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Abstract

This paper focuses on the problem of testing the null hypothesis H0β : β =
βo and H0g : g = go, under a semiparametric partly linear regression model
yi = x′

iβ + g(ti) + εi, 1 ≤ i ≤ n by using a three–step robust estimate for the
regression parameter and the regression function. Two families of tests statistics
are considered for H0β : β = βo and their asymptotic distributions are studied
under the null hypothesis and under contiguous alternatives. A statistic is
introduced to test the nonparametric component which turns out to behave
more resistantly than the classical one. A Monte Carlo study is performed to
compare the finite sample behavior of the proposed tests with the classical one.
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1 Introduction

Let us assume that (yi,x
′
i, ti)

′ are independent observations that follow a partly linear
regression model given by yi = β′xi + g(ti) + εi, 1 ≤ i ≤ n, where yi ∈ IR, ti ∈ IR,
xi = (xi1, . . . , xip)

′ ∈ IRp and the errors εi are independent and independent of (x′
i, ti)

′. As
in Speckman (1988), Linton (1995), He et al. (2002) and González Manteiga & Aneiros
Pérez (2003) we will assume that the covariates (x′

i, ti)
′ are nonparametrically related

satisfying xij = φj(ti) + zij, 1 ≤ i ≤ n, 1 ≤ j ≤ p, where the errors zij are independent
and independent of ti.

Thus, the model that will be considered in this paper can be written as

{
yi = β′xi + g(ti) + εi 1 ≤ i ≤ n ,
xij = φj(ti) + zij 1 ≤ i ≤ n , 1 ≤ j ≤ p ,

(1)

where the errors εi are independent and independent of (x′
i, ti)

′ and the errors zij are
independent and independent of ti. We will assume that g and φj are smooth functions.

This model is a flexible generalization of the linear model since it includes a nonpara-
metric component. Model (1) can be a suitable choice when one suspects that the response
y depends linearly on x, but that it is nonparametrically related to t. The components
of β may have, for instance, interesting meaning and in that case, tests on the regression
parameter may be of particular interest.

Several authors have studied model (1). See, for instance, Denby (1986), Robinson
(1988), Green & Silverman (1995), Speckman (1988) who investigated some asymptotic
results using smoothing splines or kernel techniques. In particular, Robinson (1988) ex-
plained why estimates of the regression parameter based on incorrect parametrization of
the function g are generally inconsistent and proposed a least square estimator of β which
will be root–n consistent by inserting nonparametric regression estimators in the nonlin-
ear orthogonal projection on t. Estimates based on kernel weights were also considered
by Severini & Wong (1992) for the independent setting. An extensive description of the
different results obtained in partly linear regression models can be found in Härdle et
al. (2000). A more general model for longitudinal data, is studied in Sun & Wu (2005),
who considered a time–varying coefficient regression model. More precisely, their model
includes another covariate wi that appears multiplying the non–parametric regression
function g. Furthermore, all random variables involved in the model are time–depending
and observed on a compact interval time. Sun & Wu (2005) provide a kernel–based
weighted least squares approach to the problem.

In the context of hypothesis testing, Gao (1997) established a large sample theory for
testing H0β : β = 0 in model (1) and, in addition to this, Härdle et al. (2000) tested
H0g : g = g0 too. Recently, González Manteiga & Aneiros Pérez (2003) studied the case
of dependent errors.

It is well known that, both in linear regression and in nonparametric regression, least
squares estimators can be seriously affected by anomalous data. Brillinger, who discusses
Stone’s paper (1977) pointed out that M−estimates of the conditional expectation were

2



desirable in order to achieve robustness against outliers, since the usual estimates, being
a weighted average of the response variables, are very sensitive to large fluctuations of
them, in particular when the independent variables ti are close to the point t at which
the regression function is to be estimated. This behavior was also described in Boente &
Fraiman (1991a) where a review of some of the results obtained for M−smoothers can be
found for the independent setting and for nonparametric time series (see also Robinson,
1984). As mentioned by Härdle (1990) “From a data–analytic viewpoint, a nonrobust
behavior of the smoother is sometimes undesirable.· · · Any erratic behavior of the non-
parametric pilot estimate will cause biased parametric formulations”. Robust estimates
in a nonparametric setting can thus be defined as insensitive to a single wild spike outlier.
In this sense, Hampel’s comment on Stone (1977) paper is highlighting. In a smooth
framework, as it is the case of the partly linear model we are considering, Hampel notes
that “If we believe in a smooth model without spikes, . . ., some robustification is possible.
In this situation, a clear outlier will not be attributed to some sudden change in the true
model, but to a gross error, and hence it may be deleted or otherwise made harmless”.
For the regression model, Carroll & Ruppert (1988) described this idea as follows: “Ro-
bust estimators can handle both data and model inadequacies. They will downweight
and, in some cases, completely reject grossly erroneous data. In many situations, a simple
model, will adequately fit all but a few unusual observations”. The same statement holds
for partly linear models, where large values of the response variable yi can cause a peak
on the estimates of the smooth function g in the neighborhood of ti. Moreover, large
values of the response variable yi combined with high leverage points xi produce also,
as in linear regression, breakdown of the classical estimates of the regression parameter
β. To overcome this problem, Bianco & Boente (2004) considered a kernel–based three–
step procedure to define robust estimates under the partly linear model (1). A different
strategy was suggested by Bhattacharya & Zhao (1997), who defined a

√
n−consistent

estimator of β when p = 1 and the carriers x lie in a compact set by a bandwidth–matched
M−estimation procedure. Their estimators are based on differences of the observations
with kernel weights and thus, Fisher–consistency is automatically ensured. When con-
sidering unbounded carriers a weight function depending on xi − xj, i 6= j, needs to be
included to deal with high leverage points in the carriers x. Another possibility could be
to define bandwidth–matched S−estimators, for instance.

Spline–based estimators are an alternative to kernel methods. In particular, in partly
linear models with longitudinal data, He et al. (2002) introduced M−estimators to esti-
mate the regression parameter β and the spline coefficients. A weighted version of this
procedure can also be defined to protect against outliers in the covariates x. When the
dimension of the covariates x is high, a different approach should be taken to guarantee a
better breakdown point. An alternative is to consider a high–breakdown point regression
procedure, such as S or MM−estimators, to estimate the regression parameter β and the
spline coefficients. However, the study of the asymptotic properties of these new classes
of estimators and of the test statistics derived from them deserve further research and is
not investigated here.

Beyond the importance of developing robust estimators in more general settings, the
work on testing also deserves attention. An up–to–date review of robust hypothesis testing
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results can be found in He (2002). The aim of this paper is to propose a class of tests based
on the three–step robust procedure proposed by Bianco & Boente (2004). In Section 2, we
remind the definition of the three–step robust estimates and their asymptotic properties.
The test statistics for the regression parameter are introduced in Section 3, where their
asymptotic behavior under the null hypothesis and contiguous alternatives is studied.
Besides, in Section 4, we present a robust alternative to test hypothesis concerning the
regression function g. In Section 5, we present the results of a Monte Carlo study and in
Section 6, an application to a real data set. Finally, in Section 7 we briefly discuss a test
for the nonparametric component and we give some final conclusions. Proofs are given in
the Appendix.

2 The robust estimators

Let (Y,X′, T )′ be a random vector with the same distribution as (yi,x
′
i, ti)

′, that is

Y = β′X + g(T ) + ε and Xj = φj(T ) + Zj , (2)

where ε has distribution F (·/σε) and is independent of (X′, T )′, with X = (X1, . . . , Xp)
′.

The parameter σε denotes a scale parameter for the errors which does not need to be
equal to the square root of the variance, since we will not assume the existence of second
moments as in the classical approach, where it is also assumed that E (ε) = 0, E (Z) =
0 and E (‖Z‖2) < ∞, where Z = (Z1, . . . , Zp)

′. Model (2) states a structure on the
regression variables that avoids the non–identifiability of the model (see Chen (1988) and
Robinson (1988) for a discussion).

In the classical approach, φj(t) = E(Xj|T = t) and, thus, g(t) = φo(t) − β′φ(t)
where φo(t) = E(Y |T = t) and φ(t) = (φ1(t), . . . , φp(t))

′. Hence, Y − φo(t) = β′(X −
φ(t))+ ε, which suggests, as noted by Robinson (1988), that estimators of φo(t) and φ(t),
φ̂o(t) and φ̂(t), can be inserted prior to the estimation of the regression parameter to
solve the problem under non–orthogonality. As mentioned by Chen & Shiau (1994), the
least squares procedure proposed independently by Denby (1986) and Speckman (1988),
can be related to the partial regression procedure in linear regression. As mentioned
in the Introduction, the least squares estimators, used at each step, can be seriously
affected by a small fraction of outliers, as in the purely parametric and nonparametric
models. If the errors ε and Zj have a symmetric distribution, φo(t) and φ(t) can also
be thought as robust conditional location functionals such as the conditional median,
satisfying φo(t) = β′φ(t)+g(t). So, it may be preferable to estimate these nonparametric
regression functions through any robust smoothing and the regression parameter by a
robust regression estimator. For a discussion regarding the choice of the score function
leading to the conditional location functionals, see He et al. (2002).

Putting these ideas together, Bianco & Boente (2004) introduced a three–step robust
procedure which can be described as follows:

• Step 1: Estimate φj(t), 0 ≤ j ≤ p, through a robust smoothing, as local medians
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or local M–type estimates with kernel weights with bandwidth parameter b. Denote

φ̂j(t), 0 ≤ j ≤ p, the obtained estimates and φ̂(t) =
(
φ̂1(t), . . . , φ̂p(t)

)′
.

• Step 2: Estimate the regression parameter by applying any robust regression proce-
dure to the residuals yi− φ̂o(ti) and xi− φ̂(ti). Let β̂ denote the obtained estimator.

• Step 3: Define the estimate of the regression function g as ĝ(t, β̂) = φ̂o(t)− β̂
′
φ̂(t).

In Step 3, an alternative estimator of the regression function g can be obtained by ro-

bustly smoothing the residuals yi − β̂
′
xi. This can also be done using kernel weights.

However, a different smoothing parameter h than the one used in Step 1 may be prefer-

able, as the residuals yi − β̂
′
xi have a smaller variability than the original variables yi.

This is the approach we will follow in Section 4, where the dependence of the estimators
on the smoothing parameter will be explicited.

As described in Step 2, the robust estimation of the regression parameter can be
performed by applying to the residuals r̂i = yi − φ̂o(ti) and ẑi = xi − φ̂(ti) any of
the robust methods proposed for linear regression. Bianco & Boente (2004) studied the
behavior of the estimate β̂ defined as any solution of

n∑

i=1

ψ1

(
r̂i − ẑ′iβ̂

sn

)
w2 (‖ẑi‖) ẑi = 0, (3)

where ψ1 and w2 are a score and a weight function, respectively, and sn is a robust
consistent estimate of the residuals scale. This family of estimators includes, among
others, GM , S and MM−estimators. These authors showed that, under model (1),

when ψ1 is an odd function and the errors have a symmetric distribution, if sn
p−→ σ0,

0 < σ0 < ∞, then
√
n(β̂ − β) is asymptotically normally distributed with asymptotic

covariance matrix given by Σ = A−1BA−1, where

A = E
(
ψ′

1

(
ε

σ0

))
E (w2 (‖Z‖)ZZ′ ) (4)

B = σ2
0 E

(
ψ2

1

(
ε

σ0

))
E
(
w2

2 (‖Z‖)ZZ′
)
. (5)

This result extends straighforward if the oddness of the score function and the symmetry
assumption on the errors distribution are replaced by E (ψ1 (ε/σ)) = 0, for any σ > 0.
This last condition is the one required all over this paper to allow a more bigger family
of errors distribution. In practice, the robust scale estimator is calibrated to achieve
asymptotically unbiased estimators of σε under the central model. That is, if Fn denotes
the empirical distribution function of the residuals and the scale estimator can be written
as sn = S(Fn), with S(G) a given scale functional, under mild assumptions, we have that

sn
p−→ σ0 = S(F (·/σε)). Usually, the practitioner calibrates the scale functional S such

that, at the normal distribution, σ0 = σε.

An alternative choice to the estimator given by (3) is to consider one–step high break-
down point regression estimates. More precisely, denoting by β̂I an initial regression
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estimate with high breakdown point and by sI = κmedian
1≤i≤n

(
|r̂i − ẑ′iβ̂I|

)
the related scale

estimator with calibrating constant κ, we can define the one–step estimator as

β̂ = β̂I +sI

{
n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̂I

sI

)
w2 (‖ẑi‖) ẑiẑ

′
i

}−1{ n∑

i=1

ψ1

(
r̂i − ẑ′iβ̂I

sI

)
w2 (‖ẑi‖) ẑi

}
. (6)

As in the location–scale and regression models (see, for instance, Bickel (1975) and Simp-
son et al. (1992)), the one–step estimator improves the order of convergence of the initial
estimate and will have the same asymptotic behavior as the solution of (3).

3 Tests for the regression parameter

3.1 The statistics

In many situations we are interested in finding out the impact of the covariates x on the
response variable y. That is, we need to make inference on the slope parameter β or on
some of its components. In this Section, we focus on the problem of testing, under model
(1), the parametric hypothesis H0β : β = βo. It seems natural to test H0β through the
Wald–type statistic

D(β̂, Σ̂, H0β) = (β̂ − βo)
′ Σ̂

−1
(β̂ − βo) , (7)

where Σ̂ is an estimate of the asymptotic covariance matrix of β̂. When considering the
estimates defined through (3), as in Markatou & He (1994), two estimates of Σ may be
considered. The first one is given by Σ̂1 = Â(β̂)−1B̂(β̂)Â(β̂)−1, where

Â(β) =
1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ

sn

)
w2 (‖ẑi‖) ẑiẑ′i (8)

B̂(β) = s2
n

1

n

n∑

i=1

ψ2
1

(
r̂i − ẑ′iβ

sn

)
w2

2 (‖ẑi‖) ẑiẑ′i , (9)

and the second one by Σ̂2 = Ã(β̂)−1B̃(β̂)Ã(β̂)−1, where

Ã(β) =
1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ

sn

)
1

n

n∑

i=1

w2 (‖ẑi‖) ẑiẑ′i (10)

B̃(β) = s2
n

1

n

n∑

i=1

ψ2
1

(
r̂i − ẑ′iβ

sn

)
1

n

n∑

i=1

w2
2 (‖ẑi‖) ẑiẑ′i . (11)

Note that, under general conditions, γ̂(x, t) = x′β̂ + ĝ(t, β̂) will be a consistent es-
timate for the regression function γ(x, t) = x′β + g(t). On the other hand, under the
null parametric hypothesis H0β, the function γ(x, t) can be consistently estimated by
γ̂o(x, t) = x′βo + ĝ(t,βo). Therefore, we can consider the test statistic

S(γ̂, H0β) =
1

n

n∑

i=1

(γ̂(xi, ti) − γ̂o(xi, ti))
2
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that measures the difference between the null and the alternative hypothesis. When
w2 ≡ 1, i.e., for fixed covariates xi or when we suspect that no leverage points are
present, D(β̂, Σ̂2, H0β) = cn S(γ̂, H0β), with cn

cn = s2
n

1

n

n∑

i=1

ψ2
1

(
r̂i − ẑ′iβ̂

sn

) (
1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̂

sn

))−2

.

However, for random covariates x, it is necessary to introduce a weight function w2 in
order to control possible leverage points.

Another possibility is to consider score–type tests, which were studied for regression
models by Markatou & He (1994). Define the score

Un(β) =
1

n
sn

n∑

i=1

ψ1

(
r̂i − ẑ′iβ

sn

)
w2 (‖ẑi‖) ẑi ,

where the function w2 weights the influence of the predicted carriers ẑi, ψ1 is a bounded
score function and sn denotes a consistent estimate of the residuals scale. When testing
H0β, the score–type test statistic can be defined through the quadratic form

Vn(Ĉ, H0β) = Un(βo)
′Ĉ−1Un(βo) . (12)

The matrix Ĉ denotes a consistent estimate of B, the asymptotic covariance matrix of
Un(βo), and it can be chosen as the matrix B̂(β̂) defined in (9) or the matrix B̃(β̂)
defined in (11).

In regression, one of the most frequent hypothesis testing problems involves only a

subset of the regression parameter. Let β = (β′
(1),β

′
(2))

′, β̂ = (β̂
′
(1), β̂

′
(2))

′ and x =
(x′

(1),x
′
(2))

′, where β(1) ∈ IRq. In order to test H0β(1)
: β(1) = β(1),o , β(2) unspecified, one

may use the statistic

D1(β̂(1), Σ̂, H0β(1)
) = (β̂(1) − β(1),o)

′ Σ̂
−1

11 (β̂(1) − β(1),o) , (13)

where Σ̂11 denotes the q× q submatrix of Σ̂, corresponding to the coordinates of β(1). A
score–type test statistic defined as

V (1)
n (Ĉ, H0β(1)

) = Un(β̂
(1)

)′ Ĉ−1 Un(β̂
(1)

) , (14)

can also be considered, where β̂
(1)

=
(
β′

(1),o, β̂
′
(2)

)′
and β̂(2) are the last p− q coordinates

of β̂ defined in (3) or (6).

3.2 Asymptotic distribution of the test statistics

In this Section, we will state the asymptotic behavior of the test statistics based on
the estimates of the regression parameter, defined through (3). In fact, combining the
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arguments used in Simpson et al. (1992) with those in Bianco & Boente (2004), it can

be shown that, if nτ
(
β̂I − β

)
is bounded in probability where 1/4 < τ ≤ 1/2, then the

statistics based on the one–step estimate defined in (6) have the same behavior as those
based on the solution of (3).

In order to derive the asymptotic distribution of the regression parameter estimates,
Bianco & Boente (2004) required that ti ∈ [0, 1] and assumptions N1 to N7 below.

N1. ψ1 is a bounded and twice continuously differentiable function with bounded deriv-
atives ψ′

1 and ψ′′
1 , such that ϕ1(t) = tψ′

1(t) and ϕ2(t) = tψ′′
1 (t) are bounded.

N2. E (w2(‖Z‖)‖Z‖2) <∞ and the matrix

A = E
(
ψ′

1

(
ε

σ0

))
E (w2 (‖Z‖)ZZ′ )

is non–singular.

N3. w2(u) = ψ2(u)u
−1 > 0 is a bounded function, Lipschitz of order 1. Moreover, ψ2

is also a bounded and continuously differentiable function with bounded derivative
ψ′

2, such that λ2(t) = tψ′
2(t) is bounded.

N4. E (w2(‖Z‖)Z) = 0.

N5. The functions φj(t), 0 ≤ j ≤ p, are continuous with first derivative φ′
j(t) continuous

in [0, 1], with φo(t) = β′φ(t) + g(t).

N6. φ̂j(t), 1 ≤ j ≤ p, are such that φ̂j(t) has first continuous derivative and

n
1
4 sup
t∈[0,1]

|φ̂j(t) − φj(t)|
p−→ 0, 1 ≤ j ≤ p (15)

sup
t∈[0,1]

|φ̂′
j(t) − φ′

j(t)|
p−→ 0, 1 ≤ j ≤ p . (16)

N7. φ̂o(t) has first continuous derivative and

n
1
4 sup
t∈[0,1]

|φ̂o(t) − φo(t)|
p−→ 0 (17)

sup
t∈[0,1]

|φ̂′
o(t) − φ′

o(t)|
p−→ 0 , (18)

with φo(t) = β′φ(t) + g(t) when model (1) holds.

In order to study the asymptotic behavior of the test statistics under contiguous
alternatives we will also require the following assumption.

N8. φ̂o(t) has first continuous derivative and

n
1
4 sup
t∈[0,1]

|φ̂o(t) − φo,n(t)|
p−→ 0 (19)

sup
t∈[0,1]

|φ̂′
o(t) − φ′

o,n(t)|
p−→ 0 , (20)

with φo,n(t) = β′
nφ(t) + g(t) when model (1) holds for βn = β0 + cn−1/2.
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In the next Theorems we derive the asymptotic distribution of the Wald and score–type
statistics under the null hypothesis and under a sequence of contiguous alternatives.

Theorem 1
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1), where εi are
independent of (x′

i, ti)
′ such that E (ψ1 (ε/σ)) = 0, for any σ > 0. Assume that ti are

random variables with distribution on [0, 1]. Denote by Σ̂ any consistent estimate of Σ.

Then, if sn
p−→ σ0, β̂ is a consistent estimate of the regression parameter and N1 to N6

hold, we have that

i) under H0β : β = βo, Wn = n D(β̂, Σ̂, H0β)
D−→ χ2

p, if N7 holds,

ii) under H1β : β 6= βo, Wn
p−→ ∞, for any fixed β, if N7 holds,

iii) under H1β(c) : β = βo + cn−1/2, Wn
D−→ χ2

p(θ) where θ = c′Σ−1c if N8 holds, for
any c ∈ IRp.

Lemma 1 in the Appendix shows that Σ̂1 or Σ̂2 are suitable choices for Σ̂.

Theorem 2
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1), where εi are
independent of (x′

i, ti)
′ such that E (ψ1 (ε/σ)) = 0, for any σ > 0. Assume that ti are

random variables with distribution on [0, 1] and that ψ1 is an increasing function. Then,

if sn
p−→ σ0, Ĉ

p−→ B, β̂ is a consistent estimate of the regression parameter and N1 to
N6 hold, we have that

i) under H0β : β = βo, Sn = n Vn(Ĉ, H0β)
D−→ χ2

p, if N7 holds,

ii) under H1β : β 6= βo, Sn
p−→ ∞, for any fixed β, if N7 holds,

iii) under H1β(c) : β = βo + cn−1/2, Sn D−→ χ2
p(θ) where θ = c′Σ−1c if N8 holds, for

any c ∈ IRp.

Remarks

1. When considering local M–smoothers in Step 1 of the estimation procedure, fol-
lowing analogous arguments to those used in Boente & Fraiman (1991b), it can be
shown that (15) and (17) hold under regularity conditions on the kernel for the opti-
mal bandwidth. On the other hand, (16) and (18) can also be derived using similar
arguments to those considered by Boente et al. (1997) in Proposition 2.1, for the
fixed design setting. Assumption N8 holds for local M–smoothers, for instance, if ε
has a bounded density f since, in this case, v(β) = ε+ Z′β has a density majorized
by ‖f‖∞, independently of the value of β. This entails that Assumption 3 (ii) and
(iii) in Boente & Fraiman (1991b) hold uniformly in β and thus, N8 can be derived
using similar arguments to those considered therein.
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2. It is worthwhile noticing that the condition E (ψ1 (ε/σ)) = 0, for any σ > 0, is
a common condition in robustness in order to guarantee Fisher–consistency of the
regression parameter and is fulfilled for instance, when ψ1 is an odd function and
the errors have a symmetric distribution.

3. Note that, under the conditions of Theorem 1 (iii), similar arguments to those used

in Lemma 1 and Theorem 1 in Bianco & Boente (2004) entail that β̂
p−→ βo, when

β = βn = βo + cn−1/2.

4. From Theorems 1 and 2, to test H0β at a given significance level α, two possible
consistent tests can be given:

• the Wald–test which rejects H0β if Wn > χ2
p,α,

and

• the score test that rejects H0β when Sn > χ2
p,α.

Note also that, as mentioned in Section 3.1, the matrix Ĉ can be chosen as the matrix
B̂(β̂) defined in (9) or the matrix B̃(β̂) defined in (11). Their weak consistency, which is
necessary for the results stated in Theorem 2, is derived in Lemma 1 in the Appendix.

Equivalent results to those given in the previous Theorems can be obtained when
the null hypothesis involves only a subset of q parameters. In Theorem 3, we state the
asymptotic distribution of the Wald–type statistic. Its proof is similar to that of Theorem
1. A similar result holds for the score–type statistic with increasing score function.

Theorem 3
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1), where εi are
independent of (x′

i, ti)
′ such that E (ψ1 (ε/σ)) = 0, for any σ > 0. Assume that ti are

random variables with distribution on [0, 1]. Denote by Σ̂, the matrix Σ̂1 or Σ̂2. Then,

if sn
p−→ σ0, β̂ is a consistent estimate of the regression parameter and N1 to N6 hold,

we have that

i) under H0β(1)
: β(1) = β(1),o, W1,n = n D1(β̂(1), Σ̂, H0β(1)

)
D−→ χ2

q, if N7 holds,

ii) under H1β(1)
: β(1) 6= β(1),o, W1,n

p−→ ∞, if N7 holds,

iii) under H1β(1)(c(1))
: β(1) = β(1),o + c(1)n

−1/2, W1,n
D−→ χ2

q(θ1) where θ1 = c′(1)Σ
−1
11 c(1)

if N8 holds, for any c(1) ∈ IRq.

4 Tests for the regression function

Under model (1), the regression function γ(x, t) equals β′x + g(t). In this Section, we
focus on testing the nonparametric component of γ, i.e., H0g : g = go.

10



4.1 The test Statistic

To make explicit the dependence on the smoothing parameters, in this Section we will
denote β̂(b) the estimator obtained in Step 2, while ĝ(t, β̂(b), b) denotes the estimate
defined in Step 3 as ĝ(t, β̂(b), b) = φ̂o(t) − φ̂(t)′β̂(b).

As mentioned in Section 2, in Step 3 an alternative estimator of the regression func-
tion g can be obtained by robustly smoothing the residuals yi − x′

iβ̂(b) with a different
smoothing parameter than the one used in Step 1, since the residuals yi − x′

iβ̂(b) may
have a smaller variability than the original variables yi. When we use h as smoothing
parameter, we denote the estimate ̂̂g(t, β̂(b), h), i.e., ̂̂g(t, β̂(b), h) solves

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ

(
yi − x′

iβ̂(b) − ̂̂g(t, β̂(b), h)

σ̂

)
= 0 , (21)

where σ̂ is an estimate of the error’s scale and ψ is a bounded differentiable score function.

Under the null nonparametric hypothesis H0g, γ̂
∗
o(x, t) = x′β̂(b) + go(t) is a consistent

estimate of the regression function γ(x, t). Thus, since γ̂b(x, t) = x′β̂(b)+ ĝ(t, β̂(b), b) and
̂̂γh(x, t) = x′β̂(b) + ̂̂g(t, β̂(b), h) are consistent estimates of γ(x, t), natural test statistics
for H0g are

S(γ̂, H0g) =
1

n

n∑

i=1

(γ̂b(xi, ti) − γ̂∗o(xi, ti))
2 =

1

n

n∑

i=1

(
ĝ(ti, β̂(b), b) − go(ti)

)2
, (22)

S(̂̂γ,H0g) =
1

n

n∑

i=1

(
̂̂γh(xi, ti) − γ̂∗o(xi, ti)

)2
=

1

n

n∑

i=1

(
̂̂g(ti, β̂(b), h) − go(ti)

)2
. (23)

We will focus our attention on S(̂̂γ,H0g), since as discussed in González Manteiga
and Aneiros Pérez (2003) for the classical test, to achieve consistent tests two different
smoothing parameters are needed.

For the sake of simplicity, we denote ̂̂g(t) = ̂̂g(t, β̂(b), h). Under mild conditions, it
can be shown that, if ε ∼ F (·/σε),

a) under H0g, we have that

√
n2h




1

n

n∑

i=1

(
̂̂g(ti) − go(ti)

)2
− eψ

∫ 1

0
K2(u)du

n h




D−→ N
(
0, σ2

S

)
, (24)

b) under contiguous alternatives of the form H1g : g(t) = go(t)+(n2h)−
1
4g∗(t), we have

that

√
n2h




1

n

n∑

i=1

(̂̂g(ti) − go(ti)
)2

− eψ

∫ 1

0
K2(u)du

n h




D−→ N
(∫

[g∗(u)]2du, σ2
S

)
, (25)

11



where σ2
S = 2 e2ψ

∫
(K ∗K)2 with eψ = σ2

εEψ
2 (ε/σε) {Eψ′ (ε/σε)}−2. By means of the

asymptotic distribution given in (24), to test H0g at a given significance level α, H0g is
rejected if

1

n

n∑

i=1

(
̂̂g(tiβ̂(b), h) − go(ti)

)2
>

σ̂Szα√
n2h

+ êψ

∫ 1

0
K2(u)du

n h
,

where êψ is an estimate of eψ and σ̂2
S = 2 ê2ψ

∫
(K ∗K)2.

An estimate of eψ can be constructed as follows. Denote

ε̂i = yi − xiβ̂(b) − ĝ(t, β̂(b), b) (26)

and let σ̂ be a robust scale estimator of σε, as, for instance, σ̂ = κmedian
1≤i≤n

(|ε̂i|). Then, we

can define

êψ =

σ̂2 1

n

n∑

i=1

[
ψ2
(
ε̂i
σ̂

)]

{
1

n

n∑

i=1

[
ψ′
(
ε̂i
σ̂

)]}2 .

4.2 Heuristics of the asymptotic behavior of the test statistic

We will outline the heuristics of the asymptotic distribution given in (24) and (25).

Since β̂ converges to β at a
√
n–rate, we can assume that β and σε are known. Then,

̂̂g(t) = ̂̂g(t, β̂(b), h) solves

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ

(
yi − x′

iβ − ̂̂g(t)
σε

)
= 0 ,

which is equivalent to

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ

(
g(ti) − ̂̂g(t) + εi

σε

)
= 0 . (27)

Using a first order Taylor’s expansion, we have that

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ
(
εi
σε

)
+

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ′
(
εi
σε

)
(g(ti) − ̂̂g(t))

σε
' 0 ,

which implies

1

nh

n∑

i=1

K
(
ti − t

h

)
ψ
(
εi
σε

)
+
Eψ′

(
ε

σε

)

σε

1

nh

n∑

i=1

K
(
ti − t

h

)
(g(ti) − ̂̂g(t)) ' 0 . (28)

12



From (28) we have the following approximation

̂̂g(t) ' σε

Eψ′
(
ε

σε

) 1

nh

n∑

i=1

K
(
ti − t

h

)



ψ
(
εi
σε

)
+
g(ti)Eψ

′
(
ε

σε

)

σε




.

Denote ũi the pseudo–observations

ũi = g(ti) +
σε

Eψ′
(
ε

σε

)ψ
(
εi
σε

)
= g(ti) + ε̃i .

Then, as in González Manteiga and Aneiros Pérez (2003), since ̂̂g(t) is a kernel estimate
over the pseudo–observations, under H0g we have that

√
n2h

[
1

n

n∑

i=1

(
̂̂g(ti) − go(ti)

)2
− V ar(ε̃)

nh

∫ 1

0
K2(u)du

]
D−→ N

(
0, σ2

S

)
,

where
σ2
S = 2[V ar(ε̃)]2

∫
(K ∗K)2 .

Since

V ar(ε̃) =
σ2
ε[

E
(
ψ′( ε

σε
)
)]2 E

(
ψ2
(
ε

σε

))
,

we get the desired result.

Using analogous arguments, we obtain (25), since underH1g : g(t) = go(t)+(n2h)−
1
4g∗(t),

the pseudo–observations ũi are given by

ũi = g(ti) +
σε

Eψ′
(
ε

σε

)ψ
(
εi
σε

)
= go(ti) + (n2h)−

1
4 g∗(ti) + ε̃i .

5 Monte Carlo study

5.1 Simulation study for H0β

5.1.1 General description

A simulation study was carried out in Splus, for the case p = 1. The S–code is available
upon request to the authors. To compare the behavior of the proposed tests with respect
to the classical ones, we have considered the tests based on:

• the Wald–type statistic computed using:

13



a) a GM−estimate with Huber functions with constants χ2
1,0.025 on the regression

variables and 1.6 on the residuals

b) a one-step estimate defined in (6) with the same score functions as in a) and
the least median of squares as initial estimate

c) the least squares estimate

• the score–type statistic where the residual scale and the matrix B are estimated
using:

a) the GM−estimates

b) the one-step estimates defined in (6).

In all the Tables and Figures the procedures based on least squares, GM and one–
step estimates will be denoted ls, gm and os, respectively. The Wald– statistic will be
indicated as W, while the score–type statistic as S.

The smoothing procedure uses local M–estimates based on the bisquare score function,
with tuning constant 4.685, and local medians as initial estimate. We have used the
standardized gaussian kernel with several bandwidth choices, to show the sensitivity of
the tests, both in level and power, with respect to bandwidth selection. The bandwidths
considered were b = 0.008, 0.02, 0.03, 0.04, 0.08 and 0.2. The bandwidth 0.08 corresponds
to a choice near the asymptotically optimal one with respect to the mean square error of
the least squares estimate of β (see Linton, 1995).

We performed 5000 replications generating independent samples of size n = 100 fol-
lowing the model

yi = βoxi +
π

4
sin(πti) + εi 1 ≤ i ≤ n ,

xi = 10(ti − 0.5)3 + zi 1 ≤ i ≤ n ,

where βo = 3, {zi}, {ti} and {εi} are independent, ti ∼ U(0, 1), zi ∼ N(0, σ2
z) and

εi ∼ N(0, σ2
ε ) with σz = 0.125 and σε = 0.05 in the non–contaminated case. To isolate the

comparison between the competitors from any border effect, data were in fact generated
at design points outside the interval [0, 1] as well.

The results for normal data sets will be indicated by C0, while C1 to C3 will denote
the following contaminations:

• C1: ε1, . . . , εn are i.i.d. distributed as 0.9 N(0, σ2
ε ) + 0.1 C(0, σε), where C(0, σε)

denotes the Cauchy distribution centered at 0 with scale σε. This contamination
inflates the errors and will mainly affect the variance of the regression estimates and
hence, both level and power.

• C2: ε1, . . . , εn are i.i.d. with distribution 0.9 N(0, σ2
ε ) + 0.1 N(0, 25σ2

ε ). Artificially
10 observations of the carriers, but not of the response variables, were modified to
be equal to 20 at equally spaced values of t. This case corresponds to introduce
high–leverage points. The aim of this contamination is to see how the bias of the
regression parameter estimates affects the level of the test.
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• C3: ε1, . . . , εn are i.i.d. with distribution 0.9 N(0, σ2
ε ) + 0.1 N(0, 25σ2

ε ). Artificially
one observation was modified, both in the carrier and in the response variable, and
set equal to (x0, y0) = (1.2, 4.1) at t = 0.5. The aim of this contamination is to
breakdown power at the alternative β = βo + ∆n−1/2 with ∆ = 2.4.

5.1.2 Results and comments

Tables 1 to 3 summarize the results of the simulations. In Table 1, we present, for
normal errors, i.e., the non–contaminated case C0, the observed frequencies of rejection
under the null hypothesis for two different sample sizes and their corresponding optimal
bandwidths. It is worth noticing that with n = 100 the observed frequencies are higher
than the nominal values, but with n = 500 they are near the actual levels, in particular
for α = 0.05. This shows the slow rate of convergence to the asymptotic distribution of
the tests statistics, perhaps due to the smoothing procedure. Note that n = 500 was the
sample size considered by González Manteiga & Aneiros Pérez (2003) in their simulation
study. For the remaining of this Monte Carlo study we considered samples of size n = 100
and nominal level α = 0.05.

To study the dependence on the smoothing parameter, we computed the frequencies of
rejection under the null hypothesis and at the alternative β = βo + ∆n−1/2 with ∆ = 2.4,
for several bandwidths and for the different tests statistics (Table 2). Since the results
for Wgm and Wos and for Sgm and Sos were very similar, we only report the results
for the first statistic and the last one. As expected, the bandwidth selection affects the
frequencies of rejection. For b = 0.2, the observed frequencies under the null hypothesis
are very much higher than the nominal levels. This can be explained by the oversmoothing
which causes a bias in the estimation of β. In fact, this bandwidth shows to be useless
under normality when we study the power for the different alternatives. For the robust
statistics, the bandwidth b = 0.04 leads to observed frequencies under H

0β closer to α.

Figure 1 presents the relative frequencies of rejection for two bandwidth choices. The
filled diamonds correspond to the values of the observed frequencies under C0, while the
triangles, circles and crosses to those observed under C1, C2 and C3, respectively. The
thick line is the asymptotic probability of rejection, πls, under the null hypothesis and
under the contiguous alternatives for the classical procedure when the errors are normally
distributed. This Figure shows that the classical test is non–informative under C2 and
that it is slightly sensitive under C1. On the other hand, the robust tests are stable under
C1, while the inclusion of leverage points slightly affects their power. To explain this loss
of power under C2, Figure 2 gives the boxplots of the estimates of β under the alternative

β = βo +
∆√
n

with ∆ = 1.2. These plots show the negative bias of the estimates, which

explains the loss of power.

Table 2 shows that, except for b = 0.2, the level of the robust procedures does not
breakdown. Besides, large values of the bandwidth lead to level breakdown under C2

since the regression functions are oversmoothed. The first two lines of Table 3 give the
asymptotic probability of rejection both for the classical procedure, πls, and for any of
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the robust ones, πr under normal errors. Table 3 shows that the single outlier introduced
in C3 breaksdown the power of the classical test for ∆ = 2.4. On the other hand, the
power of the robust tests seems stable in both cases, for this alternative. This stability is
also illustrated in Table 2 and in Figure 1. It should be noted that the classical procedure
breaksdown at ∆ = 2.4 for any choice of the bandwidth, except for b = 0.2 that produces
oversmoothing and is meaningless even for the null hypothesis with normal errors. It is
worth noticing that under C2 and C3, the robust tests reach lower power values due to
the bias of the estimators, as mentioned above.

5.2 Simulation study for H0g

Another simulation study was performed to compare the behavior of the proposed test
for the regression function with respect to the classical one. We have considered the tests
given in (23) for the case in which the estimates are computed through the robust three–
step procedure and through the classical least squares method. In the case of the classical
test we use kernel weights to estimate φo and φ1 in Step 1, least squares in order to
estimate the parametric component in Step 2 and we solve equation (21) with ψ(t) = t
for the estimation of g.

As in González Manteiga and Aneiros Pérez (2003), we considered 500 independent
samples of size n = 500 following the model

yi = βxi + g(t) + εi 1 ≤ i ≤ n , (29)

xi = ti + zi 1 ≤ i ≤ n , (30)

where β = 1, g(t) = φt2, φ = 0, 0.025, 0.05, 0.10, ti =
i− 0.5

n
, zi ∼ U(−0.5, 0.5),

εi ∼ N(0, σ2
ε ) with σε = 0.01 and {zi} and {εi} are independent. The situation φ = 0

corresponds to the null hyporthesis, while φ = 0.025, 0.05, 0.10 are the alternatives we
considered in our simulation study.

The smoothing procedure used a local M–estimate with bisquare score function, with
tuning constant 4.685, and local medians as initial estimate. In order to avoid boundary
effects we used Gasser and Müller’s weights with boundary kernels given by

wn,h(ti, tj) =





h−1
∫ j/n

(j−1)/n
K(

ti − u

h
)du if ti ∈ [h, 1 − h]

h−1
∫ j/n

(j−1)/n
Kq(

ti − u

h
)du if ti = qh ∈ [0, h)

h−1
∫ j/n

(j−1)/n
K∗
q (
ti − u

h
)du if ti = 1 − qh ∈ (1 − h, 1] .

The Epanechnikov kernel was used in the interval [h, 1−h], while in the boundary points
we used the boundary kernels Kq = (c2,qx+c1,q)I[−1,q](x) and K∗

q = (−c2,qx+c1,q)I[−q,1](x),
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where c1,q = 4(q3 + 1)(q + 1)−4 and c2,q = 6(1 − q2)(q + 1)−4. Boundary kernels were
considered, in this case, to improve the performance of the regression function estimator.

Several bandwidths were selected to investigate the sensitivity of the tests, both in level
and power, with respect to bandwidth choice. The bandwidths considered in Step 1 were
b = 0.04, 0.06, 0.08, 0.10, 0.12, while those chosen in Step 3 were h = 0.004, 0.006, 0.008.

For both the classical and the robust test, to compute the residual scale estimator, σ̂,
pilot bandwidths bo = ho = 0.25 were used.

In order to illustrate the level and power behavior of the tests in the presence of
outliers, we considered two contamination schemes:

• C1: ε1, . . . , εn are i.i.d. distributed as 0.9N(0, σ2
ε )+0.1C(0, σε), where C(0, σε) denotes

the Cauchy distribution centered at 0 with scale σε. This contamination was also
considered for the regression parameter.

• C4: Artificially 53 observations at equally spaced values of t were generated following
the model

yi = βxi + 5t2i + εi .

This case corresponds to introduce points that lie far from the central model with
the aim of breaking down the level of the test.

As above, we will identify the non–contaminated case given in (29) and (30) as C0.

The nominal level was fixed at α = 0.10.

In Tables 4 to 8, we present the observed frequencies of rejection under the null
hypothesis H0g : g(t) = 0 and under alternatives of the form g(t) = φt2, corresponding to

g∗(t) = 10
√

5h
1
4φt2.

Table 4 shows the observed frequencies of rejection of the classical test under the null
hypothesis and under different alternatives, when we consider the non–contaminated case
C0. In order to make the comparison easier, in the third column we show the asymptotic
probability of rejection for the classical test, πLS. Analogous results for the robust test
based on the statistic S(̂̂γ,H0g) are given in Table 5.

Tables 4 and 5 show that the observed frequencies of rejection for both tests reach
values very close to the asymptotic value πLS. They also exemplify the sensitivity of
both tests to the selection of the bandwidths. The selection of the smoothing parameters
deserves more attention and may be the subject of future works.

In Tables 6 and 7 we display the observed frequencies of rejection under the null
hypothesis H0g : g(t) = 0 and under the alternatives with φ = 0.025, 0.05, 0.10 in the case
of contamination C1.

Figure 3 shows the plot of the rejection frequencies of both tests for the particular
bandwidth choice b = 0.04 and h = 0.008 and for equispaced alternatives of the form
g(t) = φt2, with φ = k · 0.0125, 1 ≤ k ≤ 8. We represent in black the asymptotic power,
πLS, in blue the rejection frequencies of both tests under the non-contaminated case C0
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and in red the corresponding ones under the contamination C1. In order to distinguish
the curves, we plot squares for the robust test and circles for the classical one.

The scheme contamination C1 affects the power of the classical test. In fact the
observed percentages of rejection are all below 51 %, instead the observed powers of the
robust test, specially for high values of the second bandwidth h, are much more stable,
in the sense that they behave as in the non–contaminated case C0. This becomes also
evident from Figure 3, in which the curves for the LS and the robust procedure lie very
close under C0, while under C1 the observed frequencies lie very far away one from the
other.

Finally, Table 8 shows how the contamination scheme C4 affects the level of the classical
test, while the proposed robust test has a much more stable behavior.

6 An example

Daniel & Wood (1980) studied a data set obtained in a process variable study of a re-
finery unit. The response variable y is the octane number of the final product, while
the covariates represent the feed compositions (x = (x1, x2, x3)

′) and the logarithm of
a combination of process conditions scaled to [0, 1] (t). We have performed the test for
the hypothesis H0β(1)

: β3 = 0 with bandwidth b = 0.06. In order to avoid boundary

effects we used Gasser and Müller’s weights with boundary kernels, as in González Man-
teiga & Aneiros Pérez (2003) (see formula (7) therein). The Epanechnikov kernel was
used in the interval [h, 1 − h], while in the boundary points ti = qh or ti = 1 − qh,
0 ≤ q < 1, we used, respectively, the boundary kernels Kq(x) = (c2,qx+ c1,q)I[−1,q](x) and
K∗
q (x) = (−c2,qx+c1,q)I[−q,1](x), where c1,q = 4(q3+1)(q+1)−4 and c2,q = 6(1−q2)(q+1)−4.

Boundary kernels were considered, in this case, to improve the performance of the regres-
sion function estimator. The values of the estimates of β and the p−values corresponding
to the test statistics are given in Table 9. All test statistics reject H0β(1)

at level 0.05.

Note that the p−value of the classical test is quite near to the stated level, while the ro-
bust tests remain significant at level 0.01. Daniel & Wood (1980) discussed the presence
of three anomalous observations (labeled 75 to 77) which correspond to high values of
octanes associated with low values of the first component of the feed composition. These
observations extend the range of both variables (x1 and y) and thus correspond to out-
liers having large residuals associated with high leverage points. We repeat the analysis
excluding these three observations and the results, given in Table 9, show that now all
statistics reject the null hypothesis even at level 0.01. The change in the decision for the
classical test can be explained by the fact that the variances of the errors zij, j = 1, 2, 3,
decrease when removing the anomalous observations. In particular, the variance of zi1
decreases from 90.8322 to 30.5141. Similar conclusions are obtained, for instance, with
b = 0.1.
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7 Final Conclusions

We have introduced two resistant procedures to test hypothesis on the parametric com-
ponent in a partly linear model. The test statistics are robust versions of the classical
Wald and score–type statistics, already studied in the linear regression model.

Even when the tests statistics have a limiting χ2−distribution under the null hypothe-
sis and under contiguous alternatives, the simulation study illustrates the slow convergence
to the asymptotic distribution. Bootstrapping techniques could be implemented in order
to improve the convergence rate, but this task deserves further research that will be the
subject of a forthcoming work.

The simulation study also confirms the expected inadequate behavior of the classical
Wald test in the presence of outliers. All methods are very sensitive to the choice of
the smoothing parameter. This was also noticed by González Manteiga & Aneiros Pérez
(2003), who deal with the classical procedures under dependent errors. As mentioned by
these authors, more research in this direction is necessary. The proposed robust procedures
for the regression parameter perform quite similarly both in level and power, either under
normal errors or under the contaminations studied.

On the other hand, a robust alternative to the classical statistic to test simple hy-
pothesis on the nonparametric component was described. Under the null hypothesis and
under contiguous alternatives of order (n2 h)−

1
4 , the test statistic is asymptotically nor-

mally distributed, after bias correction and both, its asymptotic bias and its asymptotic
variance, depend on the score function. The simulation study seems encouraging, since
the robust test performs quite stable under the contamination schemes considered.

Appendix

From now on and for the sake of simplicity, we will denote yoi the observations of model
(1) when β = βo, r

o
i = yoi − φo(ti) with φo(t) defined as in N7 with β = βo and by

ri = yi − φo,n(ti) where yi follows model (1) when β = βo + cn−1/2.

For any matrix B ∈ IRp×p, let |B| = max
1≤`,j≤p

|b` j|.

The following Lemmas allow to derive the asymptotic behavior of the test statistic
D(β̂, Σ̂, H0β) under contiguous alternatives. The asymptotic results under the null hy-
pothesis are obtained taking c = 0, in these Lemmas.

Lemma 1
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1) with βn =
βo + cn−1/2, c ∈ IRp, and εi independent of (x′

i, ti)
′ with distribution F (·/σε). Assume

that ti are random variables with distribution on [0, 1]. Let φ̂j(t), 1 ≤ j ≤ p, be estimates
of φj(t) such that

sup
t∈[0,1]

|φ̂j(t) − φj(t)|
p−→ 0, 1 ≤ j ≤ p
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and φ̂o(t) such that

sup
t∈[0,1]

|φ̂o(t) − φo,n(t)|
p−→ 0 ,

where φo,n(t) = β′
nφ(t) + g(t). Assume that β̃

p−→ βo and sn
p−→ σ0. Then, under N1

to N3, Â
(
β̃
)

p−→ A and B̂
(
β̃
)

p−→ B, where Â(β) and B̂(β) are given in (8) and (9)

and A and B are given in (4) and (5), respectively.

Proof. Denote by β̃
∗

= β̃ − n−1/2c and by ξi intermediate points between ri − z′iβ̃ =

roi − z′iβ̃
∗

and r̂i − ẑ′iβ̃. Let η̂j(t) = φ̂j(t) − φj(t), 1 ≤ j ≤ p, η̂o(t) = φ̂o(t) − φo,n(t),
and η̂ = (η̂1(t), . . . , η̂p(t))

′. A Taylor expansion of first order and some algebra lead us to

Â(β̃) = A1
n + A2

n + A3
n + A4

n, where

A1
n =

1

n

n∑

i=1

ψ′
1

(
roi − z′iβ̃

sn

)
w2 (‖zi‖) ziz′i

A2
n = − 1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

sn

)
w2 (‖ẑi‖) [η̂(ti)z

′
i + ẑi η̂(ti)

′]

A3
n = − 1

n

n∑

i=1

ψ′′
1

(
ξi
sn

) (
η̂o(ti) − η̂(ti)

′β̃

sn

)
w2 (‖zi‖) ziz

′
i

A4
n =

1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

sn

)
[w2 (‖ẑi‖) − w2 (‖zi‖)] ziz′i .

As in Lemma 2 in Bianco and Boente (2004), we have that A1
n

p−→ A, since β̃
∗ p−→ βo.

Using N2, N3, the consistency of sn and β̃, the Law of Large Numbers and the fact that
max
0≤j≤p

sup
t∈[0,1]

|η̂j(t)|
p−→ 0, we get that Aj

n
p−→ 0 for j = 2, 3, 4.

Similar arguments lead to the consistency of B̂
(
β̃
)
.

An analogous result holds for the matrices Ã and B̃ defined in (10) and (11), respec-
tively.

Lemma 2
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1) with βn = βo +
cn−1/2 and εi independent of (x′

i, ti)
′ with distribution F (·/σε) such that E (ψ1 (ε/σ)) = 0,

for any σ > 0. Assume that ti are random variables with distribution on [0, 1]. Then, if

sn
p−→ σ0 and β̂ is a consistent estimate of the regression parameter satisfying (3), under

N1 to N6 and N8, n−1/2
(
β̂ − βo

)
D−→ N (c,Σ), where Σ = A−1BA−1 and A and B

are given in (4) and (5), respectively.

Proof. It will be enough to show that n
1
2

(
β̂ − βn

)
D−→ N (0,Σ). Write

Ln (σ,b) =
σ

n

n∑

i=1

ψ1

(
ri − z′ib

σ

)
w2 (‖zi‖) zi

L̂n (σ,b) =
σ

n

n∑

i=1

ψ1

(
r̂i − ẑ′ib

σ

)
w2 (‖ẑi‖) ẑi .
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Using a first order Taylor expansion around β̂, we get

L̂n (σ,βn) =
σ

n

n∑

i=1

ψ1

(
r̂i − ẑ′iβ̂

σ

)
w2 (‖ẑi‖) ẑi+

1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

σ

)
w2 (‖ẑi‖) ẑiẑ

′
i (β̂−βn) ,

with β̃ an intermediate point between β̂ and βn and thus β̃
p−→ βo. This implies that

L̂n (sn,βn) = 0 +
1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

sn

)
w2 (‖ẑi‖) ẑiẑ

′
i (β̂ − βn)

and so, we get (β̂−βn) = A−1
n L̂n (sn,βn) with An =

1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

sn

)
w2 (‖ẑi‖) ẑiẑ

′
i .

Using that β̂
p−→ βo, Lemma 1 implies that An

p−→ A and therefore, from N2 it will be
enough to show that

a) n
1
2 Ln (σε,βn)

D−→ N(0,B).

b) n
1
2

[
L̂n (sn,βn) − Ln (sn,βn)

]
p−→ 0

c) n
1
2 [Ln (sn,βn) − Ln (σε,βn)]

p−→ 0

a) Follows inmediately from the Central Limit Theorem, since ri − ziβ
′
n = εi.

b) Denote by ξi intermediate points between ri−z′iβ̃ and r̂i− ẑ′iβ̃. Let η̂j(t) = φ̂j(t)−
φj(t), 1 ≤ j ≤ p, η̂o(t) = φ̂o(t) − φo,n(t) and η̂ = (η̂1(t), . . . , η̂p(t))

′. Using a second order

Taylor expansion, we have that L̂n(sn,βn) = Ln(sn,βn)+ L̂n,1 + L̂n,2 + L̂n,3 + L̂n,4 + L̂n,5,
where

L̂n,1 =
1

n

n∑

i=1

ψ′
1

(
ri − z′iβn

sn

)
[η̂′(ti)βn − η̂o(ti)] w2 (‖zi‖) zi

=
1

n

n∑

i=1

ψ′
1

(
roi − z′iβo

sn

)
[η̂′(ti)βo − η̂o(ti)] w2 (‖zi‖) zi

L̂n,2 =
sn
n

n∑

i=1

ψ1

(
ri − z′iβn

sn

) [
w2 (‖ẑi‖) ẑi − w2 (‖zi‖) zi

]

=
sn
n

n∑

i=1

ψ1

(
roi − z′iβo

sn

) [
w2 (‖ẑi‖) ẑi − w2 (‖zi‖) zi

]

L̂n,3 =
sn
n

n∑

i=1

[
ψ1

(
r̂i − ẑ′iβn

sn

)
− ψ1

(
ri − z′iβn

sn

)]
w2 (‖ẑi‖) (ẑi − zi)

L̂n,4 =
1

2 sn

1

n

n∑

i=1

ψ′′
1

(
ξi
sn

)
[η̂′(ti)βn − η̂o(ti)]

2
w2 (‖ẑi‖) zi

L̂n,5 =
1

n

n∑

i=1

ψ′
1

(
ri − z′iβn

sn

)
[η̂′(ti)βn − η̂o(ti)] [w2 (‖ẑi‖) − w2 (‖zi‖)] zi .
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Since, N3 entails |w2 (‖ẑi‖) − w2 (‖zi‖) | ≤ C
‖η̂(ti)‖
‖zi‖

, where C = ‖w2‖∞ + Cψ2 , and

n
1
2 ‖L̂n,3‖ ≤ p ‖w2‖∞‖ψ′

1‖∞n
1
2

[
max
0≤j≤p

sup
t∈[0,1]

|η̂j(t)|
]2

(1 + p ‖βn‖)

n
1
2 ‖L̂n,4‖ ≤ 1

2

1

sn
‖ψ′′

1‖∞n
1
2

[
max
0≤j≤p

sup
t∈[0,1]

|η̂j(t)|
]2

(1 + p ‖βn‖)
2

(
‖ψ2‖∞ +

+ p ‖w2‖∞ max
0≤j≤p

sup
t∈[0,1]

|η̂j(t)|
)

n
1
2 ‖L̂n,5‖ ≤ pC‖ψ′

1‖∞ (1 + p ‖βn‖) n
1
2

[
max
0≤j≤p

sup
t∈[0,1]

|η̂j(t)|
]2

,

using (15), (17) and the consistency of sn, we get that for 3 ≤ j ≤ 5, n
1
2 ‖L̂n,j‖

p−→ 0.

It remains to show that n
1
2 L̂n,j

p−→ 0 for j = 1, 2, that is,

n
1
2
sn
n

n∑

i=1

ψ′
1

(
roi − z′iβo

sn

)
η̂`(ti)w2 (‖zi‖) zi

p−→ 0 0 ≤ ` ≤ p

n
1
2
sn
n

n∑

i=1

ψ1

(
roi − z′iβo

sn

) [
w2 (‖ẑi‖) ẑi − w2 (‖zi‖) zi

]
p−→ 0 .

which follows from the proof of Theorem 2 in Bianco and Boente (2004).

c) Since

n
1
2 [Ln (sn,βn) − Ln (σo,βn)] = n− 1

2

n∑

i=1

[ψ1,sn (ri − z′iβn) − ψ1,σn (ri − z′iβn)] w2 (‖zi‖) zi ,

we get the desired result using N1, the boundness of ψ2 and the maximal inequality for
covering numbers, as in b).

Lemma 3
Let (yi,x

′
i, ti)

′, 1 ≤ i ≤ n be independent random vectors satisfying (1) with βn =
βo + cn−1/2, c ∈ IRp, and εi independent of (x′

i, ti)
′ with symmetric distribution F (·/σε)

such that E (ψ1 (ε/σ)) = 0, for any σ > 0. Assume that ti are random variables with

distribution on [0, 1]. Then, if sn
p−→ σ0 under N1 to N6 and N8, n1/2Un (βo)

D−→
N (Ac,B) , where B is given in (5).

Proof. Define

L̂n (σ,b) =
σ

n

n∑

i=1

ψ1

(
r̂i − ẑ′ib

σ

)
w2 (‖ẑi‖) ẑi .

Then, we have that Un(βn) = L̂n (sn,βn). Following similar arguments to those con-
sidered in the proof of Theorem 2 of Bianco & Boente (2004), it can be shown that

n1/2L̂n (sn,βn)
D−→ N(0,B). Therefore, the proof will be complete if we show that
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n1/2 (Un(βn) − Un(βo))
p−→ −Ac. Using a first order Taylor expansion around βo and

if β̃ denotes an intermediate point, we have

L̂n (σ,βn) − L̂n (σ,βo) =
1

n

n∑

i=1

ψ′
1

(
r̂i − ẑ′iβ̃

σ

)
w2 (‖ẑi‖) ẑiẑ

′
i (βo − βn) = −n− 1

2 Â
(
β̃
)
c ,

which entails that n1/2 (Un(βn) − Un(βo)) = −Â
(
β̃
)
c. Hence, the proof follows from

Lemma 1.

Proof of Theorem 1. i) Follows inmediately from Lemma 2., with c = 0.

ii) Denote W(β) = n(β̂ − β)′Σ̂
−1

(β̂ − β). Thus,

Wn = n(β̂ − βo)
′Σ̂

−1
(β̂ − βo) = W(β) + n(β − βo)

′Σ̂
−1

(β̂ − βo + β̂ − β) .

Taking c = 0, Lemma 2 and the consistency of Σ̂ entail W(β)
D−→ χ2

p.

Besides, from the consistency of Σ̂ and the fact that β̂
p−→ β, we get that

(β − βo)
′ Σ̂

−1
(β̂ − βo + β̂ − β)

p−→ (β − βo)
′Σ−1(β − βo) > 0 and so, since W(β) > 0

with probability converging to 1, the result follows inmediately.

iii) Is an inmediate consequence of Lemma 2.

Proof of Theorem 2. i) and iii) follow inmediately from Lemma 3 and the consistency of
Ĉ.

ii) As in Lemma 2 in Bianco & Boente (2004), for any β 6= βo, it is easy to show that

Un(βo)
p−→ U with

U = σ0E

(
ψ1

(
ε + Z′ (β − βo)

σ0

)
w2 (‖Z‖)Z

)
.

Therefore, since ψ1 is increasing, U′ (β − βo) > 0 and hence we get that ‖n1/2Un(β)‖ p−→
∞, which entails the result using that Ĉ

p−→ B, with is positive definite.
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n = 100, b = 0.08 n = 500, b = 0.065
α Wls Wgm Wos Sgm Sos Wls Wgm Wos Sgm Sos

0.025 0.0556 0.0582 0.0626 0.056 0.0552 0.0306 0.0312 0.0326 0.0322 0.0322
0.050 0.0990 0.0958 0.1054 0.094 0.0940 0.0588 0.0614 0.0604 0.0610 0.0610

Table 1: Observed frequencies of rejection under the null hypothesis with normal errors (C0).

∆ = 0
C0 C2

b 0.008 0.02 0.03 0.04 0.08 0.2 0.008 0.02 0.03 0.04 0.08 0.2
Wls 0.1320 0.0776 0.0652 0.0614 0.0990 0.2416 1 1 1 1 1 1
Wgm 0.1220 0.0860 0.0726 0.0666 0.0958 0.4906 0.0712 0.0486 0.046 0.0438 0.1544 1
Sos 0.1174 0.0840 0.0690 0.0652 0.0940 0.4914 0.0690 0.0466 0.0438 0.0430 0.1512 1

∆ = 2.4
C0 C3

b 0.008 0.02 0.03 0.04 0.08 0.2 0.008 0.02 0.03 0.04 0.08 0.2
Wls 0.9984 1 1 1 0.9996 0.9996 0.1698 0.0346 0.0208 0.0168 0.0546 0.9932
Wgm 0.9962 0.9992 0.9994 0.9998 0.9994 0.9932 0.8532 0.9154 0.9498 0.9626 0.9730 0.9776
Sos 0.9962 0.9992 0.9994 0.9998 0.9992 0.9930 0.8554 0.9152 0.9472 0.9616 0.9696 0.9766

Table 2: Observed frequencies of rejection at β = 3+∆n−1/2, ∆ = 0 and 2.4 for different values
of the bandwidth under normal errors and under contaminations C2 and C3, respectively.
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∆
0 0.1 0.2 0.4 0.8 1.2 2.4

πls 0.0500 0.0572 0.0791 0.1701 0.5160 0.8508 1
πr 0.0500 0.0570 0.0783 0.1666 0.5046 0.8406 1
Wls 0.0614 0.0694 0.0942 0.1836 0.5050 0.8302 1

C0 Wgm 0.0666 0.0740 0.0956 0.1864 0.4892 0.8126 0.9998
Sos 0.0652 0.0730 0.0944 0.1826 0.4846 0.8082 0.9998
Wls 0.0646 0.0678 0.0748 0.1192 0.2788 0.4718 0.7726

C1 Wgm 0.0624 0.0680 0.0826 0.1494 0.3960 0.6918 0.9892
Sos 0.0610 0.0662 0.0808 0.1448 0.3922 0.6856 0.9882
Wls 1 1 1 1 1 1 1

C2 Wgm 0.0438 0.0492 0.0604 0.1006 0.2566 0.487 0.9566
Sos 0.0430 0.0504 0.0596 0.0990 0.2536 0.4840 0.9540
Wls 0.9464 0.9358 0.9202 0.8858 0.7762 0.6292 0.1300

C3 Wgm 0.0810 0.0616 0.0544 0.0674 0.1926 0.4334 0.9626
Sos 0.0786 0.0588 0.0514 0.0664 0.1910 0.4302 0.9616

Table 3: Observed frequencies of rejection at β = 3 + ∆n−1/2, for b = 0.04 under normal errors
and under contamination.

Classical test
φ = 0 πLS b

0.04 0.06 0.08 0.10 0.12
0.004 0.10 0.068 0.06 0.06 0.064 0.062

h 0.006 0.10 0.134 0.128 0.13 0.128 0.128
0.008 0.10 0.194 0.184 0.176 0.182 0.176

φ = 0.025 πLS b
0.04 0.06 0.08 0.10 0.12

0.004 0.196 0.21 0.196 0.198 0.196 0.194
h 0.006 0.223 0.32 0.302 0.302 0.306 0.304

0.008 0.248 0.38 0.382 0.376 0.380 0.372
φ = 0.05 πLS b

0.04 0.06 0.08 0.10 0.12
0.004 0.661 0.53 0.530 0.522 0.528 0.532

h 0.006 0.787 0.67 0.660 0.672 0.668 0.666
0.008 0.868 0.73 0.728 0.728 0.730 0.738

φ = 0.10 πLS b
0.04 0.06 0.08 0.10 0.12

0.004 1 0.99 0.988 0.988 0.988 0.988
h 0.006 1 0.99 0.996 0.996 0.994 0.994

0.008 1 1 0.998 0.998 0.998 0.998

Table 4: Observed frequencies of rejection of the classical test under the null hypothesis and
under alternatives g(t) = φt2 under C0. πLS denotes the corresponding asymptotic power.
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Robust test
φ = 0 b

0.04 0.06 0.08 0.10 0.12
0.004 0.14 0.130 0.128 0.124 0.122

h 0.006 0.19 0.180 0.184 0.186 0.188
0.008 0.22 0.222 0.226 0.222 0.220

φ = 0.025 b
0.04 0.06 0.08 0.10 0.12

0.004 0.23 0.226 0.232 0.228 0.230
h 0.006 0.31 0.308 0.302 0.308 0.308

0.008 0.37 0.356 0.358 0.354 0.356
φ = 0.05 b

0.04 0.06 0.08 0.10 0.12
0.004 0.55 0.554 0.554 0.560 0.562

h 0.006 0.63 0.638 0.646 0.650 0.650
0.008 0.70 0.716 0.712 0.702 0.702

φ = 0.10 b
0.04 0.06 0.08 0.10 0.12

0.004 0.99 0.990 0.990 0.990 0.990
h 0.006 0.99 0.994 0.994 0.994 0.994

0.008 1 0.998 0.998 0.996 0.996

Table 5: Observed frequencies of rejection of the proposed test under the null hypothesis and
under alternatives g(t) = φt2 under C0.
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Classical test
φ = 0 b

0.04 0.06 0.08 0.10 0.12
0.004 0.08 0.076 0.076 0.070 0.074

h 0.006 0.13 0.134 0.138 0.132 0.138
0.008 0.18 0.178 0.168 0.166 0.164

φ = 0.025 b
0.04 0.06 0.08 0.10 0.12

0.004 0.10 0.100 0.096 0.098 0.102
h 0.006 0.17 0.166 0.164 0.158 0.162

0.008 0.20 0.194 0.198 0.194 0.198
φ = 0.05 b

0.04 0.06 0.08 0.10 0.12
0.004 0.15 0.160 0.164 0.164 0.160

h 0.006 0.25 0.250 0.248 0.248 0.252
0.008 0.29 0.298 0.300 0.302 0.300

φ = 0.10 b
0.04 0.06 0.08 0.10 0.12

0.004 0.35 0.356 0.348 0.350 0.350
h 0.006 0.47 0.466 0.462 0.462 0.460

0.008 0.52 0.504 0.510 0.506 0.504

Table 6: Observed frequencies of rejection of the classical test under the null hypothesis and
under alternatives g(t) = φt2 under C1.
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Robust test
φ = 0 b

0.04 0.06 0.08 0.10 0.12
0.004 0.40 0.388 0.396 0.392 0.388

h 0.006 0.26 0.256 0.260 0.256 0.252
0.008 0.27 0.272 0.272 0.264 0.264

φ = 0.025 b
0.04 0.06 0.08 0.10 0.12

0.004 0.50 0.494 0.488 0.486 0.484
h 0.006 0.39 0.382 0.378 0.380 0.378

0.008 0.40 0.390 0.386 0.390 0.388
φ = 0.05 b

0.04 0.06 0.08 0.10 0.12
0.004 0.73 0.730 0.722 0.722 0.724

h 0.006 0.68 0.672 0.666 0.670 0.676
0.008 0.69 0.672 0.672 0.672 0.670

φ = 0.10 b
0.04 0.06 0.08 0.10 0.12

0.004 0.98 0.984 0.984 0.982 0.984
h 0.006 0.99 0.988 0.988 0.986 0.986

0.008 0.99 0.994 0.994 0.992 0.992

Table 7: Observed frequencies of rejection of the proposed test under the null hypothesis and
under alternatives g(t) = φt2 under C1.

Classical Test
φ = 0 b

0.04 0.06 0.08 0.10 0.12
0.004 0.48 0.482 0.482 0.494 0.496

h 0.006 0.56 0.560 0.560 0.560 0.564
0.008 0.87 0.876 0.876 0.876 0.876

Robust Test
φ = 0 b

0.04 0.06 0.08 0.10 0.12
0.004 0.004 0.004 0.004 0.004 0.004

h 0.006 0.01 0.010 0.008 0.008 0.008
0.008 0.03 0.030 0.032 0.026 0.028

Table 8: Observed frequencies of rejection of the proposed test under the null hypothesis for
contamination C4.
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Estimated values p−values

β̂ls β̂gm β̂os Wls Wgm Sos

Original Data Set -0.0982 -0.1067 -0.1105
-0.1255 -0.1184 -0.1410
-0.0308 -0.0506 -0.0475 0.0456 0.0028 0.0014

Data Set excluding -0.1139 -0.1100 -0.1081
observations 75 to 77 -0.1112 -0.1223 -0.1201

-0.0563 -0.0522 -0.0479 0.0007 0.0018 0.0026

Table 9: Results for the refinery data
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Figure 1: Frequencies of rejection. The values of the observed frequencies under C0 are plotted
with filled diamonds, while triangles, circles and crosses correspond to C1, C2 and C3, respec-
tively. The thick line is the asymptotic probability of rejection, πls.
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Figure 2: Boxplots for β̂ under H1β with ∆ = 1.2 for contamination C2
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Figure 3: In black the asymptotic power, πLS , in blue the rejection frequencies of both test under
the model C0 and in red the corresponding ones under the contaminated model C1: squares for
the robust test and circles for the classical one.
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