(b, t) = EF

(
Ψ
(
y,xtb, t

)
w1(x)p(x)x

)
,

S(1)
n (b, t) =

1

n

n∑

i=1

�iΨ
(
yi,x

t
i b, t

)
w1(xi)xi .

When Sn(b, �̂ ) has only one critical point, i.e., when the equation S
(1)
n (b, �̂ ) = 0 has only

one root, corresponding to the minimum of Sn(b, �̂), the estimator �̂ can be computed using

a Newton–Raphson approach.
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To improve the bias caused in the estimation by the missing mechanism, robust propensity

score estimators may be considered using an estimator of the missingness probability. Denote

by p̂(x) any estimator of p(x). For instance, if we assume that the missingness probability

is given by the logistic model, i.e., that p(x) = Gl(x
t�0) where Gl(s) = (1 + e−s)−1 is

the logistic distribution function, we only need to estimate the parameter � to define the

estimator p̂(x). Let P = {q : ℝk → ℝ such that 0 < q(x) ≤ 1}, Sp,n : ℝk+1 ×P → ℝ and its

related functional Sp : ℝk+1 × P → ℝ as

Sp,n(b, t, q) =
1

n

n∑

i=1

�i
q(xi)

�
(
yi,x

t
i b, t

)
w1(xi) , (5)

Sp(b, t, q) = EF

[
�

q(x)
�
(
y,xtb, t

)
w1(x)

]
= EF

[
p(x)

q(x)
�
(
y,xtb, t

)
w1(x)

]
. (6)

The robust propensity score estimator �̂p is defined as

�̂p = argmin
b

Sp,n(b, �̂p, p̂) , (7)

where �̂p is a robust consistent estimator of � , possible different than the one previously

considered. Note that now � and q(x) play the role of nuisance parameters. Moreover,

it is worth noticing that Sp(b, t, p) = EF

[
�
(
y,xtb, t

)
w1(x)

]
, i.e., it corresponds to the

objective function when the sample contains no missing responses. Throughout the paper,

we will assume Fisher–consistency, i.e., that Sp(�, �, p) = min
b

Sp(b, �, p), � being the unique

minimum.

As above, when � is continuously differentiable, if we denote by Ψ (y, u, t) = ∂�(y, u, t)/∂u,

� and �̂ satisfy the differentiated equations S
(1)
p (�, �, p) = 0 and S

(1)
p,n(b, �̂ , p̂) = 0, respec-

tively, where

S
(1)
p (b, t, q) = EF

(
Ψ
(
y,xtb, t

)
w1(x)

p(x)

q(x)
x

)
,

S
(1)
p,n(b, t, q) =

1

n

n∑

i=1

�i
q(xi)

Ψ
(
yi,x

t
i b, t

)
w1(xi)xi .
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2.2 The loss functions used in the estimation procedure

Two classes of loss functions � have been considered in the literature. The first one aims

to bound the deviances, while the second one introduced by Cantoni and Ronchetti (2001)

bounds the Pearson residuals. For the sake of completeness, we recall their definition.

For families of distributions that can be transformed to avoid an extra parameter in the

model, the first class of loss function takes the form of

�(y, u, t) = �t[− ln f(y,H(u)) +D(y)] +G(H(u)) , (8)

where �t is a bounded nondecreasing function with continuous derivative 't, t being the

tuning constant and f(⋅, s) is the density of the distribution function F (⋅, s) with y∣x ∼
F
(
⋅, H

(
xt�

))
. To avoid triviality, it is assumed that �t is non–constant in a positive

probability set. Typically, �t is a function performing like the identity function in a neigh-

bourhood of 0. The function D(y) is typically used to remove a term from the log–likelihood

that is independent of the parameter, and can be defined as D(y) = ln (f(y, y)) in order to

get the deviance. The correction term G is used to guarantee the Fisher–consistency, and

satisfies

G′(s) =

∫
't[− ln f(y, s) + A(y)] f ′(y, s)d�(y)

= Es ('t[− ln f(y, s) + A(y)] f ′(y, s)/f(y, s)) ,

where Es indicates expectation taken under y ∼ F (⋅, s) and f ′(y, s) is shorthand for ∂ f(y, s)/∂s .

Note that, when considering generalized linear models, the maximum likelihood estimator

corresponds to the choice �(s) = s, D(y) = ln (f(y, y)), G(u) = 0 and w1 ≡ 1.

In a logistic regression setting A(�) ≡ 1 and the tuning constant does not need to be

estimated and, in order to guarantee existence of solution, Croux and Haesbroeck (2003)
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proposed using the score function

�c(s) =

⎧
⎨
⎩

s exp(−√
c) if s ≤ c

−2(1 +
√
s) exp(−√

s) + (2(1 +
√
c) + c) exp(−√

c) otherwise.

It is worth noting that, when considering the deviance and a continuous family of distri-

butions with strongly unimodal density function, the correction term G can be avoided, as

discussed in Bianco et al. (2005). For regression models with asymmetric errors, such as the

transformed Gamma model, � plays the role of the tuning constant depending on the shape

parameter of the Gamma distribution and so, initial estimators need to be considered. In

the case of the Poisson model � = 1.

The second class of loss functions is based on the proposal given by Cantoni and Ronchetti

(2001) for generalized linear models, where they consider a general class of M−estimators

of Mallows type, by bounding separately the influence of deviations on y and (x). Their

approach is based on robustifying the quasi–likelihood, which is an alternative to the gen-

eralizations given for generalized linear regression models by Stefanski et al. (1986) and

Künsch et al. (1989). Let r(y, �, �) = (y − �) / (V (�)A(�)) be the Pearson residuals with

Var (yi∣xi) = A2(�)V 2 (�i). Denote �(y, �, �) =  c (r(y, �, �))/ (V (�)A(�)), with  c an odd

nondecreasing score function with tuning constant c, such as the Huber function, and

�(y, u, t) = −
[∫ H(u)

s0

�(y, s, t)ds+G(H(u))

]
, (9)

where � is such that �(y, s, �) = 0. To ensure Fisher–consistency, the correction term G(s)

satisfies G′(s) = −Es (�(y, s, �)). For the Binomial and Poisson families, explicit forms of the

correction term G(s) are given in Cantoni and Ronchetti (2001). The classical counterpart

of this approach corresponds to the choice  c(u) = u, w1 ≡ 1.

Remark 2.1. The correction factor, denotedG(s), is included to guarantee Fisher–consistency

under the true model. Otherwise, one can only ensure that the estimators will be consistent
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to the solution �(F ) of the related functional equations, i.e., to �(F ) = argminb S(b, �)

where S(b, t) is defined in (3). On the other hand, as it is well known, when H(u) = u, i.e.,

under the linear regression model yi = xti � + �i, Fisher–consistency holds if, for instance,

the errors �i have a symmetric distribution and the score function  c is odd.

Under a logistic regression model, Fisher–consistency can easily be derived for the loss

function given by (8), when � satisfies the regularity conditions stated in Bianco and Yohai

(1996) and

P
(
xt� = �

)
< 1, ∀(�, �) ∕= 0 . (10)

Moreover, it is easy to verify that � is the unique minimizer of S(b, �) in this case. The

same assertion can be verified for the robust quasi–likelihood proposal if  c is bounded and

increasing.

As shown below, under a generalized regression model with the response having a gamma

distribution with a fixed shape parameter, Lemma 1 of Bianco et al. (2005) allows us to

derive Fisher–consistency for the regression parameter by taking conditional expectation, if

the score function � is bounded and strictly increasing on the set where it is not constant

and if (10) holds.

2.3 A particular case: The Poisson model

In the case of the Poisson distribution with parameter � the density can be written as

f(y, �) =

⎧
⎨
⎩

exp(−�)�y/y! y ∈ N ∪ {0}
0 in other case

with E�(y) = �, Var�(y) = � and so � = 1. Hence, �(y, u, �) given in (8) is

�(y, u, 1) = �(−y + y ln y +H(u)− y ln(H(u))) +G(H(u)), where

G′(t) = −'(t) exp(−t)−
∞∑

j=1

'(j ln j − j + t− j ln t)

(
t− j

t

)
exp(−t)tj/j! .
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In the particular case of the canonical link function, that is when log� = u, i.e. H(u) =

exp(u), we have that �(y, u, 1) = �(−y + y ln y +H(u)− yu+G(H(u)).

2.4 A particular case: The log–Gamma model

An important application among generalized linear models is the gamma distribution with

a log−link. This model is called log–gamma regression and is introduced in Chapter 8 of

McCullagh & Nelder (1983). We refer to Bianco et al. (2005) for a description on the robust

estimators based on deviances for complete data sets and to Heritier et al. (2009) for a

description on M−type estimators. For the sake of completeness, we will describe how to

adapt the estimators based on deviances to the situation with missing responses since this

will be the model used in our simulation study.

Denote by di(�, �) the deviance component of the i-th observation, i.e., di(�, �) = 2� d∗(yi,xi,�)

where

d∗(y,x,�) = −1− (log(y)− xt�) + y exp(−xt�).

Let us now assume that we are dealing with the situation in which some of the responses yi,

and so the transformed responses zi = log(yi), may be missing with �i = 1 if zi is observed,

�i = 0 if zi is missing and (zi,xi) ∈ ℝ
k+1 are such that zi = xti �+ui, where ui ∼ log(Γ(�, 1))

and ui and xi are independent. Moreover, � and z are conditionally independent given x,

i.e.,

P (� = 1∣(y,x)) = P (� = 1∣(u,x)) = P (� = 1∣x) = p (x) ,

and so � and u are independent. Besides, the density of u is g(u, �), where

g(u, �) =
� �

Γ(�)
exp(�(u− exp(u))) . (11)
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This density is asymmetric and unimodal with maximum at u0 = 0. Note that

d∗(y,x,b) = −1− (z − xtb) + exp(z − xtb)

= −1− (z − xt� + xt(� − b)) + exp(z − xt� + xt(� − b))

= −1− u− xt(� − b) + exp(u) exp(xt(� − b)) = d̃(u,x,� − b)

The maximum likelihood estimator, mle, of � is, thus, obtained as

�̂ml = argmin
b

n∑

i=1

�id
∗(yi,xi,b).

As described in Bianco et al. (2010) a three step procedure can be considered to compute

the estimators when missing responses are present.

∙ Step 1. We first compute an initial S−estimate �̃n and the corresponding scale

estimate �̂n taking b = 1
2
sup � with the complete data set. To be more precise, for

each value of b let �n(b) be the M−scale estimate of
√
d∗(yi,xi,b) given by

1∑n

i=1 �i

n∑

i=1

�i�

(√
d∗(yi,xi,b)

�n(b)

)
= b,

where � is Tukey’s bisquare function.

The S−estimate of � for the considered model is defined by

�̃n = argmin
b

�n(b) (12)

and the corresponding scale estimate by

�̂n = min
b

�n(b).

The functional related to this S−estimator is defined by �(F ) = argminb �(b). In

Lemma 2.1 will show that the functional is Fisher–consistent.
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Let u be a random variable with density (11) and write �∗(�) the solution of

EG

[
�

(√
ℎ(u)

�∗(�)

)]
= b,

where ℎ(u) = 1− u− exp(u). Note that since u and � are independent, we have that

�∗(�) = �(�,�). Similar arguments to those considered in Theorem 5 in Bianco et

al. (2005) allow to show that under mild conditions �̃n

a.s.−→ � and that �̂n
a.s.−→ �∗(�).

As mentioned above �∗(�) is a continuous and strictly decreasing function and so,

an estimator of � can be defined as �̂n = �∗−1(�̂n) leading to a a strongly consistent

estimator for � .

∙ Step 2. In the second step, we compute �̂n = �∗−1(�̂n) and

ĉn = max(�̂n, Ce(�̂n)) = max(�̂n, Ce(�
∗−1(�̂n)) .

We then have that ĉn
p−→ c0 = max{�∗(�), Ce(�)}.

∙ Step 3. Let �̂gm,n be the adaptive GM−estimator of � defined by

�̂gm,n = argmin
b

n∑

i=1

�i�
(√

d∗(yi,xi,b)/ĉn

)
w1(xi), (13)

Lemma 2.1. If score function � is bounded and strictly increasing on the set where it is

not constant and if (10) holds, we have that the functional defined as �(F ) = argmin
b
�(b)

is Fisher–consistent.

Propensity score estimators are defined in an analogous way.

3 Consistency results

As mentioned in Heritier and Cantoni (1994), under Fisher–consistency and N1 to N5, stan-

dard arguments allow to show that both the simplified and the propensity score estimators

12



introduced in Section 2.1 are consistent (see Huber, 1981, for instance). For the sake of

completeness, we state here these results.

N1 The functions w1(x) and w1(x)∥x∥ are bounded.

N2 �(y, u, v) is a continuous function.

N3 The class of functions ℱ = {fb,� (y,x, �) = ��
(
y,xtb, t

)
w1(x)x, t ∈ ℝ,b ∈ ℝ

k} has

has finite bracketing number, N[ ] (�,ℱ , L1(P )) < ∞, for any 0 < � < 1, where P is

the distribution of (y1,x1) or that logN (�,ℱ , L1(Pn)) = oP (n) with Pn the empirical

distribution.

N4 infx∈Sw1
∩Sx

p(x) = A > 0, where Sw1
and Sx stand for the support of w1 and x,

respectively.

N5 The estimators p̂(x) of p(x) satisfy either a) or b)

a) sup
x∈Sw1

∩Sx

∣p̂(x)− p(x)∣ a.s.−→ 0 or

b) p(x) = p�(x) = Gp(x
t�) for some continuous function Gp : ℝ → (0, 1] with

bounded variation and p̂(x) = p
�̂
(x) where �̂

a.s.−→ �.

N6. The function Sp(b, t, p) satisfies the following equicontinuity condition:

a) under N5a), for any � > 0 there exists � > 0 such that for any t1, t2 ∈ K, a

compact set in ℝ,

∣t1 − t2∣ < � ⇒ sup
b∈ℝk

∣Sp(b, t1, p)− Sp(b, t2, p)∣ < � .

b) under N5b), for any � > 0 there exists � > 0 such that for any t1, t2 ∈ K and

�1,�2 ∈ K, compact sets in ℝ and ℝ
k, respectively.

∣t1 − t2∣ < � and ∥�1 − �2∥ < � ⇒ sup
b∈ℝk

∣Sp(b, t1, p�1
)− Sp(b, t2, p�2

)∣ < � .
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Proposition 3.1. Assume that N1 to N6 hold, then �̂p

a.s.−→ �.

The proof of Proposition 3.1 can be found in the Appendix. Using similar arguments,

we can obtain the following result.

Proposition 3.2. Assume that N1, N2 and N3 hold, then �̂
a.s.−→ �.

Remark 3.1. Assumptions N1 and N2 are standard requirements since they state that the

weight function control large values of the covariates and that the score function bound large

residuals, respectively. Note that N6 holds if Ψ
(
y,xtb, t

)
and w1(x)∥x∥ are bounded, which

holds for the usual functions considered in robustness. Note that if w1 has compact support,

as it is the case for the Tukey weight function, N4 holds for any continuous missingness

probability such that p(x) > 0. This includes, for instance, a logistic model for p(x). On

the other hand, if Sx = ℝ
k and w1 ≡ 1, i.e., if high leverage points are not downweighted,

N4 restricts the family of missing probabilities to be considered.

4 Monte Carlo Study

4.1 Gamma Regression Model

The gamma regression model considered was

yi∣x ∼ Γ(�, �(x)) with �(x) = �1x1i + �2x2i + �3, i = 1, ..., n, (14)

with � = 3, �1 = �2 = �3 = 0 and (x1i, x2i) ∼ N(0, I). We considered two different values

for the shape parameter: � = 1 and � = 3. The sample size was n = 100 and the number of

Monte Carlo replications was K = 1000.

To compare the behaviour of the estimators, we consider samples that do not contain

outliers and samples contaminated with � = 5% outliers. In the contaminated samples, the
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outliers are all equal, say (y0,x0). Since the magnitude of the effect of these outliers depends

on x10 and x20 only throughout x210 + x220, without loss of generality they were taken of the

form (y0,x0) with x0 = (x0, 0, 1) and y0 = exp(m x0). The value m represents the slope of

the outliers observations. We chose three values of x0 corresponding to low leverage outliers

with x0 = 1, moderate leverage outliers with x0 = 3 and high leverage outliers with x0 = 10.

As values for m we considered m = 0.5 and 2.5. These contaminations are denoted Cm,x0
.

We have also considered an intermediate contamination C1 by replacing 5 observation by

(y0,x
★
0) where x★

0 = (2.5, 2.6, 1)t and y0 = exp(1) and an extreme contamination C2 by

replacing 5 observation by (y0,x
★
0) where x★

0 = (4, 4, 1)t and y0 = exp(1).

The robust estimators were computed as described in Section 2.4. For the weighted

estimators, we used the Tukey’s bisquare weight function with tuning constant c = �2
k,0.95.

The weights were computed over the robust Mahalanobis distances based on an S−estimator

with breakdown point 0.25 using 500 subsamples. From now on, we denote by �̂ml, �̂bgy,

�̂tuk, the maximum likelihood estimators, the estimators related to those defined in Bianco

et al. (2005), i.e., with w1 ≡ 1, and their weighted version with Tukey’s weights, respectively.

The propensity score estimators will be denoted as �̂p,ml, �̂p,bgy, �̂p,tuk, respectively.

We considered four models for the missing probability

∙ p ≡ 1

∙ p ≡ 0.8, missing completely at random

∙ p(x) = 0.4 + 0.5(cos(xt�+ 0.4))2 with � = (2, 2)t.

∙ p(x) = 1/(1 + exp(−xt� − 2)) with � = (2, 2)t, i.e., a logistic model for the missing

probability.

Due to the skewness of the distribution of the norm, Figures 18 to ?? give the adjusted

boxplots (see Hubert and Vandervieren, 2008) of ∥�̂ − �0∥2. As expected, under C0 the
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classical or robust estimators perform quite similarly, under all the missing schemes. As

expected, the simplified methods perform better than the propensity ones when considering

a logistic missing probability. For large values of m and/or x0, the classical estimator is

meaningless. On the other hand, the estimators defined in Bianco et al. (2005) show their

sensitivity to moderate outliers (m = 0.5 and x0 = 3) and also for extreme outliers when

considering a logistic missingness model. Their weighted version are stable with respect to

all the contaminations considered.

4.2 Poisson Regression Model

We consider the Poisson regression model with the canonical link function, that is

yi∣x ∼ P(�(x)) with log(�(x)) = �0 + �1x1i, i = 1, ..., n, (15)

x1i ∼ N(0, 1). The sample size was n = 100 and the number of Monte Carlo replications

was K = 500.

We follow a similar scheme as in Bergesio and Yohai (2010). In order to compare the

behaviour of the estimators, we consider samples that without outliers and samples contam-

inated with � = 10% outliers, where the outlying points, (y0, x0), are all equal and x0 = 2.5

and y0 = 20, which gives an expected value of marginal expectation of Y equal to 2.718.

We considered four models for the missing probability

∙ p ≡ 1

∙ p ≡ 0.8, missing completely at random

∙ p(x) = 1/(1 + exp(−2x − 2)), i.e., a logistic model for the missing probability, which

gives a probability of missing equal to 0.999089 at x0.

∙ p(x) = 0.7+0.2(cos(2x+0.4))2, which gives a probability of missing equal to 0.780567

at x0.
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For the weighted estimators, we used the Tukey’s bisquare weight function with tuning

constant c = �2
1,0.975. The weights were computed over the robust Mahalanobis distances

based on the median and the MAD. As before, we denote by �̂ml, �̂bgy, �̂tuk, the

maximum likelihood estimators, the estimators obtained with w1 ≡ 1, and their weighted

version with Tukey’s weights, respectively. The propensity score estimators will be denoted

as �̂p,ml, �̂p,bgy, �̂p,tuk, respectively.

5 Examples

5.1 Leukemia Data

The data of Feigl and Zelen (1965) present the survivorship of 33 patients of acute myeloge-

nous leukemia divided in two groups, that correspond to a factor variable AG which classifies

the patients as positive or negative depending on the presence or absence of a morphological

characteristic in the white cells. The original data are time at death and also the white

blood cells count WBC, which is a useful tool for diagnosing the initial condition of the

patient, indeed higher counts seem to be associated with more severe conditions. Bianco et

al. (2005) fit, to the complete data set, the model

log(yi) = �1WBCi + �2AGi + �3 + ui,

where ui has log Γ(�0, 1) distribution through their bgy–estimator. The QQ-plot of the

residuals of the bgy-estimate computed by Bianco et al. (2005) reveals four clear outliers

corresponding to patients with very high values of WBC who survived more than expected.

Denote by �̂ml, �̂bgy and �̂tuk the ml–estimates and the two robust estimates bgy

and tuk–estimates computed with all the data, respectively. Besides, �̂
−{4out}

ml stands for

the ml-estimator applied to the sample without the four outliers. Table 1 contains the

values of these estimators. In this case, since AG is a factor variable, when computing the
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weighted estimators with the Tukey’s bisquare function, �̂tuk, the weights w1(x) were based

only on the variable WBC and the tuning constant was chosen as c = �2
1,0.95. The robust

Mahalanobis distance ofWBC equals in this case ∣WBCi−mediani(WBCi)∣/mad(WBCi).

To evaluate the performance of the proposed estimators for incomplete data sets, we in-

troduced artificially missing data to this example and we took the above analysis as a natural

counterpart. Missing responses among the non–outlying points were introduced at random

according to two missing schemes, a completely at random situation with p(x) = 0.9 and a

missing at random case with logistic probability of missing p(x) = 1/(1+exp(0.2WBC−4)).

In this way, for the logistic case, 8 responses (almost 25% of the data) result in missing ob-

servations. The analysis was repeated for each of the obtained samples. In Table 2 we

summarize the corresponding results. Different conclusions are derived depending on the

missing scheme. As expected, when missing responses occur completely at random, analo-

gous results to those obtained with the complete data set are obtained. On the other hand,

for the incomplete sample obtained through a logistic missingness probability, the estimators

�̂ml and �̂bgy take similar values. Besides, if the 4 identified outlying observations were

removed from this incomplete sample, the three estimators would lead to similar results than

those obtained for the situation with no missing responses. These results show the advantage

of introducing weights as a useful tool to prevent from outlying points even under different

missing schemes.

5.2 Hospital Costs Data

Marazzi and Yohai (2004) introduced a data set that corresponds to the costs of 100 patients

in a Swiss hospital in 1999 for medical back problems. They concerned on the relationship

between the hospital cost of stay, y, (Cost, in Swiss francs) and some administrative ex-

planatory variables:
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Estimated Coefficients

�̂ml �̂
−{4out}
ml �̂bgy �̂tuk

WBC
1000

-0.007 -0.051 -0.051 -0.0895

AG -1.101 -1.574 -1.802 -1.5096

Intercept 4.227 4.795 4.849 5.1007

Table 1: Analysis of Feigl & Zelen data. Complete data set.

Estimated Coefficients

�̂ml �̂bgy �̂tuk

p(x) = 0.9

WBC
1000

-0.008 -0.050 -0.0842

AG -0.974 -1.469 -1.3642

Intercept 4.333 4.841 5.0547

p(x) = 1/(1 + exp(0.2WBC − 4))

WBC
1000

-0.0012 -0.0004 -0.1210

AG -1.3718 -1.4371 -1.4315

Intercept 4.4432 4.5055 5.2617

Table 2: Analysis of Feigl & Zelen data with missing responses.
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Variable Description

LOS length of stay in days

ADM admission type (0 = planned; 1 = emergency)

INS insurance type (0 = regular; 1 = private)

AGE years

SEX 0 = female 1 = male

DEST discharge destination (1 = home; 0 = other)

Table 3: Explanatory Variables for Hospital Costs Data.

Cantoni and Ronchetti (2006) fitted to the complete data set the model

log(yi) = �1 logLOSi + �2ADMi + �3INS + �4AGE + �5DEST + �6 + ui,

where ui has log Γ(�0, 1). Using their robust proposal, they identified 5 outliers corresponding

to observations labelled as 14, 21, 28, 44 and 63, whose weights are less or equal than 0.5.

They realized that the atypical points affected the classical estimates of the coefficient of

variable INS and the shape parameter. In particular, the effect of the outliers on the shape

parameter is remarkable since it achieved almost half the value obtained with the robust

method.

As in the previous example, we compute �̂ml, �̂bgy and �̂tuk to the complete data set

and the maximum likelihood estimator without the 5 outlying observations, �̂
−{5out}
ml and

the corresponding estimators of the shape parameter � . Table 4 summarized the obtained

estimators. The obtained results are analogous to those obtained by Cantoni and Ronchetti

(2006). Moreover, the value of �̂
−{5out}
ml and the related estimator of � are very similar

to those obtained with our robust proposal, showing its good performance in presence of

outliers. and those obtained using �̂tuk. In Figure 1 we show on the left the residuals

corresponding to the fit obtained with the robust estimator in Cantoni and Ronchetti (2006)

and on the right those based on �̂tuk. On both plots we identify the outliers detected by
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each of the methods, in the case of �̂tuk we label those residuals with absolute value greater

than 0.40.

log gamma quantiles
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Figure 1: On the left Log–gamma residuals based on the robust estimator in Cantoni and Ronchetti (2006)

and on the right those based on �̂tuk

In a first stage, completely missing at random responses among the non atypical ob-

servations detected by Cantoni and Ronchetti (2006) were introduced with a probability

p(x) = 0.85 and then we repeat the study. In Table 5 we report the obtained results. It is

worth noticing that both robust estimators remain very stable and very close to the values

obtained with �̂
−{5out}
ml , which we take as a natural counterpart. Besides, the estimator of

� obtained from �̂tuk is almost the same to the one obtained with the complete sample,

while the estimate computed from �̂bgy changes and decreases to this value when missing

observations are introduced.

In a second stage, a missing at random mechanism based on the logistic probability

p(x) = 1/(1 + exp(0.2 logLOS − 2)) was implemented in the same way and it results in

about 20% of missing responses. Again, the study was repeated and we show in Table 5 the

obtained results. Comparing with the counterpart estimates based on �̂
−{5out}
ml , we observe
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Estimated Coefficients

�̂ml �̂
−{5out}
ml �̂bgy �̂tuk

logLOS 0.8218 0.8473 0.8640 0.8892

ADM 0.2132 0.2151 0.2576 0.2375

INS 0.0960 -0.0235 -0.0523 -0.0437

AGE -0.0005 -0.0015 -0.0009 -0.0010

SEX 0.0954 0.0706 0.0489 0.0739

DEST -0.1040 -0.1413 -0.1024 -0.1225

Intercept 7.2331 7.2764 7.1796 7.1268

�̂ 20.1876 44.2838 48.9791 41.1086

Table 4: Analysis of Hospital Costs data.

that all the estimates based on �̂tuk remain very stable and close to these values, while

the maximum likelihood estimates and the estimates based on �̂bgy are farther away; in

particular, the estimators of the coefficient of INS and � .

As in the previous example, we can see the benefits of introducing weights in order to

avoid the effect of high leverage outlying data in the presence of missing responses.

6 Concluding Remarks

We have introduced resistant estimators for the regression parameter under a generalized

regression model, when there are missing observations in the response variable and it can be

suspected that anomalous observations are present in the sample. The estimators considered

are Fisher–consistent and thus, lead to strongly consistent estimators.

The simulation study confirms the expected inadequate behaviour of the classical estima-

tors and the sensitivity of the unweighted robust estimators in the presence of mild outliers.
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Estimated Coefficients

�̂ml �̂bgy �̂tuk

p(x) = 0.85

logLOS 0.8168 0.8287 0.8528

ADM 0.2216 0.2473 0.2271

INS 0.1025 -0.0238 -0.0206

AGE -0.0002 -0.0004 -0.0005

SEX 0.1078 0.0716 0.0862

DEST -0.1004 -0.1247 -0.1374

Intercept 7.2089 7.2342 7.1915

�̂ 18.9617 41.9101 41.1490

p(x) = 1/(1 + exp(0.2 logLOS − 2))

logLOS 0.8048 0.8194 0.8500

ADM 0.1891 0.2087 0.1852

INS 0.1487 -0.0021 -0.0106

AGE -0.0010 -0.0014 -0.0012

SEX 0.0905 0.0711 0.0906

DEST -0.0998 -0.1214 -0.1518

Intercept 7.3009 7.3259 7.2672

�̂ 17.3636 35.2136 41.8678

Table 5: Analysis of Hospital Costs data with missing responses.
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The proposed robust procedures for the regression parameter perform quite similarly under

the central model or under the contaminations studied.

7 Appendix

Proof of Lemma 2.1. Note that if we define �(�,b) as the M−scale functional solution

of

EF

(
��

(√
d∗(y,x,b)

�(�,b)

))

E(�)
= b,

using the independence between � and u, we have that

EF

(
��

(√
d∗(y,x,b)

�(�,b)

))

E(�)
=

EF

⎛
⎝p(x)�

⎛
⎝

√
d̃(u,x,� − b)

�(�,b)

⎞
⎠
⎞
⎠

E(p(x))
.

Note that �(�,b)is a function of �−b. Using Lemma 1 in Bianco et al. (2005), we get that

for any fixed c

EF

⎛
⎝��

⎛
⎝

√
d̃(u,x,� − b))

c

⎞
⎠
∣∣∣x

⎞
⎠ = p(x)EF

⎛
⎝�

⎛
⎝

√
d̃(u,x,� − b))

c

⎞
⎠
∣∣∣x

⎞
⎠

≥ EF

⎛
⎝��

⎛
⎝

√
d̃(u,x, 0)

c

⎞
⎠
∣∣∣x

⎞
⎠ (16)

Using (16), we get that for any b ∕= �

EF

⎛
⎝��

⎛
⎝

√
d̃(u,x, 0)

�(�,b)

⎞
⎠
∣∣∣x

⎞
⎠ < EF

⎛
⎝��

⎛
⎝

√
d̃(u,x,� − b))

�(�,b)

⎞
⎠
∣∣∣x

⎞
⎠ = bE(p(x))

Using that EF

(
��

(√
d̃(u,x, 0)/�

))
is decreasing in � and that EF

(
��

(√
d̃(u,x, 0)/�(�,�)

))
=

bE(p(x)), we get that �(�,�) < �(�,b), which implies the Fisher–consistency of the func-

tional.
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Proof of Proposition 3.1. We will show that Sp,n(�̂, �̂ , p̂) − Sp,n(�̂, �, p)
a.s.−→ 0. Note

that E (Sp,n(b, t, q)) = Sp(b, t, q)

Let us first assume that N5b) holds then, using standard empirical process arguments,

from N3, we have that

Vn = sup
b,t,�

∣∣∣∣∣
1

n

n∑

i=1

�i
Gp(xti �)

�(yi,x
t
i b, t)w1(xi)− E

(
�i

Gp(xti �)
�(yi,x

t
i b, t)

)
w1(xi)

∣∣∣∣∣
a.s.−→ 0 .

Therefore, since p̂(x) = p�(x) = Gp(x
t�), we get

sup
b

∣Sp,n(b, �̂ , p̂)− Sp,n(b, �, p)∣ ≤ sup
b

∣Sp,n(b, �̂ , p̂)− Sp(b, �̂ , p̂)∣+ sup
b

∣Sp(b, �̂ , p̂)− Sp(b, �, p)∣

+ sup
b

∣Sp,n(b, �, p)− Sp(b, �, p)∣

≤ 2Vn + sup
b

∣Sp(b, �̂ , p̂)− Sp(b, �, p)∣

Using the equicontinuity of Sp(b, �, p) and the consistency of �̂ and �̂, we get that, when

N5b) holds, sup
b
∣Sp,n(b, �̂ , p̂)− Sp,n(b, �, p)∣ a.s.−→ 0.

Under N5a), we obtain easily from N1 and N2 that Sp,n(�̂, �̂ , p̂) − Sp,n(�̂, �̂ , p)
a.s.−→ 0.

Again, using standard empirical process arguments, from N3, we have that

Vn = sup
b,t

∣∣∣∣∣
1

n

n∑

i=1

�i
p(xi)

�(yi,x
t
i b, t)w1(xi)− E

(
�i

p(xi)
�(yi,x

t
i b, t)

)
w1(xi)

∣∣∣∣∣
a.s.−→ 0 ,

which implies that

sup
b

∣Sp,n(b, �̂ , p)− Sp,n(b, �, p)∣ ≤ sup
b

∣Sp,n(b, �̂ , p)− Sp(b, �̂ , p)∣+ sup
b

∣Sp(b, �̂ , p)− Sp(b, �, p)∣

+ sup
b

∣Sp,n(b, �, p)− Sp(b, �, p)∣

≤ 2Vn + sup
b

∣Sp(b, �̂ , p)− Sp(b, �, p)∣

and so, using the consistency of �̂ and the equicontinuity of Sp(b, �, p), we obtain that, when

N5a) holds, sup
b
∣Sp,n(b, �̂ , p̂)− Sp,n(b, �, p)∣ a.s.−→ 0.
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Therefore, Sp,n(�̂, �̂ , p̂)−Sp,n(�̂, �, p)
a.s.−→ 0 and so the sequence of estimators �̂ satisfies

that infb Sp,n(b, �, p) − Sp,n(�̂, �, p)
a.s.−→ 0 and so, the results from Huber (1967) can be

applied.
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Figure 2: Boxplots for complete samples: p ≡ 1

29



Samples without outliers
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Figure 3: Boxplots for uncontaminated samples for different missing patterns: simplified estimators
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Samples with 10% of outliers
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Figure 4: Boxplots for contaminated samples for different missing patterns: simplified estimators
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Samples without outliers
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Figure 5: Boxplots for uncontaminated samples for different missing patterns: propensity estimators
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Samples with 10% of outliers
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Figure 6: Boxplots for contaminated samples for different missing patterns: propensity estimators
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Figure 7: Boxplots p ≡ 0.8 without of outliers
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Figure 8: Boxplots p ≡ 0.8 with 10% of outliers
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Figure 9: Boxplots p(x) = 1/(1 + exp(−2x− 2)) without of outliers
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Figure 10: Boxplots p(x) = 1/(1 + exp(−2x− 2)) with 10% of outliers
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Figure 11: Boxplots p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 without of outliers

Intercept slope

-0
.5

0.
0

0.
5

1.
0

ML BGY TUK

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

ML BGY TUK

Figure 12: Boxplots p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 with 10% of outliers
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Figure 13: Boxplots p(x) = 1/(1 + exp(−2x− 2)) without of outliers
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Figure 14: Boxplots p(x) = 1/(1 + exp(−2x− 2)) with 10% of outliers
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Figure 15: Boxplots p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 without of outliers
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Figure 16: Boxplots p(x) = 0.7 + 0.2(cos(2x+ 0.4))2 with 10% of outliers
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Figure 17: Boxplots p(x) = 1/(1 + exp(−2x− 2)) without of outliers
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Figure 18: Adjusted boxplots for ∥�̂ − �
0
∥2 under the Gamma model when � = 1, c = �2

p,0.95, p(x) = 1.
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Figure 19: Adjusted boxplots for ∥�̂ − �
0
∥2 under the Gamma model when � = 1, c = �2

p,0.95, p(x) = 0.8.
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Figure 20: Adjusted boxplots for ∥�̂ − �0∥2 under the Gamma model when � = 1, c = �2

p,0.95, p(x) = 1/(1 + exp(−�
t
x− 2))

with � = (2, 2)t.
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Figure 21: Adjusted boxplots for ∥�̂−�0∥2 under the Gamma model when � = 1, c = �2

p,0.95, p(x) = 0.4+0.5(cos(�tx+0.4))2

with � = (2, 2)t.
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Figure 22: Adjusted boxplots for ∥�̂ − �
0
∥2 under the Gamma model when � = 3, c = �2

p,0.95, p(x) = 1.
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Figure 23: Adjusted boxplots for ∥�̂ − �
0
∥2 under the Gamma model when � = 3, c = �2

p,0.95, p(x) = 0.8.
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Figure 24: Adjusted boxplots for ∥�̂ − �0∥2 under the Gamma model when � = 3, c = �2

p,0.95, p(x) = 1/(1 + exp(−�
t
x− 2))

with � = (2, 2)t.
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Figure 25: Adjusted boxplots for ∥�̂−�0∥2 under the Gamma model when � = 3, c = �2

p,0.95, p(x) = 0.4+0.5(cos(�tx+0.4))2

with � = (2, 2)t.
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Figure 26: Adjusted boxplots for ∥�̂ − �
0
∥2 when considering the robust estimators, under the Gamma model when � = 3,

c = �2

p,0.95, when m = 2.5.
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