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Abstract

Under normality, Flury and Schmid [15] investigated the asymptotic properties of the quadratic
discrimination procedure under hierarchical models for the scatter matrices, that is, (i) arbitrary
scatter matrices, (ii) common principal components, (iii) proportional scatter matrices and (iv)
identical matrices. In this paper, we study the properties of robust quadratic discrimination
rules based on robust estimates of the involved parameters. Our analysis is based on the partial
influence functions of the functionals related to these parameters allows to derive the asymptotic
variances of the estimated coefficients under models (i) to (iv). From them, we conclude that
the asymptotic variances verify the same order relations as those obtained by Flury and Schmid
[15] for the classical estimators. We also perform a MonteCarlo study for different sample sizes
and different hierarchies which shows the advantage of using robust procedures over classical
ones, when anomalous data are present. It also confirms that better rates of misclassification
can be achieved if a more parsimonious model among all the correct ones is used instead of the
standard quadratic discrimination.
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1 Introduction

Assume that we are dealing with independent observations from two independent samples in IRp

with location parameter µi and dispersion/covariance matrix Σi, i = 1, 2. It is usual in multivariate
analysis to treat the dispersion/covariance matrices Σ1 and Σ2 as unrelated if an overall test of
equality tells us that they are not identical. As mentioned in Flury [14] “In contrast to the univariate
situation, inequality is not just inequality - there are indeed many ways in which covariance matrices
can differ”. He considered the following general relations among scatter matrices

• Level 1. Σ1 6= Σ2.

• Level 2. The matrices satisfy a common principal component (cpc) model, i.e., Σi = βΛiβ
t,

i = 1, 2, where β =
(
β1, . . . ,βp

)
is the orthogonal matrix of the common eigenvectors and

Λi = diag(λi1, . . . , λip) are diagonal matrices containing the eigenvalues for each population.

• Level 3. The matrices are proportional to each other, i.e., Σ2 = ρ2Σ1, with ρ2 the propor-
tionality constant.

• Level 4. Σ1 = Σ2.

Without considering the location parameters, the number of parameters for each level is p(p + 1),
2p + p(p − 1)/2, 1 + p(p + 1)/2 and p(p + 1)/2, respectively. The difference between the number of
parameters in level 1 and 4 is p(p+1)/2 which can be too large in practice, especially when dealing
with high dimensional data.

As most classical estimators, which are optimal under normality assumptions, the linear and
quadratic discriminant rules, i.e., the optimal classification rules under level 4 and 1, respectively,
are not robust due to the lack of robustness of the sample covariance matrix and so the misclassifi-
cation rates can be affected by anomalous observations. To solve this problem robust alternatives
to the sample mean and covariance matrix were plugged into the classification rule, see for instance,
Campbell [7], Lachenbruch [20], Critchley and Vitiello [8], Fung [17], Fung [18], Croux and Dehon
[9] and Croux and Joossens [10]. The aim when seeking for robust estimators of location and scatter
is to estimate the location and the shape parameters, (µ,Σ), assuming that the distribution F of
x is approximately known. To be more precise, it is often assumed that x = µ + Σ1/2z where the
distribution G of z belongs to some neighborhood of a given distribution G0. When x has an ellipti-
cally symmetric distribution F , i.e, when the distributions of the neighborhood are restricted to be
sphericallly symmetric, the robust location functional equals µ while the robust scatter functional
is proportional to Σ. Usually, these scatter functionals are calibrated so that under the central
normal model they provide Fisher–consistent estimators of the covariance matrix. A discussion
regarding the estimation of multivariate location and scatter can be found in Maronna, Martin and
Yohai [22].

From now on, we will assume that (xij)1≤j≤ni,1≤i≤2 are independent observations from two
independent samples in IRp, identically distributed within each sample, following a general multi-
variate location–dispersion distribution Fi with location parameter µi and scatter matrix Σi that
do not need to be equal to the population mean and covariance matrix, since we do not assume
the existence of second moments as in the classical setting. Let us denote by Xi = (xi1, . . . ,xini),
N = n1 + n2 and τi = ni/N . As in the one–population setting, we want to include the situation in
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which the distribution Fi of xi1 is only approximately known. To be more precise, let Σi be sym-
metric positive definite matrices. As discussed above, we will thus assume that xi1 = µi + Σ1/2

i zi1

where the distribution Gi of zi1 belongs to a neighborhood of the central target model G0 that is
often taken as the multivariate standard normal distribution.

As noted by Flury and Schmid [15], the reason for studying cpc discrimination and proportional
discrimination is that if one of the restricted levels 2 to 4 holds, estimating Σi under suitable
constraints should improve the estimation, leading to more stable estimates than those obtained
under level 1. This suggests that better rates of misclassification can be achieved if the most
parsimonious among all the correct models is used for discrimination. It is expected that the
same lack of robustness observed for the linear and quadratic rules, will be inherited by cpc and
proportional discrimination. For these reasons, in this paper, we go further and we will deal with
robust discrimination involving levels 2 and 3.

This paper is organized as follows. In Section 2, we review different robust estimators leading
to the robust discrimination rules under levels 1 to 4. In Section 3, we derive the partial influence
functions of the coefficients under all the levels of the hierarchy, while in Section 4, we compute the
asymptotic variances of the coefficients and we compare them across all correct models in a given
situation. Finally, in Section 5 we present the results of a simulation study. Proofs are given in the
Appendix.

2 Robust Discrimination

Let us assume that (xij)1≤j≤ni,1≤i≤2 are independent observations from two independent samples
in IRp with location parameter µi and scatter matrix Σi. Let N = n1 + n2, τi = ni/N and
Xi = (xi1, . . . ,xini).

When the two populations have a normal distribution, optimal classification of a new obser-
vation x into one of the two populations is based on the quadratic function Q(x) = xt∆x +
αtx + ξ, where ∆ = (1/2)

(
Σ−1

2 −Σ−1
1

)
, α = Σ−1

1 µ1 − Σ−1
2 µ2 and ξ = (1/2) log (|Σ2|/|Σ1|) +

(1/2)
(
µt

2 Σ−1
2 µ2 − µt

1 Σ−1
1 µ1

)
. Future observations are classified in the first population if Q(x) >

log (π2/π1) where π1 and π2 = 1 − π1 are the prior probabilities that an observation belongs to
group 1 or 2, respectively.

If the two populations have the same scatter matrix, the quadratic function becomes the Fisher’s
linear discrimination rule, which is optimal in the sense of minimizing the total probability of
misclassification.

In practical situations, the parameters of the two populations are unknown and must be es-
timated, yielding to estimates of the quadratic, linear and constant coefficients ∆, α and ξ, re-
spectively. In this paper, we study some aspects of quadratic discrimination coefficients if Σ1 and
Σ2 are robustly estimated under the levels described above. In all four situations, the location
parameters are estimated through robust equivariant location estimators µ̂i, i = 1, 2.

Denote by Vi robust affine equivariant scatter estimators of Σi, using only the observations of
the i−th sample. From these initial scatter matrices estimators, one can construct parsimonious
robust estimators of Σi, according to the assumed hierarchical model.
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More precisely, under level 1, ∆, α and ξ are estimated through




∆̂dif = 1
2

(
V−1

2 −V−1
1

)

α̂dif = V−1
1 µ̂1 −V−1

2 µ̂2

ξ̂dif = 1
2 log

( |V2|
|V1|

)
+ 1

2

(
µ̂t

2 V−1
2 µ̂2 − µ̂t

1 V−1
1 µ̂1

)
.

(1)

On the other hand, a basic common structure, described as level 2 in the Introduction, assumes that
the two scatter matrices have different eigenvalues but identical eigenvectors, i.e., Σi = βΛiβ

t,
i = 1, 2, where Λi are diagonal matrices and β is the orthogonal matrix of the common eigenvectors.

Denote β̂cpc, and Λ̂cpc,i = diag
(

β̂
t
cpcViβ̂cpc

)
the robust plug–in estimators of the common

directions and of the eigenvalue matrices Λi related to the scatter estimates Vi, defined in Boente
and Orellana [2] and studied in Boente, Pires and Rodrigues [4]. In this setting, define Σ̂cpc,i =

β̂cpcΛ̂cpc,i β̂
t
cpc, then, ∆, α and ξ are estimated through




∆̂cpc = 1
2

(
Σ̂

−1
cpc,2 − Σ̂

−1
cpc,1

)

α̂cpc = Σ̂
−1
cpc,1 µ̂1 − Σ̂

−1
cpc,2 µ̂2

ξ̂cpc = 1
2 log

(
|Σ̂cpc,2|
|Σ̂cpc,1|

)
+ 1

2

(
µ̂t

2 Σ̂
−1
cpc,2 µ̂2 − µ̂t

1 Σ̂
−1
cpc,1 µ̂1

)
.

(2)

Under the proportional model described in level 3, the common eigenvalues, the proportionality
constant and the eigenvalues of the first population can be robustly estimated as described in Boente
and Orellana [3]. Denote β̂pr and Λ̂pr,1 and ρ̂2 the robust plug–in estimators of the parameters.

Therefore, if we denote Σ̂pr,1 = β̂prΛ̂pr,1 β̂
t
pr and Σ̂pr,2 = ρ̂2Σ̂pr,1, we have that ∆, α and ξ are

estimated through




∆̂pr = 1
2

(
Σ̂

−1
pr,2 − Σ̂

−1
pr,1

)

α̂pr = Σ̂
−1
pr,1µ̂1 − Σ̂

−1
pr,2µ̂2

ξ̂pr = 1
2 log

(
|Σ̂pr,2|
|Σ̂pr,1|

)
+ 1

2

(
µ̂t

2 Σ̂
−1
pr,2 µ̂2 − µ̂t

1 Σ̂
−1
pr,1 µ̂1

)
.

(3)

Finally, if the scatter matrices are assumed equal, the common scatter matrix can be estimated by
Σ̂eq = τ1V1 + τ2V2 leading to





∆̂eq = 0

α̂eq = Σ̂
−1
eq (µ̂1 − µ̂2)

ξ̂eq = 1
2

(
µ̂t

2 Σ̂
−1
eq µ̂2 − µ̂t

1 Σ̂
−1
eq µ̂1

)
.

(4)

A standard framework to derive the asymptotic behavior in robust principal component analysis
is to assume that the estimators of the scatter matrix are asymptotically normally distributed and
spherically invariant. For that reason, and since the samples of the two populations are independent,
we will assume, throughout this paper, that for i = 1, 2, the estimators, (µ̂i,Vi), of (µi,Σi), are
independent and satisfy the following assumptions:
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A1.
√

ni (Vi −Σi)
D−→ Zi, where when dealing with random matrices Wn

D−→ W stands for

vec (Wn) D−→ vec (W), Zi has a multivariate normal distribution with zero mean and covari-
ance matrix Ξi such that

Ξi = σ1 (I + Kpp) (Σi ⊗Σi) + σ2 vec (Σi) vec (Σi)
t , (5)

with Kpp the p2 × p2 block matrix with the (l,m)−block equal to a p × p matrix with a 1 at
entry (l,m) and 0 everywhere else.

A2.
√

ni (µ̂i − µi)
D−→ zi where zi ∼ N(0, σ3Σi). Moreover, we will assume that µ̂i is also

asymptotically independent of the scatter estimator Vi.

Remark 2.1. It is well known that, for elliptically distributed observations, M , S and τ−estimators
are asymptotically normally distributed and spherically invariant. If the populations have ellip-
soidal distributions that only differ on their location and scatter matrix and if the same robust
location–scatter estimate is considered for each population, these estimators will satisfy A1 and
A2 (see, Tyler, [27]). Explicit forms for the constants σ1 and σ2 are given in Tyler [27], for
M−estimators, and in Lopuhaä [21], for S and τ−estimators.

It is worth noticing that A1 and A2 hold if the location and scatter estimates for both popula-
tions are related to the same functionals and if the populations have the same elliptical distribution,
except for possible changes in the location and the scatter matrices. Thus, according to the dis-
cussion given in the Introduction, these assumptions hold if xi1 = µi +Σ1/2

i zi1 where zi1 ∼ G ∈ Gε

such that Gε = {G = (1 − ε)G0 + εH,where H is an spherical distribution in IRp}.

3 Partial Influence Functions

When dealing with one population, influence functions are a measure of robustness with respect to
modification of single observations. It can be thought as the first derivative of the functional version
of the estimator. Pires and Branco [25] introduced partial influence functions as an extension of
this notion to the case in which the functional is related to more than one population. This
generalization ensures that the usual properties of the influence function for the one population case
are reached when dealing with several populations. Moreover, this definition measures resistance
towards pointwise contaminations at each population.

Denote by F the product measure, F = F1×F2. Partial influence functions of a functional T (F )
are then defined as PIFi(x, T, F ) = limε→0 (T (Fε,x, i) − T (F )) /ε, i = 1, 2, where Fε,x,1 = F1,ε,x×F2,
Fε,x,2 = F1 × F2,ε,x and Fi,ε,x = (1 − ε)Fi + εδx, i = 1, 2.

In this section, we will derive the partial influence functions of the functionals related to the
discriminant coefficients defined in the previous section. Let mi(G) and Υi(G) be Fisher–consistent
location and scatter functionals related to the estimates µ̂i and Vi considered in section 2, such
that mi(Fi) = µi and Υi(Fi) = Σi.
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3.1 Level 1

Under level 1, the functionals related to the estimators of the coefficients ∆, α and ξ defined in
(1) are given by




Ddif(F ) = 1
2

(
Υ−1

2 (F2) −Υ−1
1 (F1)

)

adif(F ) = Υ−1
1 (F1)m1(F1) −Υ−1

2 (F2)m2(F2)

cdif(F ) = 1
2 log

( |Υ2(F2)|
|Υ1(F1)|

)
+ 1

2

[
m2(F2)tΥ−1

2 (F2)m2(F2) −m1(F1)tΥ−1
1 (F1)m1(F1)

]
.

The following theorem gives the values of the partial influence functions of these coefficients which
were derived in Croux and Joossens [10].

Theorem 3.1. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi and Υi(Fi) = Σi. Assume that the influence functions IF (x,mi, Fi) and
IF (x,Υi, Fi) exist. Then, the partial influence functions of Ddif(F ), adif(F ) and cdif(F ) are

PIFi(x,Ddif, F ) =
(−1)i+1

2
Σ−1

i IF (x,Υi, Fi)Σ−1
i , (6)

PIFi(x,adif, F ) = (−1)i+1
(
Σ−1

i IF (x,mi, Fi) −Σ−1
i IF (x,Υi, Fi)Σ−1

i µi

)
(7)

PIFi(x, cdif, F ) =
(−1)i

2

{
tr
(
Σ−1

i IF (x,Υi, Fi)
)

+ 2µt
i Σ−1

i IF (x,mi, Fi)

− µt
i Σ−1

i IF (x,Υi, Fi)Σ−1
i µi

}
. (8)

3.2 Level 2

Denote by βcpc(F ) and λcpc,`j the plug–in functionals related to the scatter functionals Υ(F ) =
(Υ1(F1),Υ2(F2)), i.e., the solution of





diag
{
βcpc(F )tΥi(Fi)βcpc(F )

}
= Λcpc,i(F )

βcpc,m(F )t
{

2∑

i=1

τi
λcpc,im(F ) − λcpc,ij(F )
λcpc,im(F )λcpc,ij(F )

Υi(Fi)

}
βcpc,j(F ) = 0 for m 6= j

βcpc,m(F )tβcpc,j(F ) = δmj ,

(9)

where δmj = 0 if j 6= m and δmj = 1 if j = m, while βcpc,j denotes the j−th column of the matrix
βcpc. The coefficient functionals obtained under model cpc are given by




Dcpc(F ) = 1
2

(
S−1

cpc,2(F ) − S−1
cpc,1(F )

)

acpc(F ) = S−1
cpc,1(F )m1(F1) − S−1

cpc,2(F )m2(F2)

ccpc(F ) = 1
2 log

(
|Scpc,2(F )|
|Scpc,1(F )|

)
+ 1

2

[
m2(F2)tS−1

cpc,2(F )m2(F2) −m1(F1)tS−1
cpc,1(F )m1(F1)

]
,

(10)

where Scpc,i(F ) = βcpc(F )Λcpc,i(F )βcpc(F )t. The following Theorem gives the values of their
partial influence functions.
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Theorem 3.2. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi and Υi(Fi) = Σi. Denote by β1, . . . ,βp and λi1, . . . , λip the common eigenvectors
and the eigenvalues of Σi. Assume that the influence functions IF (x,mi, Fi) and IF (x,Υi, Fi) exist
and that λ11 > . . . > λ1p. Then, the partial influence functions of Dcpc(F ), acpc(F ) and ccpc(F )
are given by

PIFi(x,Dcpc, F ) = − 1
2

(
Σ−1

2 PIFi(x,Scpc,2, F )Σ−1
2 −Σ−1

1 PIFi(x,Scpc,1, F )Σ−1
1

)
(11)

PIFi(x,acpc, F ) = (−1)i+1Σ−1
i IF(x,mi, Fi) + Σ−1

2 PIFi(x,Scpc,2, F )Σ−1
2 µ2

− Σ−1
1 PIFi(x,Scpc,1, F )Σ−1

1 µ1 (12)
PIFi(x, ccpc, F ) = (−1)iµt

i Σ−1
i IF(x,mi, Fi) (13)

+
1
2

{
tr
(
Σ−1

2 PIFi (x,Scpc,2, F )
)
− tr

(
Σ−1

1 PIFi (x,Scpc,1, F )
)}

−1
2

{
µt

2 Σ−1
2 PIFi(x,Scpc,2, F )Σ−1

2 µ2 − µt
1 Σ−1

1 PIFi(x,Scpc,1, F )Σ−1
1 µ1

}
,(14)

where PIFi(x,Scpc,`, F ) =
∑p

j=1 PIFi(x, λcpc,`j, F )βjβ
t
j . Moreover, if β = Ip, then

PIFi(x,Scpc,`,jj, F ) = δ`i IF(x,Υi,jj, Fi) (15)

PIFi(x,Scpc,`,js, F ) = τi (λ`j − λ`s)
(λij − λis)

λijλis
θsj IF(x,Υi,js, Fi) (16)

with Scpc,`,js the element (j, s) of the matrix Scpc,` and θsj =
{∑2

`=1 τ`(λ`s − λ`j)
2/ (λ`sλ`j)

}−1
.

Remark 3.1. The expression given in Theorem 3.2 for PIFi(x,Scpc,`, F ) allows to derive the
partial influence functions of the discriminant coefficients, when using projection–pursuit estimates
of the common directions and their size instead of plug–in estimators. The partial influence func-
tions of the projection–pursuit functionals of the common eigenvectors and the eigenvalues of each
population can be found in Boente, Pires and Rodrigues [4, 6].

Note that if both scatter matrices are equal PIFi(x,Dcpc,js, F ) = 0, for j 6= s, and so, as in
Croux, Filzmoser and Joossens [11], a second order analysis is necessary.

3.3 Level 3

Denote by βpr(F ) and λpr,j and ρpr,2 the plug–in functionals related to the estimates of the
common directions, the eigenvalues of the first population and the proportionality constant, under
a proportional model, i.e., the solution of





1
p

p∑

j=1

βpr,j(F )t Υ2(F2)βpr,j(F )
λpr,j(F )

= ρpr,2(F )

2∑

i=1

τi

ρpr,i(F )
βpr,j(F )t Υi(Fi)βpr,j(F ) = λpr,j(F ) 1 ≤ j ≤ p

βpr,m(F )t
[

2∑

i=1

τi

ρpr,i(F )
Υi(Fi)

]
βpr,j(F ) = 0 m 6= j

βpr,m(F )tβpr,j(F ) = δmj ,

(17)
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where ρpr,1(F ) = 1 and βpr,j denotes the j−th column of the matrix βpr. The coefficient func-
tionals obtained under a proportional model are given by




Dpr(F ) = 1
2

(
S−1

pr,2(F ) − S−1
pr,1(F )

)

apr(F ) = S−1
pr,1(F )m1(F1) − S−1

pr,2(F )m2(F2)

cpr(F ) = 1
2 log

(
|Spr,2(F )|
|Spr,1(F )|

)
+ 1

2

[
m2(F2)tS−1

pr,2(F )m2(F2) −m1(F1)tS−1
pr,1(F )m1(F1)

]
,

(18)

with Spr,1(F ) = βpr(F )Λpr,1(F )βpr(F )t, Λpr,1(F ) = diag (λpr,1, . . . , λpr,p) and Spr,2(F ) =
ρpr,2(F )Spr,1(F ). The following Theorem gives the values of their partial influence functions.

Theorem 3.3. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi and Υi(Fi) = Σi = ρiΣ1, ρ1 = 1. Denote by β1, . . . ,βp and λ1, . . . , λp the
common eigenvectors and the eigenvalues of Σ1. Assume that the influence functions IF (x,mi, Fi)
and IF (x,Υi, Fi) exist and that λ1 > . . . > λp. Then, the partial influence functions of Dpr(F ),
apr(F ) and cpr(F ) are given by

PIFi(x,Dpr, F ) = − 1
2

(
Σ−1

2 PIFi(x,Spr,2, F )Σ−1
2 −Σ−1

1 PIFi(x,Spr,1, F )Σ−1
1

)
(19)

PIFi(x,apr, F ) = (−1)i+1Σ−1
i IF(x,mi, Fi) + Σ−1

2 PIFi(x,Spr,2, F )Σ−1
2 µ2

− Σ−1
1 PIFi(x,Spr,1, F )Σ−1

1 µ1 , (20)
PIFi(x, cpr, F ) = (−1)iµt

i Σ−1
i IF(x,mi, Fi)

+
1
2

{
tr
(
Σ−1

2 PIFi (x,Spr,2, F )
)
− tr

(
Σ−1

1 PIFi (x,Spr,1, F )
)}

− 1
2

{
µt

2 Σ−1
2 PIFi(x,Spr,2, F )Σ−1

2 µ2 − µt
1 Σ−1

1 PIFi(x,Spr,1, F )Σ−1
1 µ1

}
(21)

where PIFi(x,Spr,1, F ) =
∑p

j=1 PIFi(x, λpr,j, F )βjβ
t
j and PIFi(x,Spr,2, F ) = PIFi(x, ρpr,2, F )Σ1+

ρ2PIFi(x,Spr,1, F ). Moreover, if β = Ip, then

PIFi(x,Spr,1,jj, F ) =
τi

ρi
IF(x,Υi,jj, Fi) −

τi

ρi
λj Ai + λjA1δi1 (22)

PIFi(x,Spr,1,js, F ) =
τi

ρi
IF(x,Υi,js, Fi) (23)

PIFi(x,Spr,2, F ) = (A2δi2 − ρ2 A1 δi1)Σ1 + ρ2PIFi(x,Spr,1, F ) , (24)

with Ai = (1/p)
∑p

j=1 IF(x,Υi,jj, Fi)/λj .

As in level 2, if Σ1 = Σ2, PIFi(x,Dpr,js, F ) = 0, for j 6= s, and so a second order analysis is
again necessary. Note also that, if the proportional model holds and Σ1 = diag(λ1, . . . , λp), then
PIFi(x,Scpc,`,js, F ) = PIFi(x,Spr,`,js, F ), for ` = 1, 2.

3.4 Level 4

The coefficient functionals obtained under equality of the scatter matrices are given by
{

aeq(F ) = S−1
eq(F ) [m1(F1) −m2(F2)]

ceq(F ) = 1
2

[
m2(F2)tS−1

eq(F )m2(F2) −m1(F1)tS−1
eq(F )m1(F1)

]
,

(25)
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with Seq = τ1Υ1(F1) + τ2Υ2(F2). The following result states the partial influence functions of
the linear coefficient when using the robustified linear discrimination function and its proof can be
found in Pires and Branco [25].

Theorem 3.4. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi and Υi(Fi) = Σi = Σ. Assume that the influence functions IF (x,mi, Fi) and
IF (x,Υi, Fi) exist. Then, the partial influence function of aeq(F ) and ceq(F ) are given by

PIFi(x,aeq, F ) = (−1)i+1Σ−1IF(x,mi, Fi) + τiΣ−1IF(x,Υi, Fi)Σ−1 (µ2 − µ1) (26)

PIFi(x, ceq, F ) =(−1)iµt
i Σ−1IF(x,mi, Fi) −

1
2
τi (µ2 − µ1)

t Σ−1IF(x,Υi, Fi)Σ−1 (µ2 + µ1) .(27)

Remark 3.2. Croux and Joossens [10] studied how observations in the training sample affect
the misclassification probability of the quadratic discriminant rule assuming level 1. Proposition
2 therein gives the partial influence functions of the total misclassification probability that is used
to construct a diagnostic tool for detecting influential observations. Using it together with Theo-
rems 3.2 to 3.4, one can easily derive an expression for the partial influence functions of the total
misclassification probability under the restricted models described in levels 2 to 4, respectively.

Remark 3.3. Our appraoch based on partial influence functions assumes that prior probabilities
are known. If πi are unknown, they can be estimated by the empirical frequency of observations
in the training data belonging to group i, for i = 1, 2 which makes it possible to attain the Bayes
error rate asymptotically. In this case, influence functions can be derived as it was done by Croux,
Filzmoser and Joossens [11] for the linear discriminant rule.

Figures 1 and 2 give the plots of the partial influence function PIF1 of the quadratic coefficients
functionals D11(F ) and D12(F ), the behavior of D22(F ) is similar to that of D11(F ) except for
a rotation. On the other hand, Figure 3 shows the partial influence function PIF1 of the norm
of the linear coefficient functionals, a(F ). In all Figures, we have p = 2, F = F1 × F2 with
F1 = N2 (0,diag(2, 1)) and F2 = N2 (µ2, 4 diag(2, 1)) with µ2 = (4, 0)t. The partial influence
functions of ξ(F ) behave as the precedent ones and so we omit their graphs here. We have considered
as scatter matrices estimators the sample covariance matrix, the S−estimator using as ρ function
the biweight Tukey’s function calibrated to attain 25% breakdown point and the Donoho [12]–
Stahel [26] estimator with weight function the Huber’s function with constant

√
χ2

2(0.95) = 2.4477.
For the last estimator, the univariate location and scale functionals are the median and the mad
(median of the absolute deviations with respect to the median). Expressions for the influence
function of the Donoho–Stahel and the S−scatter functionals can be found in Gervini [19] and in
Lopuhäa (1989), respectively. Similar plots to those given by Croux and Joossens [10] assuming
level 1, can be constructed for the total misclassification probability under levels 2 to 4, by using
Proposition 2 therein and our results (see Remark 3.2).

In all cases, the shape of the partial influence functions of the robust estimates is comparable
to that of their classical relatives at the center of the distribution. Besides, the influence at points
further away is downweighted for the robust estimates, while it is much larger for the classical ones.
However, it should be noticed that the robust functionals related to the Donoho–Stahel have a
discontinuity at 0, due to the discontinuity of the influence function of the Donoho–Stahel scatter
functional. On the other hand, the partial influence function of each robust functional follows
the same behavior as the score function used to define them. To be more precise, in all cases,
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for the robust functionals, the partial influence function of D12(F ) is largest along the bisectors
while that of D11(F ) attains large values only for smaller values of x2 combined with moderate
values of x1. Finally, the norm of PIF1(x,a, F ) has different shapes according to the model used
for discrimination. When level 1 holds, it has a hat shape with the wings parallel to the axis x1.
Under level 2, the partial influence functions of each robust functionals show three modes while,
under level 3, only two parallel bumps are present.

4 Asymptotic Variances

Asymptotic variances can be derived heuristically, using partial influence functions. Let FN denotes
the empirical distribution of the k independent samples xij, 1 ≤ j ≤ ni, 1 ≤ i ≤ k and TN = T (FN ).
In Pires and Branco [25], it is shown that if N1/2 {TN − T (F )} =

∑k
i=1 (τi ni)−1/2∑ni

j=1 PIFi (xij , T, F )+
op(1), then the asymptotic variance of the estimates can be evaluated as

asvar (TN ) = asvar (TN , F ) =
k∑

i=1

τi
−1EFi

{
PIFi (xi1, T, F ) PIFi (xi1, T, F )t

}
. (28)

4.1 Level 1

The following result gives the asymptotic variance of the quadratic, linear and constant coefficient
estimators when the usual quadratic discriminant rule is used, under a cpc model.

Theorem 4.1. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi, mi(Fni) = µ̂i, Υi(Fi) = Σi and Υi(Fni) = Vi, with Fni the empirical dis-
tribution function of the i−th population. Assume that the influence functions IF (x,mi, Fi) and
IF (x,Υi, Fi) exist and that A1 and A2 hold. Then, when Σi = Λi = diag (λi1, . . . , λip), i.e., when

the cpc model holds with β = Ip, the asymptotic variances of the estimators ∆̂dif α̂dif and ξ̂dif

defined in (1) are given by

asvar(∆̂dif,js) =
1
4

(σ1 + [σ1 + σ2]δjs)
2∑

i=1

1
τi

1
λijλis

(29)

asvar(α̂dif,j) =
2∑

i=1

1
τiλij

[
σ3 +

µ2
ij

λij
(σ1 + σ2) + σ1

p∑

s=1

µ2
is

λis

]
(30)

asvar(ξ̂dif) =
2∑

i=1

1
τi

(
vi1 +

1
4
vi2 + vi3

)
, (31)

with vi1 = σ3
∑p

s=1 µ2
is/λis , vi2 = σ2

[∑p
s=1

(
1 − µ2

is/λis
)]2 + 2σ1

∑p
s=1

(
1 − µ2

is/λis
)2

and vi3 =
σ1
∑

j<s µ2
isµ

2
ij/ (λisλij).

4.2 Level 2

The following theorem gives the asymptotic variance of the coefficients estimators when the quadratic
discriminant rule is computed assuming a common principal components model.

10



Theorem 4.2. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi, mi(Fni) = µ̂i, Υi(Fi) = Σi and Υi(Fni) = Vi, with Fni the empirical distrib-
ution function of the i−th population. Moreover, assume that Σi = Λi = diag (λi1, . . . , λip) , i.e.,
the common principal components model holds with β = Ip. Assume that the influence functions
IF (x,mi, Fi) and IF (x,Υi, Fi) exist, that λ11 > . . . > λ1p and that A1 and A2 hold. Then, the

asymptotic variances of the estimators ∆̂cpc, α̂cpc and ξ̂cpc defined in (2) are

asvar(∆̂cpc,js) = (1 − δjs)
σ1

4
θsj

[
2∑

i=1

(−1)i
λij − λis

λijλis

]2

+ δjs
2σ1 + σ2

4

2∑

i=1

1
τiλ2

ij

(32)

asvar(α̂cpc,j) =
2∑

i=1

1
τiλij

[
σ3 +

µ2
ij

λij
(2σ1 + σ2)

]
+ σ1

p∑

s=1

θsj

[
2∑

i=1

(−1)i+1 µis (λij − λis)
λijλis

]2

(33)

asvar(ξ̂cpc) =
2∑

i=1

1
τi

(
vi1 +

1
4
vi2 + τ2

i vi4

)
, (34)

where θsj =
{∑2

`=1 τ`(λ`s − λ`j)
2/ (λ`sλ`j)

}−1
, vi1 and vi2 are defined in Theorem 4.1 and vi4 =

σ1
∑

j<s θ2
sj

[∑2
k=1(−1)k µksµkj (λkj − λks)/ (λkjλks)

]2
(λij − λis)

2/ (λijλis).

4.3 Level 3

When the quadratic discriminant rule is computed assuming a proportional model, the asymptotic
variance of the quadratic, linear and constant coefficient estimators are derived in the following
theorem.

Theorem 4.3. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals
such that mi(Fi) = µi, mi(Fni) = µ̂i, Υi(Fi) = Σi = ρiΣ1, ρ1 = 1 and Υi(Fni) = Vi,
with Fni the empirical distribution function of the i−th population. Moreover, assume that
Σ1 = Λ1 = diag (λ1, . . . , λp) , i.e., the proportional model holds with β = Ip. Assume that the
influence functions IF (x,mi, Fi) and IF (x,Υi, Fi) exist, λ1 > . . . > λp and that A1 and A2 hold.

Then, the asymptotic variances of the estimators ∆̂pr, α̂pr and ξ̂pr defined in (3) are given by

asvar(∆̂pr,js) =
1

4λsλj

{
(1 − δjs) σ1γ2 + δjs

1
p

[
2(p − 1)σ1γ2 + (2σ1 + pσ2)

2∑

i=1

1
ρ2

i τi

]}
(35)

asvar(α̂pr,j) =
2∑

i=1

1
τiρiλj

[
σ3 +

µ2
ij(2σ1 + pσ2)

p ρiλj

]
+ σ1

[
p − 2
pλ2

j

νj +
p∑

s=1

1
λjλs

νs

]
(36)

asvar(ξ̂pr) =
2∑

i=1

1
τi

(
vi1 +

1
4
vi5 + τ2

i vi4

)
, (37)

where γ2 =
(
ρ−1
2 − 1

)2
and νs =

(
µ2sρ

−1
2 − µ1s

)2
, vi1 is defined in Theorem 4.1, vi4 defined in

Theorem 4.2 equals σ1
∑

s<j λ−1
j λ−1

s

(∑2
i=1(−1)iµisµij/ρi

)2
and

vi5 = 2σ1

p∑

j=1

[
(−1)i τi

(
µ2

1j

λj
−

µ2
2j

ρ2 λj

)
+ 1 − τ1

ρ2 p

p∑

s=1

µ2
2s

λs
− τ2

p

p∑

s=1

µ2
1s

λs

]2

+ σ2




p∑

j=1

(
1 −

µ2
ij

ρi λj

)


2

.

11



If Σ1 = Σ2, asvar(∆̂pr,js) = 0, for j 6= s, and so a higher order expansion is needed.

4.4 Level 4

Theorem 4.4 states the asymptotic variance of the linear and constant coefficient estimators when
using the robustified discrimination function. Its proof can be found in Pires and Branco [25].

Theorem 4.4. Let mi(G) and Υi(G) be Fisher–consistent location and scatter functionals such
that mi(Fi) = µi, mi(Fni) = µ̂i, Υi(Fi) = Σi = ρiΣ1, ρ1 = 1 and Υi(Fni) = Vi, with Fni the
empirical distribution function of the i−th population. Moreover, assume that Σ2 = Σ1 = Λ1 =
diag (λ1, . . . , λp) , i.e., level 4 holds with β = Ip. Assume that the influence functions IF (x,mi, Fi)
and IF (x,Υi, Fi) exist and that A1 and A2 hold. Then, the asymptotic variances of the estimators
α̂eq and ξ̂eq defined in (4) are given by

asvar(α̂eq,j) = σ3

2∑

i=1

1
τiλj

+ σ1

p∑

s=1

1
λjλs

νs + (σ1 + σ2)
1
λ2

j

νj , (38)

asvar(ξ̂eq) =
2∑

i=1

1
τi

(
vi1 +

1
4
vi6 + τ2

i vi4

)
, (39)

where νs = [µ2s − µ1s]
2 , vi1 is defined in Theorem 4.1, vi4 are defined in Theorem 4.2 and vi6 =

τ2
i

{
2σ1

∑p
j=1

(
µ2

1j/λj − µ2
2j/λj

)2
+ σ2

[∑p
j=1

(
µ2

1j − µ2
2j

)
/λj

]2}
.

4.5 Comparisons

In this section we compare the asymptotic variances of the estimated coefficients under the different
hierarchies considered. Without loss of generality, we will assume that µ1 = 0.

When the cpc model holds, Theorems 4.1. and 4.2 entail that

• asvar(∆̂dif,jj) = asvar(∆̂cpc,jj). As with the classical rule, the gain achieved by using the
cpc instead of ordinary quadratic discrimination may not be large, at least in the two sample
case.

• asvar(∆̂dif,js) ≥ asvar(∆̂cpc,js), j 6= s. Moreover, as noted by Flury and Schmid [15] for
the classical estimators, equality holds for the robust quadratic coefficients if λ1s − λ1j =
λ2s−λ2j. On the other hand, as in the classical case, if λ−1

1s −λ−1
1j = λ−1

2s −λ−1
2j , the coefficient

∆̂cpc,js obtained under a cpc model tends to zero at a rate faster than n− 1
2 .

• asvar(α̂dif,j) ≥ asvar(α̂cpc,j) and asvar(ξ̂dif) ≥ asvar(ξ̂cpc). In both cases equality is
attained if µ2s = 0, for s 6= j.

For the classical estimators, Flury and Schmid [15] noticed that in the particular case of the O’ Neill
(1984) model, only the off–diagonal quadratic coefficients ∆̂js have smaller asymptotic variances
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under the cpc model, while identical results are obtained for the linear coefficients. This property
also holds for our robust proposals.

When the underlying model is a proportional one, from Theorems 4.1 to 4.3 we have that

• asvar(∆̂dif,jj) = asvar(∆̂cpc,jj) > asvar(∆̂pr,jj). As in the classical setting, cpc dis-
crimination and ordinary quadratic discrimination yield the same asymptotic variances. For
ρ2 close to 1, asvar(∆̂pr,jj) can become considerably smaller than asvar(∆̂cpc,jj). On the
other hand, when τ1 = τ2 = 1/2 and p is large, asvar(∆̂pr,jj) can also become considerably
smaller than asvar(∆̂cpc,jj).

• asvar(∆̂dif,js) ≥ asvar(∆̂cpc,js) = asvar(∆̂pr,js), for j 6= s. Moreover, when τ1 = τ2 =
1/2, we have that 1

2asvar(∆̂dif,js) ≥ asvar(∆̂cpc,js) = asvar(∆̂pr,js). On the other hand,
for ρ2 close to 1, the last two variances may become considerably smaller than asvar(∆̂dif,js)
and so, for these coefficients, using the more parsimonious model appears to have considerable
advantage over ordinary quadratic discrimination.

• asvar(α̂dif,j) ≥ asvar(α̂cpc,j) ≥ asvar(α̂pr,j). If µ2 = 0 equality holds in all cases,
otherwise some improvement may be expected.

• asvar(ξ̂dif) ≥ asvar(ξ̂cpc) ≥ asvar(ξ̂pr). Moreover, asvar(ξ̂cpc) = asvar(ξ̂pr) if for

some constant c, µ2 = c

(
λ

1
2
1 , . . . , λ

1
2
p

)t
. In particular, if µ2 = 0 we have asvar(ξ̂dif) =

asvar(ξ̂cpc) = asvar(ξ̂pr).

As in the classical case, these results suggest that using the proportional model, provided it is true,
may be advantageous, particularly for large dimensions. Furthermore, cpc discrimination can also
be expected to perform better than quadratic discrimination under these circumstances.

When the scatter matrices are equal, ∆̂eq,js = 0 for any j, s and

• asvar(∆̂dif,jj) = asvar(∆̂cpc,jj) > asvar(∆̂pr,jj) > 0. Note that in the robust set-
ting, since σ2 can be different from 0, we don’t obtain the inequality asvar(∆̂dif,jj) =
asvar(∆̂cpc,jj) > pasvar(∆̂pr,jj) as in the classical case.

• asvar(∆̂dif,js) > asvar(∆̂cpc,js) = asvar(∆̂pr,js) = 0 for j 6= s. Under both cpc and
proportional discrimination, the variance of ∆̂js converges to zero at a rate faster than n−1.

• asvar(α̂dif,j) ≥ asvar(α̂cpc,j) ≥ asvar(α̂pr,j) ≥ asvar(α̂eq,j). If µ2 = 0 equality holds in
all cases, otherwise a reduction of the variance can be attained by using one of the constrained
models. As for the classical rule, the advantage of proportional and linear discrimination
increases with the dimension.

• asvar(ξ̂dif) ≥ asvar(ξ̂cpc) ≥ asvar(ξ̂pr) ≥ asvar(ξ̂eq). Note that, for this parameter, if
µ2 = 0, we have that asvar(ξ̂dif) = asvar(ξ̂cpc) = asvar(ξ̂pr) > asvar(ξ̂eq).

In Table 1 we summarize the above results concerning the relationships among the asymptotic
variances along the hierarchical models on the scatter matrices. It is worth noticing that even when
the asymptotic variances of the robust estimators are not proportional to their classical relatives,
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the relationships shown in Table 1 coincide with those obtained by Flury and Schmid [15], that is,
the order is preserved.

Table 1 around here

5 Monte Carlo Study

Up till now, we have considered asymptotic variances, but in the context of discrimination misclas-
sification error rates are also important, especially for moderate to small sample sizes. In order to
have a deeper insight into misclassification rates, we have performed a simulation study.

We have considered two populations of sizes n1 = n2 = n = 20, 30, 40, 50, 75 and 100 in
dimension p = 4. The classification rules to be compared are:

• the ordinary quadratic rule denoted Qdif

• the quadratic classification rule under level 2, i.e., Qcpc

• the quadratic classification rule under level 3, i.e., Qpr

• the linear classification rule denoted Qeq,

indicated as diamonds, squares, inverted triangles and circles combined with solid lines in all figures,
respectively. The horizontal dashed line indicates the optimal error rate. All of them were computed
using the sample mean and the sample covariance matrix and also using as robust estimators the
Donoho–Stahel estimators with weight function the Huber’s function with constant

√
χ2

p(0.95)
and the S−estimators using as ρ function the biweight Tukey’s function calibrated to attain 25%
breakdown point. The S−estimators were computed using the matlab programs provided in
Christophe Croux’s personal web site taking 1000 random p−subsets. To obtain approximately
the worst direction for the Donoho–Stahel estimator, we have combined a search over 1000 random
directions on the p−dimensional sphere together with 1000 directions using random p−subsets.

Since, π1 = π2 = 1
2 , the total misclassification error of a given rule Q, under the central model,

equals

TPM(Q) =
P1 (Q(y) < 0) + P2 (Q(y) > 0)

2
where Pi is the probability related to a Np(µi,Σi), i = 1, 2. In order to estimate it, we have con-
sidered validation samples of size m = 10000. To be more precise, we have generated independent
random variables yi1, . . . ,yim with yij ∼ Np(µi,Σi), for i = 1, 2. For each observation yij we
evaluated Qij = Q(yij) and we have computed

̂TPM(Q) =
# {Q1j < 0} + # {Q2j > 0}

2m
.

We have performed 1000 replications and the mean of the estimated misclassification error over
replications, ̂TPM(Q), was computed in order to compare the discrimination rules under different
models and different contaminations.

We give a detailed description of the five designs considered. In all cases and without loss of
generality, we have assumed that µ1 = 0.
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• Design 1: Efron’s model. An optimal model for linear discrimination with Σ1 = Σ2 (see
Efron, [13], and Flury, Schmid and Narayanan, [16]). Under this model the advantage of
using the linear rule over the cpc discrimination and the ordinary quadratic discrimination
increases with the dimension p. On the other hand, the variances of the estimators of the
linear and constant coefficients of Qpr approach those obtained in linear discrimination when
p increases. With respect to the quadratic coefficients, the same argument holds for the
non–diagonal elements when using the classical methods while for the robust one, a term
involving the coefficient σ2 is always present. One expects that proportional discrimination
will do as well as linear discrimination, for the classical rule and assessing the effect of using
robust estimators is one of the goals of this simulation study. The parameters were chosen
as µ2 = (3, 0, 0, 0)t , Σ1 = Σ2 = diag (1, 2, 8, 16), yielding an optimal error rate of 0.0668.
The eigenvalues were chosen to be different to avoid convergence problems when solving the
equations leading to the estimators under a cpc model.

• Design 2: A proportional model. In this case we have considered a design similar to design
1, but including a proportionality constant, i.e, we have chosen µ2 = (3, 0, 0, 0)t, Σ1 =
diag (1, 2, 8, 16), Σ2 = 4Σ1. The optimal rate is now 0.0885.

• Design 3: O’Neill’s model. This is a design based on a particular model studied by O’Neill
[23] and considered in Flury, Schmid and Narayanan [16], for the purpose of comparing
the performance of linear and ordinary quadratic classification rules. In this design µ2 =
(∆, 0, 0, 0)t, Σ1 = I4, Σ2 = diag

(
σ2, 1, 1, 1

)
. We have chosen ∆ = 4.5 and σ2 = 9 leading to

an optimal error rate of 0.1073. O’Neill’s model is a cpc model but not a proportional one and
thus, both ordinary quadratic discrimination and cpc discrimination are theoretically correct.
Optimal classification is quadratic only in the first variable. However, as the calculations
given above suggest, the cpc discrimination is not expected to do much better than ordinary
quadratic discrimination. On the other hand, in the classical case, O’Neill [23, 24] noticed that
it took a very large sample size for quadratic discrimination to improve linear discrimination,
even if σ is so different than 1 as in our example.

• Design 4: A cpc model. When the cpc model holds, both Qdif and Qcpc are theoretically
correct. As mentioned above, and as discussed in Flury and Smith [15], the asymptotic
variances indicate that using Qcpc does not necessarily yield estimates of the discriminant
function coefficients with smaller variances than Qdif. The advantage of the method depends
on the eigenvalues. For instance, if λ1s−λ1j = λ2s−λ2j, for all (s, j), then cpc discrimination
and ordinary quadratic discrimination should do about equally well. On the other hand, if
λ−1

1s −λ−1
1j = λ−1

2s −λ−1
2j , for all (s, j), then some quadratic coefficients have smaller asymptotic

variances if estimated using the cpc model. Our parameter setup for the simulation study
was taken as Σ1 = diag (1/5, 1/2, 2/3, 5/6), Σ2 = diag (1/4, 1, 2, 5) and µ2 = (1, 0, 0, 0)t to
study the improvement obtained with the robust cpc rule. The optimal error rate equals
0.0991.

• Design 5: A quadratic model. We have considered the same design as in Flury, Schmid
and Narayanan [16] in which none of the cpc, proportional or linear discrimination rules are
correct. We wanted the cpc model to be far from correct. A particular way to generate such
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models is to take µ2 = (2, 0, 0, 0)t,

Σ1 =




1 0 0 0
0 1 1/2 1/2
0 1/2 1 1/2
0 1/2 1/2 1


 Σ2 =




1 0 0 0
0 2 0 0
0 0 1/2 0
0 0 0 1/2




yielding an optimal error rate of 0.1278.

The results for normal data will be indicated by C0, while two contaminations were studied

• C1: xi1, . . . ,xin are i.i.d. 0.9N4(µi,Σi) + 0.1N4(µi, 9Σi)

• C2: xi1, . . . ,xin are i.i.d. 0.9N4(µi,Σi) + 0.1N4(µi + µ,Σi) with µ = (10, 0, 0, 0)t . The aim
of this contamination is to see how the bias of parameter estimates affects the probability of
misclassification.

Figures 4 to 8 summarize the results of the simulation study. The results show the advantage of
using robust procedures when contamination is present. For instance, under C2, in most cases, the
error rates with the classical rules are over twice those of the uncontaminated situations. The robust
procedures behave quite similarly under normal errors and the two contaminations considered.
In general, contamination C2 seems to be more harmful than contamination C1. However, the
error rates related to the Donoho–Stahel estimator are slightly smaller than those related to the
S−estimator under C2. Besides, for small sample sizes (n = 20, 30), the Donoho–Stahel rule shows
in all cases larger rates under C0 than that derived from the S−estimator. This performance of the
Donoho–Stahel rule may be due to the difficulty to obtain the optimal direction for small sample
sizes and also to the larger bias of the estimator for small sample sizes. On the other hand, as
expected, under C0, the advantage of using the classical rule over the robust ones decreases as
the sample size increases. Moreover, under C0, the conclusions obtained in Flury, Schmid and
Narayanan [16] hold for both the classical and robust discrimination rules. To summarize,

• Design 1: If equality holds, under C0, then the linear discrimination is the best one, but not
much is lost if proportional discrimination is used. If cpc or ordinary quadratic discrimination
are used, approximately twice the observations are needed to obtain the same error rate
̂TPM . These conclusions remain valid for the robust procedure based on the Donoho–Stahel

estimator even under both contaminations and for that based on the S−scatter under C0 and
C1. Surprisingly, under C2 the rule based on the S−estimator gives better rates with the cpc
and quadratic discrimination than for the linear one.

• Design 2: All methods except the linear discrimination are theoretically correct, but clearly,
under C0, Qpr performs much better than either Qcpc or Qdif. This conclusions remains
valid for the robust Donoho–Stahel procedure under both contaminations and for the S−rule
under C1, while for the classical procedure all rules perform similarly bad for data faraway
from normality. It is worth noticing that, under C2, when using the S−estimator, all the
quadratic discrimination rates are quite similar, however, the lower rates are attained by cpc
discrimination.
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• Design 3: One would expect that the two theoretically correct rules, Qcpc and Qdif per-
formed considerably better than the inappropriate proportional and linear methods. However,
under C0, all methods perform quite similarly, and only for sample sizes larger than 40, Qdif

starts to perform better than the linear rule. On the other hand, Qcpc appears to have a no-
ticeable advantage over Qdif while the linear rule performs better than Qpr . As mentioned
in Flury, Schmid and Narayanan [16], a possible explanation for this unexpected phenom-
enon is that Qpr introduces the wrong flexibility, compared to the linear discriminant rule.
Proportional discrimination forces the boundary of the classification regions to be genuinely
quadratic, which is undesirable in this case. This model corresponds to the situation where
the direction of the mean difference is identical to the direction of the difference in variance.
More precisely, µ1 − µ2 is proportional to the eigenvector of Σ−1

1 Σ2 related to the single
eigenvalue that is different from 1. These comments remain valid for both robust procedures,
not only under C0 but also under C1 and C2. However, the classical rule, under C2 reverses
the conclusions since the best error rate is attained by the linear discrimination rule followed
by Qpr and by both the cpc and the ordinary quadratic rule that performed quite similarly.
In this design, none of the methods seems suitable to handle the situation due to their slow
convergence to the optimal rate, under C0.

• Design 4: This design was tailored to favor cpc discrimination. Under C0, cpc beats the
ordinary discrimination rule for small sample sizes. Note that for n = 20 the proportional
rule performs better than the theoretically correct cpc rule, when using the robust procedure
based on the Donoho–Stahel estimator. In both cases, robust and non–robust, the propor-
tional discrimination rule performs surprisingly well. In particular, for sample sizes lower
than 40 it gives better rates than ordinary quadratic discrimination. This is quite outstand-
ing in view of the fact that the variance ratios range from 1.25 to 6 and thus, the two scatter
matrices are far from being proportional. This behavior underlines the usefulness of propor-
tional discrimination due to its flexibility when introducing only a single parameter for each
additional group. Under C1, the same behavior is observed for all procedures, robust or not,
while under C2, the classical proportional discrimination rule performs much worse than the
other two quadratic rules. The conclusions described for the behavior of the robust proposal
under C0, also hold under C2.

• Design 5: In this case, the appropriate rule is the ordinary quadratic method. All three
constrained methods are theoretically wrong. However, the linear discrimination rule shows
its advantage over the proportional one under the three distributions considered. The ordinary
quadratic rule performs better than the cpc rule for both the classical and robust procedures
and all contaminations. Besides, it should be noticed that, under C2, the error rates of
Qdif and Qcpc are almost the same. Note that Qdif and Qcpc perform much better than
proportional and linear discrimination.

6 Final Comments

In this paper we have studied robust methods for discriminating between two groups at ellyptical
observations, considering several levels of dissimilarities of the scatter matrices.

We have shown, both theoretically and by means of a simulation study, the advantage of using
robust procedures over classical ones, especially if the data deviates from multivariate normality.
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Our results have also shown that, in some cases, better rates of misclassification can be achieved
if a more parsimonious model than the standard quadratic discrimination is used. Therefore, an
important issue is to assess the adequacy of each of the different hierarchical levels. Classical tests
for selecting a level within this hierarchy are presented in Flury [14]. Robust versions of those tests
have been proposed recently by Boente, Pires and Rodrigues [5].
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Appendix

Note that (11), (12), (14), (19), (20), (26) and (27) follow immediately from (10), (18) and (25),
respectively. In order to prove Theorems 3.2 and 3.3 it will be enough to derive the expressions for
the partial influence functions of the matrices Scpc,` and Spr,`, ` = 1, 2. These partial influence
functions follow immediately from their definitions and from the partial influence functions of the
common eigenvectors and the eigenvalues given in Boente, Pires and Rodrigues [4] under a cpc
model and in Boente, Critchley and Orellana [1] under a proportional model.

Note that (5) and A2 imply that




ascov (Vi,js,Vi,m`) = ascov (Vi,js,Vi,mm) = 0 for j < s, m < ` and (j, s) 6= (m, `)
ascov (Vi,jj,Vi,ss) = σ2λijλis for j < s

asvar (Vi,jj) = (2σ1 + σ2)λ2
ij

asvar (Vi,js) = σ1λijλis

ascov
(
Vi,s`, µ̂ij

)
= ascov

(
µ̂ir, µ̂ij

)
= 0 for j 6= r

asvar
(
µ̂ij

)
= σ3λij

(40)

Proof of Theorem 4.1. Its proof follows immediately, using (28), (40) and that

asvar(∆̂dif,js) =
1
4

2∑

i=1

1
τi

1
λ2

ijλ
2
is

asvar(Vi,js)

asvar(α̂dif,j) =
2∑

i=1

1
τiλij

σ3 +
2∑

i=1

p∑

s=1

1
τi

µ2
is

λ2
ijλ

2
is

asvar(Vi,js) +
2∑

i=1

1
τiλ2

ij

∑

s6=`

µisµi`

λisλi`
ascov(Vi,js,Vi,j`)

asvar(ξ̂dif) =
2∑

i=1

1
τi

p∑

j=1

µ2
ij

λ2
ij

asvar(µ̂ij) +
1
4

2∑

i=1

1
τi

p∑

j=1

(
1 −

µ2
ij

λij

)2
1

λ2
ij

asvar(Vi,jj)

+
1
4

2∑

i=1

1
τi

∑

j 6=s

(
1 −

µ2
ij

λij

)(
1 − µ2

is

λis

)
1

λijλis
ascov (Vi,jj,Vi,ss)
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+
2∑

i=1

1
τi

∑

j<s

µ2
ijµ

2
is

λ2
ijλ

2
is

asvar (Vi,js) =
2∑

i=1

1
τi

vi1 +
1
4

2∑

i=1

1
τi

vi2 +
2∑

i=1

1
τi

vi3 .

Proof of Theorem 4.2. Using (28), we get that the asymptotic variance of ∆̂cpc is given by∑2
i=1(1/τi)EFi [PIFi(x,Dcpc,js, F )]2. For any 1 ≤ j, s ≤ p, we have that

EFi [PIFi(x,Dcpc,js, F )]2 =
1
4

EFi

[
1

λ2jλ2s
PIFi(x,Scpc,2,js, F ) − 1

λ1jλ1s
PIFi(x,Scpc,1,js, F )

]2

=
1
4

{
1

λ2
2jλ

2
2s

EFi [PIFi(x,Scpc,2,js, F )]2 +
1

λ2
1jλ

2
1s

EFi [PIFi(x,Scpc,1,js, F )]2
}

− 1
2

1
λ1jλ1s

1
λ2jλ2s

EFi [PIFi(x,Scpc,2,js, F )PIFi(x,Scpc,1,js, F )] .

Let j = s, the above expression, (15) and (40) entail that

asvar(∆̂cpc,jj) =
1
4

2∑

i=1

1
τi

1
λ4

ij

EFi [IF(x,Υi,jj, Fi)]
2 2σ1 + σ2

4

2∑

i=1

1
τi

1
λ2

ij

.

Let us consider now the case when j 6= s. From (16), we derive that

EFi [PIFi(x,Dcpc,js, F )]2 =
1
4

EFi

[
1

λ2jλ2s
τi (λ2j − λ2s)

(λij − λis)
λijλis

θsj IF(x,Υi,js, Fi)

− 1
λ1jλ1s

τi (λ1j − λ1s)
(λij − λis)

λijλis
θsj IF(x,Υi,js, Fi)

]2

=
τ2
i

4
θ2
js

(λij − λis)2

λ2
ijλ

2
is

(
λ2j − λ2s

λ2jλ2s
− λ1j − λ1s

λ1jλ1s

)2

EFi [IF(x,Υi,js, Fi)]
2 .

Hence, using again (40), we obtain

EFi [PIFi(x,Dcpc,js, F )]2 = σ1
τ2
i

4
θ2
js

(λij − λis)2

λijλis

{(
1

λ2s
− 1

λ2j

)
−
(

1
λ1s

− 1
λ1j

)}2

,

and so, we have that

asvar(∆̂cpc,js) =
σ1

4

2∑

i=1

1
τi

θ2
js

1
λijλis

(λij − λis)2
{(

1
λ2s

− 1
λ2j

)
−
(

1
λ1s

− 1
λ1j

)}2

=
σ1

4
θjs

{(
1

λ2s
− 1

λ2j

)
−
(

1
λ1s

− 1
λ1j

)}2

.

In order to prove (33) we have to compute EFi [PIFi(x,acpc, F )]2 . From the expressions of the
partial influence functions of the functional given in (12) and from (40), we obtain that

EFi [PIFi(x,acpc,j, F )]2 =
1

λ2
ij

EFi [IF(x,mij , Fi)]
2 + varFi

[ p∑

s=1

1
λijλis

PIFi(x,Scpc,i,js, F )µis

]
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− 1
λij

p∑

s=1

µis

λijλis
covFi [IF(x,mij , Fi),PIFi(x,Scpc,i,js, F )]

=
1

λ2
ij

asvar(µ̂ij) +
p∑

s=1

µ2
is

λ2
ijλ

2
is

asvar(Vi,js)

+
1

λ2
ij

∑

s6=`

µisµi`

λisλi`
ascov(Vi,js,Vi,j`)

=
1

λ2
ij



λijσ3 + µ2

ij(2σ1 + σ2) + σ1

∑

s6=j

µ2
is

λij

λis



 .

Then,

asvar(α̂cpc,j) =
2∑

i=1

1
τiλ

2
ij



λijσ3 + µ2

ij(2σ1 + σ2) + σ1

∑

s6=j

µ2
is

λij

λis





=
2∑

i=1

1
τiλij

{
σ3 +

µ2
ij(σ1 + σ2)

λij
+ σ1

p∑

s=1

µ2
is

λis

}
.

In order to compute asvar(ξ̂cpc), let us calculate EFi [PIFi(x, ccpc, F )]2. Note that PIFi(x, ccpc, F ) =
(−1)i (Pi1 + Pi2/2) − τiPi4, where

Pi1 =
p∑

j=1

µij

λij
IF (x,mij , Fi) (41)

Pi2 =
p∑

j=1

1
λij

IF (x,Υi,jj, Fi)

(
1 −

µ2
ij

λij

)
(42)

Pi4 =
∑

j<s

θsjηsj
λij − λis

λijλis
IF (x,Υi,js, Fi) , (43)

with θsj defined in Theorem 3.2, while ηjs =
∑2

i=1(−1)iµijµis(λij − λis)/(λijλis). On the other
hand, EFi

(
P 2

i1

)
= vi1 and EFi

(
P 2

i2

)
= vi2 and so it remains to show that EFi

(
P 2

i4

)
= vi4. Using

(40), we get easily EFi

(
P 2

i4

)
=
∑

j<s θ2
sjη

2
sj(λij − λis)

2asvar(Vi,js)/
(
λ2

ijλ
2
is

)
= vi4.

Proof of Theorem 4.3. Using (28), we have that the asymptotic variance of ∆̂pr,js is given by∑2
i=1 EFi [PIFi(x,Dpr,js, F )]2 /τi. For any 1 ≤ j 6= s ≤ p, (19) leads to

EFi [PIFi(x,Dpr,js, F )]2 =
1
4

EFi

[
1

λ2sλ2j
PIFi(x,Spr,2,js, F ) − 1

λ1sλ1j
PIFi(x,Spr,1,js, F )

]2

=
1
4

1
λ2

sλ
2
j

EFi

[
1
ρ2
2

PIFi(x,Spr,2,js, F ) − PIFi(x,Spr,1,js, F )
]2

=
1
4

1
λ2

sλ
2
j

EFi

[(
1
ρ2

− 1
)

PIFi(x,Spr,1,js, F )
]2

=
1
4

1
λ2

sλ
2
j

(
1
ρ2

− 1
)2 τ2

i

ρ2
i

EF [IFi(x,Υi,js, Fi)]
2 .
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Therefore, using that (40) entails that EFi [IFi(x,Υi,js, Fi)]
2 = asvar (Vi,js) = σ1ρ

2
i λsλj , we obtain

asvar(∆̂pr,js) =
1
4

σ1
1

λ2
sλ

2
j

(
1
ρ2

− 1
)2 2∑

i=1

1
τi

τ2
i

ρ2
i

ρ2
i λsλj =

1
4λsλj

σ1γ2 .

Let us consider now the case when j = s. From (24) we have that

EFi [PIFi(x,Dpr,jj, F )]2 =
1
4
EFi

[
1

ρ4
2λ

2
j

PIFi(x,Spr,2,jj, F ) − 1
λ2

j

PIFi(x,Spr,1,jj, F )

]2

=
1
4

1
λ4

j

EFi

[
1
ρ2
2

(A2δi2 − ρ2 A1 δi1)λj +
(

1
ρ2

− 1
)

PIFi(x,Spr,1,jj, F )
]2

which together with (22) implies that

EF1 [PIF1(x,Dpr,jj, F )]2 =
1

4λ4
j

EF1

[
− 1

ρ2
A1 λj +

(
1
ρ2

− 1
)

PIF1(x,Spr,1,jj, F )
]2

=
1

4λ4
j

EF1

{
− 1

ρ2
A1 λj +

(
1
ρ2

− 1
)

[τ1IF(x,Υ1,jj, F1) + (1 − τ1) λj A1]
}2

=
1

4λ2
j

EF1

{[(
1
ρ2

− 1
)

τ2 −
1
ρ2

]
A1 +

(
1
ρ2

− 1
)

τ1

λj
IF(x,Υ1,jj, F1)

}2

EF2 [PIF2(x,Dpr,jj, F )]2 =
1

4λ4
j

EF2

{
1
ρ2
2

A2λj +
(

1
ρ2

− 1
) [

τ2

ρ2
IF(x,Υ2,jj, F2) −

τ2

ρ2
λj A2

]}2

=
1

4ρ2
2λ

2
j

EF2

{[
1
ρ2

τ1 + τ2

]
A2 +

(
1
ρ2

− 1
)

τ2

λj
IF(x,Υ2,jj, F2)

}2

.

Using again (40), we obtain that

covFi (Ai, IF(x,Υi,jj, Fi)) =
1
p

p∑

s=1

1
λs

covFi [IF(x,Υi,ss, Fi), IF(x,Υi,jj, Fi)] =
1
p
ρ2

i λj(2σ1 + p σ2)

(44)
and

varFi (Ai) =
1
p2





p∑

s=1

1
λ2

s

varFi [IF(x,Υi,ss, Fi)] +
∑

j 6=s

1
λsλj

covFi [IF(x,Υi,ss, Fi), IF(x,Υi,jj, Fi)]





=
1
p
ρ2

i λj(2σ1 + p σ2) . (45)

Hence, straightforward calculations lead us to

EF1 [PIF1(x,Dpr,jj, F )]2 =
1

4λ2
j

EF1

{[(
1
ρ2

− 1
)

τ2 −
1
ρ2

]
A1 +

(
1
ρ2

− 1
)

τ1

λj
IF(x,Υ1,jj, F1)

}2

=
1

4λ2
j

{[(
1
ρ2

− 1
)

τ2 −
1
ρ2

]2
varF1(A1)

+
(

1
ρ2

− 1
)2 τ2

1

λ2
j

varF1(IF(x,Υ1,jj, F1))
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+ 2
[(

1
ρ2

− 1
)

τ2 −
1
ρ2

](
1
ρ2

− 1
)

τ1

λj
covF1 (A1, IF(x,Υ1,jj, F1))

}

=
1

4pλ2
j

[
2σ1 + pσ2 + 2(p − 1)γ2τ

2
1 σ1

]
,

EF2 [PIF2(x,Dpr,jj, F )]2 =
1

4ρ2
2λ

2
j

EF2

{[
1
ρ2

τ1 + τ2

]
A2 +

(
1
ρ2

− 1
)

τ2

λj
IF(x,Υ2,jj, F2)

}2

=
1

4ρ2
2λ

2
j

{[
1
ρ2

τ1 + τ2

]2
varF2(A2) +

(
1
ρ2

− 1
)2 τ2

2

λ2
j

varF2 (IF(x,Υ2,jj, F2))

+ 2
[

1
ρ2

τ1 + τ2

](
1
ρ2

− 1
)

τ2

λj
covF2 (A2, IF(x,Υ2,jj, F2))

}

=
1

4pλ2
j

[
(2σ1 + pσ2)

1
ρ2
2

+ 2γ2τ
2
2 σ1(p − 1)

]
.

Putting things together, we have that

asvar(∆̂pr,jj) =
1

4pλ2
j

2∑

i=1

1
τi

[
(2σ1 + pσ2)

1
ρ2

i

+ 2γ2τ
2
i σ1(p − 1)

]

=
1

4pλ2
j

[
(2σ1 + pσ2)

2∑

i=1

1
ρ2

i τi
+ 2γ2σ1(p − 1)

]
.

In order to prove (36), we will use (20)

PIFi(x,apr,j, F ) = (−1)i+1 1
ρiλj

IF(x,mij , Fi) +
p∑

s=1

µ2s

ρ2
2λjλs

PIFi(x,Spr,2,js, F )

−
p∑

s=1

µ1s

λjλs
PIFi(x,Spr,1,js, F )

= (−1)i+1 1
ρiλj

IF(x,mij , Fi) +
p∑

s=1

µ2s

ρ2
2λjλs

[(A2δi2 − ρ2 A1 δi1) λjδjs

+ ρ2PIFi(x,Spr,1,js, F )] −
p∑

s=1

µ1s

λjλs
PIFi(x,Spr,1,js, F )

= (−1)i+1 1
ρiλj

IF(x,mij , Fi) +
µ2j

ρ2
2λj

(A2δi2 − ρ2 A1 δi1)

+
1
λ2

j

[
µ2j

ρ2
− µ1j

] [
τi

ρi
IF(x,Υi,jj, Fi) −

τi

ρi
λj Ai + λjA1δi1

]

+
∑

s6=j

1
λjλs

[
µ2s

ρ2
− µ1s

]
τi

ρi
IF(x,Υi,js, Fi) .

Thus,

PIF1(x,apr,j, F ) =
1
λj

IF(x,m1j , F1) −
A1

λj

[
τ1

µ2j

ρ2
+ (1 − τ1)µ1j

]

+
1
λ2

j

[
µ2j

ρ2
− µ1j

]
τ1 IF(x,Υ1,jj, F1) +

∑

s6=j

1
λjλs

[
µ2s

ρ2
− µ1s

]
τ1 IF(x,Υ1,js, F1) ,
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PIF2(x,apr,j, F ) = − 1
ρ2λj

IF(x,m2j , F2) +
A2

λj

[
µ2j

ρ2
2

(1 − τ2) + µ1j

τ2

ρ2

]

+
1
λ2

j

[
µ2j

ρ2
− µ1j

]
τ2

ρ2
IF(x,Υ2,jj, F2) +

∑

s6=j

1
λjλs

[
µ2s

ρ2
− µ1s

]
τ2

ρ2
IF(x,Υ2,js, F2) .

Therefore, using A1, A2, (44), (45) and the asymptotic independence between µ̂i and Vi, it follows
that

EF1

(
PIF1(x,apr,j , F )2

)
=

1
λj

σ3 +
(2σ1 + pσ2)µ2

1j

p λ2
j

+ 2σ1
p − 1

p

τ2
1

λ2
j

[
µ2j

ρ2
− µ1j

]2

+ τ2
1 σ1

∑

s6=j

[
µ2s

ρ2
− µ1s

]2 1
λjλs

EF2

(
PIF2(x,apr,j , F )2

)
=

1
ρ2λj

σ3 +
(2σ1 + pσ2)µ2

2j

p ρ2
2λ

2
j

+ 2σ1
p − 1

p

τ2
2

λ2
j

[
µ2j

ρ2
− µ1j

]2

+ τ2
2 σ1

∑

s6=j

[
µ2s

ρ2
− µ1s

]2 1
λjλs

,

which, together with (28), entails the desired result.

Finally, after some algebra we obtain that

PIFi(x, cpr, F ) = (−1)i
(

Pi1 +
1
2
Pi5

)
− τi Pi4 ,

where Pi1 and Pi4 are defined (41) and (43), while

Pi5 =
p∑

j=1

IF(x,Υi,jj, Fi)
λij

[
(−1)iτi (y1j − y2j) + 1 − τ1y2 − τ2y1

]

with yij = µ2
ij/λij . Now using (40), it follows easily that EFi

(
P 2

i5

)
= vi5 concluding the proof.

Proof of Theorem 4.4. As in the previous Theorems, we need to calculate EFi [PIFi(x,aeq,j, F )]2.
Note that

EFi [PIFi(x,aeq,j, F )]2 = varFi [(−1)i+1 1
λj

IF(x,mij , Fi)]+τ2
i varFi

[ p∑

s=1

1
λjλs

IF(x,Υi,js, Fi) (µ2s − µ1s)

]
,

since covFi [IF(x,mij , Fi), IF(x,Υi,`s, Fi)] = 0. Using A1 and A2, we have that

EFi [PIFi(x,aeq,j, F )]2 =
σ3

λj
+ τ2

i


∑

s6=j

σ1

λ2
jλ

2
s

λjλs (µ2s − µ1s)
2 +

(2σ1 + σ2)
λ4

j

λ2
j

(
µ2j − µ1j

)2




=
σ3

λj
+ τ2

i

[
σ1

p∑

s=1

1
λjλs

(µ2s − µ1s)
2 +

(σ1 + σ2)
λ2

j

(
µ2j − µ1j

)2
]

and from (28), we get

asvar(α̂eq,j) = σ3

2∑

i=1

1
τiλj

+ σ1

p∑

s=1

1
λjλs

(µ2s − µ1s)
2 +

(σ1 + σ2)
λ2

j

(
µ2j − µ1j

)2
.
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As in the proof of Theorem 4.3, after some algebra, we obtain that PIFi(x, ceq, F ) = (−1)i Pi1 +
Pi6/2 − τi Pi4, where Pi1 and Pi4 are defined (41) and (43), while

Pi6 = τi

p∑

j=1

IF(x,Υi,jj, Fi)
λj

2∑

k=1

(−1)k
µ2

kj

λj
.

Using (40), after straightforward calculations, we get that EFi

(
P 2

i6

)
= vi6, concluding the proof.
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Estimated\ True Model Level 2 Level 3 Level 4
Coefficient

∆̂jj dif = cpc dif = cpc > pr dif = cpc > pr > 0

∆̂js dif ≥ cpc dif ≥ cpc = pr dif > cpc = pr = 0

α̂j dif ≥ cpc dif ≥ cpc ≥ pr dif ≥ cpc ≥ pr ≥ eq

ξ̂ dif ≥ cpc dif ≥ cpc ≥ pr dif ≥ cpc ≥ pr ≥ eq

Table 1: Relationship among the asymptotic variances under the different hierarchical models. dif, cpc,
pr, and eq indicate the model used to estimate the parameters, i.e., the model used for discrimination.
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Figure 1: a) PIF1(x, Ddif,11, F ) b) PIF1(x, Dcpc,11, F ) c) PIF1(x, Dpr,11, F ) at F = F1 × F2 with F1 =
N (0, diag(2, 1)) and F2 = N (µ2, 4diag(2, 1)).
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Figure 2: a) PIF1(x, Ddif,12, F ) b) PIF1(x, Dcpc,12, F ) c) PIF1(x, Dpr,12, F ) at F = F1 × F2 with F1 =
N2 (0, diag(2, 1)) and F2 = N2 (µ2, 4diag(2, 1)).
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Figure 3: a) ‖PIF1(x, adif, F )‖ b) ‖PIF1(x, acpc, F )‖ c) ‖PIF1(x, apr, F )‖ at F = F1 × F2 with F1 =
N2 (0, diag(2, 1)) and F2 = N2 (µ2, 4diag(2, 1)).
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Figure 4: Estimated misclassification rates under Design 1. Diamonds correspond to Qdif, squares to
Qcpc, inverted triangles to Qpr and circles to the linear discrimination rule. The horizontal dashed line
indicates the optimal error rate.
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Figure 5: Estimated misclassification rates under Design 2. Diamonds correspond to Qdif, squares to
Qcpc, inverted triangles to Qpr and circles to the linear discrimination rule. The horizontal dashed line
indicates the optimal error rate.
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Figure 6: Estimated misclassification rates under Design 3. Diamonds correspond to Qdif, squares to
Qcpc, inverted triangles to Qpr and circles to the linear discrimination rule. The horizontal dashed line
indicates the optimal error rate.
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Figure 7: Estimated misclassification rates under Design 4. Diamonds correspond to Qdif, squares to
Qcpc, inverted triangles to Qpr and circles to the linear discrimination rule. The horizontal dashed line
indicates the optimal error rate.

32



C0 C1 C2

Sample Covariance

n
20 40 60 80 100

0.
14

0.
16

0.
18

n
20 40 60 80 100

0.
14

0.
18

n
20 40 60 80 100

0.
15

0.
25

0.
35

Donoho–Stahel estimator

n
20 40 60 80 100

0.
14

0.
16

0.
18

n
20 40 60 80 100

0.
14

0.
18

n
20 40 60 80 100

0.
15

0.
25

0.
35

S−estimator

n
20 40 60 80 100

0.
14

0.
16

0.
18

n
20 40 60 80 100

0.
14

0.
18

n
20 40 60 80 100

0.
15

0.
25

0.
35

Figure 8: Estimated misclassification rates under Design 5. Diamonds correspond to Qdif, squares to
Qcpc, inverted triangles to Qpr and circles to the linear discrimination rule. The horizontal dashed line
indicates the optimal error rate.
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