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Abstract

In this paper, under a semiparametric partly linear autoregression model, a family
of robust estimates for the autoregression parameter and the autoregression function
is studied. The proposed estimates are based on a three step procedure, in which re-
gression robust estimates and robust smoothing techniques are combined. Asymptotic
results on the autoregression estimates are derived. Besides, combining robust proce-
dures with M–smoothers, predicted values for the series and detection residuals, which
allow to detect anomalous data, are introduced. Robust cross–validation methods to
select the smoothing parameter are presented as an alternative to the classical ones,
which are sensitive to outlying observations. A Monte Carlo study is conducted in order
to compare the performance of the proposed criteria. Finally, the asymptotic distrib-
ution of the autoregression parameter estimate is stated uniformly over the smoothing
parameter.
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1 Introduction

In the last two decades, partly linear regression models have been extensively studied. Among
others we can mention the papers by Ansley and Wecker (1983), Green, Jennison and Se-
heult (1985), Heckman (1986), Engle, Granger, Rice (1986), Chen (1988), Robinson (1988),
Speckman (1988), Chen and Chen (1991), Chen and Shiau (1991, 1994), Gao (1992), Gao
and Zhao (1993) and Yee and Wild (1996) who investigated some asymptotic results using
smoothing splines, kernel or nearest neighbors techniques. An extensive description of the
different results obtained in partly linear regression models can be found in Härdle, Liang
and Gao (2000).

When dealing with dependent observations, {yt}, autoregressive models have been widely
used in applications. Gao and Yee (2000) noticed that, in econometrical problems, one way
to solve nonlinearity is to consider non–gaussian arma processes, for instance through arch
models. An alternative could be to use a fully nonparametric autoregressive model which
suffers from the “curse of dimensionality”and neglects a possible linear relation between yt
and any lag yt−k. Following a semiparametric approach, several authors have introduced
partly linear models for autoregressive models in order to combine the advantages of both
parametric and nonparametric methods. A stochastic process {yt}, defined over a probability
space (Ω,A,P), satisfies a partly linear autoregressive model if it can be written as

yt =
p∑

i=1

βo,iyt−ci +
q∑

j=1

gj(yt−dj
) + εt , (1)

where gj : IR → IR are smooth functions and εt are i.i.d. random variables, independent of
{yt−j, j ≥ 1}, E (εt) = 0 and Eε2t <∞. For simplicity and convenience, we will only consider
the case p = q = 1, c1 = 1 d1 = 2, which leads to the model

yt = βoyt−1 + g(yt−2) + εt , (2)

where −1 < βo < 1 is an unknown parameter to be estimated, g : IR → IR is an unknown
smooth function and εt are as in (1).

The partly linear autoregressive model (2) is particularly important since it involves not
only a linear autoregressive component, but a univariate smoothing which avoids the “curse
of dimensionality”. Partly linear autoregression models (2) are more flexible than standard
linear models since they have a parametric and a nonparametric component. They can be
a suitable choice when one suspects that the dependence on the past cannot be adequately
explained only through a linear autoregression.

When considering local polynomials, Gao and Liang (1995) established the asymptotic
normality of the least squares estimator of βo, based on a piecewise polynomial approxima-
tion, under an α−mixing condition. Gao (1995, 1998) also studied the asymptotic normality
and obtained a law of iterated logarithm for the kernel-based estimates, β̂LS, while Liang
(1996) and Gao and Yee (2000) derived some other results (see also Härdle, Liang and Gao
(2000) for a review).

It is well known that, both in linear autoregression and in nonparametric autoregression,
least squares estimators can be seriously affected by anomalous data. The same statement
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holds for partly linear autoregressive models. Let us denote βo the true value of the para-
meter. In the classical setting, it is assumed that second moments exists and we have that
g(y) = φ2(y) − βoφ1(y), where φ2(y) = E(yt|yt−2 = y) and φ1(y) = E(yt−1|yt−2 = y). Thus,
preliminary estimates of the conditional expectations can be inserted prior to the estimation
of the autoregression parameter. Usually, these estimates are linear on the observations and
therefore, sensitive to outliers.

Bianco and Boente (2002) considered a different approach which does not require to the
errors the existence of moments. Let φ1(y) and φ2(y) be now any conditional location func-
tionals related to a robust smoother (see Boente and Fraiman, 1988), such as the conditional
median. From now on, we will refer to the functional related to a robust smoothing as a
robust conditional location functional.

We will briefly remind the definition of robust location conditional functionals introduced
in Boente and Fraiman (1989), without requiring any moment conditions.

Let (X,Z) be any random vector and define s(X) any robust measure of the condi-
tional scale, such as the conditional median of the absolute deviations with respect to
the conditional median, madc, e.g., s(x) = median (|Z −m(x)| |X = x) where m(x) =
median(Y |X = x) is the median of a regular version F (z|X = x) of the conditional distrib-
ution function of Z|X = x. For any strictly increasing, bounded continuous score function
ψ : IR → IR, the robust location conditional functional φ(X) = Eψ(Z|X) defined in Boente
and Fraiman (1989) is the essentially unique σ(X)−measurable function φ(X) that verifies

E

(
h(X)ψ

(
Z − φ(X)

s(X)

))
= 0 (3)

for all integrable function h(X), where σ(X) is the σ−algebra generated by X. If the
conditional distribution F (z|X = x) is symmetric around m(x) and ψ is odd, we have that
φ(x) = m(x). Then, in this sense, the robust location conditional functional φ(X) is a
natural extension of the conditional expectation E(Z|X). In Theorem 2.1 of Boente and
Fraiman (1989), it was shown that if ψ is an increasing function the solution of (3) exists,
is unique and measurable. Furthermore, the weak continuity of the functional defined in
this way was proved in Theorem 2.2 therein. Therefore, by applying this functional to weak
consistent estimates of the conditional distribution of yt−1|yt−2 = y and of yt|yt−2 = y,
we obtain consistent and asymptotically strongly robust estimates of the robust location
conditional functionals φ1(y) and φ2(y), respectively.

Note that if the functionals φ1 and φ2 satisfy g(y) = φ2(y) − βoφ1(y), we can re–write
model (2) as yt − φ2(yt−2) = βo(yt−1 − φ1(yt−2)) + εt. For instance, if the errors have a
symmetric distribution and yt−1|yt−2 = y has a symmetric distribution around φ1(y), it is
easy to see that g(y) = φ2(y)−βoφ1(y) holds for local M–functionals with odd score functions,
such as the local median.

Using these facts, Bianco and Boente (2002) proposed a class of estimates, with a more
resistant behavior, based on a three step procedure under the partly linear autoregressive
model (2) which can be described as follows:

• Step 1: Estimate φ1(y) and φ2(y) through a robust smoothing, as local M–type
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estimates or local medians. Denote φ̂1(y) and φ̂2(y) the obtained estimates.

• Step 2: Estimate the autoregression parameter by applying a robust regression esti-
mate to the residuals yt−φ̂2(yt−2) and yt−1−φ̂1(yt−2). Denote β̂ the resulting estimator.

• Step 3: Define the estimate of the autoregression function g as ĝ(y) = φ̂2(y)− β̂φ̂1(y).

It is worth noticing that this proposal is not but a robust version of the partial autoregression
estimators introduced by Gao (1995).

When dealing with independent observations, Gao and Shi (1997) introduced robust esti-
mates based on M-type smoothing splines for nonparametric and semiparametric regression.
Their proposal is based on a finite series expansion of the regression function and under
a partly linear regression model, asymptotic results for the regression parameter are de-
rived. The three–step proposal defined above follows a different approach since it extends
the kernel–based estimators given by Bianco and Boente (2004) for partly linear regression
models.

We will briefly discuss the choice of some estimators in Steps 1 and 2.

Consider F̂1(z|yt−2 = y) and F̂2(z|yt−2 = y) the estimates of the distribution functions
F1(z|yt−2 = y) of yt−1|yt−2 = y and F2(z|yt−2 = y) of yt|yt−2 = y, defined through

F̂1(z|yt−2 = y) =
T∑

t=3

wtT (y)1(−∞,z](yt−1) (4)

F̂2(z|yt−2 = y) =
T∑

t=3

wtT (y)1(−∞,z](yt) , (5)

where wtT (y) are the kernel weights with bandwidth parameter hT

wtT (y) =
K
(
yt−2 − y

hT

)

T∑

t=3

K
(
yt−2 − y

hT

) . (6)

The function K : IR → IR is a kernel function, i.e., a nonnegative integrable function on IR.

As mentioned above, local kernel M–type estimates, φ̂1(y) = φ̂1,m(y) and φ̂2(y) = φ̂2,m(y),
defined through a score function ψ, can be considered. Possible choices of the score function
ψ are the Huber or ψ(u) = sg(u) that leads to the local medians. As noted above, these
estimates can be viewed as applying the robust M–location conditional functional to the
empirical conditional distributions F̂1(z|yt−2 = y) and F̂2(z|yt−2 = y) and so they are the
solution of

T∑

t=3

K
(
yt−2 − y

hT

)
ψ

(
yt−1 − φ̂1(y)

s1(y)

)
= 0 (7)

T∑

t=3

K
(
yt−2 − y

hT

)
ψ

(
yt−2 − φ̂2(y)

s2(y)

)
= 0 (8)
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with sj(y) the residual scale. For a discussion regarding the choice of the score function
leading to the robust location conditional functionals, see He et al. (2002). Furthermore,
He et al. (2002) comment on how the choice of the score function ψ is directly related to
the question of what the practitioner is estimating : “Without imposing assumptions on
the distribution of the errors, we need to understand what an M–estimator estimates. For
example, the least squares method estimates the conditional mean . . . and the least absolute
deviation estimator is the conditional median. . . . So, our choice of ψ has to depend on what
we are interested in.” As noted by these authors, if we are concerned with a conditional
distribution with heavy-tails, the conditional median is generally the summary of choice, in
which case, the ψ(u) = sg(u) is the natural choice. On the other hand, if the conditional
distribution is assumed to be symmetric, the conditional distribution has a natural center, the
conditional median, so any odd function ψ will give a consistent estimator of the conditional
median.

As described in Step 2, once we have obtained robust estimates, φ̂1(y) and φ̂2(y), of φ1(y)
and φ2(y) the robust estimation of the regression parameter can be perfomed by applying to
the residuals r̂t = yt− φ̂2(yt−2) and ẑt = yt−1− φ̂1(yt−2), any of the robust methods proposed
for linear regression. Note that in these models a difference appears with respect to linear
autoregressive models. Model (2) is the counterpart of an ar (2), in which, as is well known,
three residuals may be spoiled by an isolated outlier at time to. In the estimation procedure
described for partly linear autoregression models, the use of a robust smoothing will control
the influence of yto in φ̂1(y) or φ̂2(y), if more than three points lie at the neighborhood of
y = yto−1 or y = yto−2, respectively. Thus, only one huge observation appears among all
residuals r̂t and only another one among ẑt. Therefore, in our transformed regression model,
the point yto will yield to the following two outlying data: (r̂to, ẑto) and (r̂to+1, ẑto+1), except
for isolated points. Among the most popular robust regression estimates, we find GM–
estimators, which control both high residuals and high leverage points and that have high
breakdown point in simple regression. Also, the LMS–estimator (least median of squares)
(Rousseeuw and Leroy, 1987), the MM (Yohai, 1987) or τ−estimates could be used (Yohai
and Zamar, 1988).

In this paper, we will focus on the behavior of the robust autoregression estimator defined
as the solution of

T∑

t=3

ψ1

(
r̂t − β̂ẑt
sT

)
w2 (ẑt) ẑt w3 (yt−2) = 0, (9)

where r̂t = yt − φ̂2(yt−2), ẑt = yt−1 − φ̂1(yt−2) and sT is an estimate of the residuals scale
σo and with score function ψ1 and weight functions w2 and w3. This estimator is a slight
modification of that considered in Bianco and Boente (2002). The weight function w3 is
introduced to prevent from the effect of large values of yt−2, which correspond to isolated
points where the estimation of the robust location conditional functionals φ1 and φ2 is a
difficult issue, as discussed above. Let F be the joint distribution of (yt, yt−1, yt−2). The
functional β(F ) related to the estimator defined in (9) is the solution of

EF

[
ψ1

(
rt − β(F )zt

σo

)
w2 (zt) zt w3 (yt−2)

]
= 0, (10)

with rt = yt − φ2(yt−2) and zt = yt−1 − φ1(yt−2). Note that the expectation involved in (10)
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exists since, from conditions N1, N3 and N6 below, the score functions ψ1 and ψ2(t) =
t w2(t) and of the weight function w3 are bounded. Note that, using g(y) = φ2(y)− βoφ1(y),
we have yt − φ2(yt−2) = βo(yt−1 − φ1(yt−2)) + εt, and so (10) is equivalent to

EF

[
ψ1

(
(βo − β(F )) zt + εt

σo

)
w2 (zt) zt w3 (yt−2)

]
= 0.

Thus, due to the independence between the errors εt and the past observations, if the score
function is stricly increasing, in order to get Fisher–consistent estimators, i.e., β(F ) = βo,
one only needs to require EF [ψ1 (εt/σo)] = 0. This is a standard condition when dealing with
robust estimators in linear regression and autoregression models. Moreover, when using M–
spline estimators in partly linear regression model, this condition is analogous to assumption
2 (ii) of Gao and Shi (1997) and assumption 6 of He et al. (2002).

In this paper, we will study the asymptotic behavior of the autoregression estimates
defined through Steps 1 to 3 and we will also propose a procedure to obtain detection
residuals and robust predictors of the series. The paper is organized as follows. In Section 2,
through an example, we illustrate the effect of the outliers on the estimation of βo when using
the classical estimate and the corresponding robust procedure. In Section 3, a procedure to
detect outlying observations is derived. In Section 4, we derive the asymptotic distribution
of the estimates of the autoregression parameter βo. In Section 6, a similar result is stated
uniformly over the smoothing parameter after introducing in Section 5 robust alternatives
to choose the smoothing parameter. In this latter Section, through a Monte Carlo study,
the performance of the different criteria is compared for normal and contaminated samples.
Proofs are given in the Appendix.

2 The effect of outliers in the estimation

As mentioned in the Introduction, the sensitivity of the least squares estimates to a small
fraction of outliers has been extensively described both in the purely parametric and in
the nonparametric setting. For partly linear regression and autoregression models robust
methods, less sensitive to wild spike outliers, are desirable. The treatment of outliers is
an important task when one explores the main features of a data set, since anomalous
observations may affect the recognition of the autoregression function when the estimation
is based on a local average procedure. Moreover, outlier detection and robust prediction
tools are also necessary.

To illustrate this behavior, we have considered the Canadian lynx data which has been ex-
tensively studied. This data set, which is the annual record of the number of Canadian lynx
trapped in the Mc Kenzie River district of North–West Canada for the years 1821–1934,
considers the variable yt = log10(number of lynx trapped in the year(1822 + t)) − 2.9036,
1 ≤ t ≤ T = 114. Several authors have studied this data set. Among others, we can men-
tioned Campbell and Walker (1977), Tong (1977) who fitted an ar(11) and an arma(3,3),
Yao and Tong (1994) who selected as regressors yt−1, yt−3 and yt−6. Wong and Kohn (1996)
used a second order autoregressive additive model, while Härdle, Liang and Gao (2000)
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considered a partly linear autoregression model of order one. Moreover, Brillinger (1986)
performed a sensitivity analysis, while Martin and Yohai (1986) proposed a filter to detect
outliers.

We have artificially contaminated the data set replacing the largest observation y84 by
−2.9036. Figures 1 and 2 show the behavior of the estimated functions both for the least
squares and a robust procedure, for the original data set in black and the contaminated one,
in red. The robust procedure is mainly unaffected. As expected, when using the classical
estimates, not only the autoregression parameter changes, but also does the shape of the
autoregression function, which decreases more slowly. Note that β̂LS = 1.355 and β̂ = 1.383,
so the estimations are quite similar for the original data. On the other hand, for the con-
taminated data, β̂LS = 0.543 and β̂ = 1.352 illustrating the insensitivity to an anomalous
observation of the robust procedure. We have also plotted in Figure 3 the estimated function
g and the fitted or predicted values. When computing the robust predictors each observation
received a weight according to the residuals of the iterative procedure leading to the estima-
tion of the autoregression parameter. Besides, if the observation yt−1 received a low weight
then, when predicting at time t, yt−1 was replaced by its fitted value. Details are given in
Section 3. The lower plots in Figure 3, show the predicted values obtained using the least
squares or the GM–estimators. Black lines correspond to the original data and red ones to
the modified data. From these plots, it is clear that the ls predictors are modified not only
at time t = 85, but also the influence of this outlying observation propagates all along the
future. On the other hand, even though the robust procedure used is slightly sensitive to
the outlier, it recovers quite soon the feature of the fitted series.

3 Outlier detection

Outlier detection in time series analysis is an important issue. As mentioned above, Brillinger
(1986) performed a sensitivity analysis of lynx data, while Martin and Yohai (1986) proposed
a filter to detect outliers. Combining the robust procedures with M–smoothers, we have
defined predicted values for the series and detection residuals which allow to detect anomalous
data.

For a given cutting point α, the procedure can be described as follows:

• Let β̂ be the estimate of the autoregression parameter introduced in (9), related to a
score function ψ1 and hard–rejection weights w2 and w3. Denote ĝ(y) the estimate of
the autoregresion function g as described in Step 3.

• Compute Rt =
r̂t − β̂ẑt
sT

, where sT =
1

0.6745
median(|r̂t − β̂ẑt|).
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• Define the predicted value ŷt as

ŷt =





β̂yt−1 + ĝ (yt−2) if |Rt| < α and w2(ẑt) > 0

β̂ŷt−1 + ĝ (yt−2) otherwise

}
if w3(yt−2) > 0

β̂yt−1 + ĝ (ŷt−2) if |Rt| < α and w2(ẑt) > 0

β̂ŷt−1 + ĝ (ŷt−2) otherwise

}
if w3(yt−2) = 0 .

• Define the detection residual value r̃t as

r̃t =

{
0 if |Rt| < α , w2(ẑt) > 0 and w3(yt−2) > 0
yt − ŷt otherwise .

(11)

In order to compare our procedure with the method proposed by Bianco, Garćıa Ben,
Mart́ınez and Yohai (1996) for arma(p,q), we have computed the filtered values using the
library rr as implemented in S-Plus with an arma(3,3) model. We call this analysis the
robust arma(3,3). Figure 4 plots the residuals from the robust arma(3,3) and the detec-
tion residuals r̃t defined in (11), with α = 0.2 and as M–smoother the local median. For
“good” data points detection residuals are zero, while suspicious observations correspond
to non-zero residuals. The nonzero residuals detected by our procedure indicate nearly the
same anomalous data points as those revealed by Brillinger (1986)’s plot, while, as shown
by Figure 4, the robust arma(3,3) analysis detects also a level shift. Note that our proce-
dure shows that most suspicious data are not isolated, revealing that some moving average
structure in the errors is necessary in this partly linear autoregression model. The analysis
of moving average errors for partly linear autoregression models is beyond the scope of this
paper.

4 Asymptotic distribution

Conditions for the consistency of the robust procedure defined through Step 1 to 3, are
analogous to those stated in Bianco and Boente (2004) and the strong convergence result
follows easily using the Ergodic Theorem instead of the Strong Law of Large Numbers.

In this Section, we will derive the asymptotic distribution of the regression parameter
estimates defined as any solution of (9) with φ̂1(y) and φ̂2(y) consistent estimates of robust
location conditional functionals φ1(y) and φ2(y), satisfying φ2(y) = βoφ1(y) + g(y).

Let ψ1 be a score function and w2 and w3 be weight functions. For the sake of simplicity
and without loss of generality, we will assume that the residuals scale is known and equals
σo, i.e., we will consider the solution β̂ of

T∑

t=3

ψ1

(
r̂t − β̂ẑt
σo

)
w2 (ẑt) ẑt w3 (yt−2) = 0 . (12)

If σo is estimated by sT , asymptotic normality can be derived by requiring that sT
p−→ σo,

if, in addition, t2ψ′′
1(t) is bounded.
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As in the Introduction, denote rt = yt − φ2(yt−2) and zt = yt−1 − φ1(yt−2). Thus,
rt − βozt = εt defined in (2).

We will need the following set of assumptions.

N0. The process {yt : t ≥ 3} is a strictly stationary α−mixing process with geometric
mixing coefficients α(n). (see, Rosenblatt (1956))

N1. ψ1 is an odd, bounded and twice continuously differentiable function with bounded
derivatives ψ′

1 and ψ′′
1 , such that ϕ1(t) = tψ′

1(t) and ϕ2(t) = tψ′′
1(t) are bounded.

N2. E (w2(zt)z
2
t ) <∞ and

A = E
(
ψ′

1

(
εt
σo

)
w2 (zt) z

2
t w3 (yt−2)

)
= E

(
ψ′

1

(
εt
σo

))
E
(
w2 (zt) z

2
t w3 (yt−2)

)
> 0 .

N3. w2(u) = ψ2(u)u
−1 > 0 is a bounded function, Lipschitz of order 1. Moreover, ψ2 is

also a bounded and continuously differentiable function with bounded derivative ψ′
2,

Lipschitz of order 1 and such that λ2(t) = tψ′
2(t) is bounded.

N4. E (ψ2(zt)|yt−2 = y) = 0 for almost all y.

N5. The functions φj(y), j = 1, 2 are continuously differentiable.

N6. The function w3 is a bounded function with ‖w3‖∞ ≤ 1 and compact support K ⊆ S,
where S denotes the support of the marginal distribution of yt.

Remark 4.1.

• With respect to N0, the inclusion of a dependence structure, usually imposing a mixing
condition, allows to estimates the autoregression function through a kernel smoother.
Roughly speaking, all the mixing conditions say that the dependence between the ran-
dom variables is weaker the further they are apart. The α-mixing or strong mixing
condition introduced by Rosenblatt (1956) is one of the weakest notions where nonpara-
metric inference has been considered. Classical arma processes are strongly mixing
with geometrical coefficients.

As it is well known, the concept of α−mixing is weaker than that of ϕ−mixing (uni-
form strongly mixing), which is a more often studied condition (see, Billingsley 1968).
The ϕ−condition is rather restrictive when we are considering autoregressive models,
since for Gaussian stationary processes the ϕ−mixing condition is equivalent to m−de-
pendence (see Ibragimov and Linnik, 1971). When considering a fully nonparametric
autoregression model, most of the asymptotic results for the Nadaraya–Watson esti-
mators and predictors have been obtained assuming a ϕ− or α−mixing condition, see
for instance, Bosq (1996), Györfi, Härdle, Sarda and Vieu (1989) and Härdle (1990),
for a review. Asymptotic normality results of the Nadaraya–Watson estimates, for
α−mixing processes, were obtained by Robinson (1983). An α−mixing condition was
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also required when studying the asymptotic behavior of local M−estimates of the
autoregression function (see Robinson, 1984).

The same mixing conditions were considered under partly linear autoregressive models.
More precisely, if the process satisfies an α−mixing condition, Gao and Liang (1995)
derived the asymptotic distribution of the autoregression parameter when considering
local polynomials, while Gao (1995) established the asymptotic normality and obtained
a law of iterated logarithm for the linear kernel–based estimates; see also Gao and Yee
(2000).

Doukhan (1994, Theorem 7, page 102) gives sufficient conditions on the function g,
the autoregression parameter and on the errors distribution that guarantee that the
process will be α−mixing. For instance, if g is bounded and the errors εt have a
density and finite first moment, then the condition |β| < 1 entails that the process
is geometrically ergodic and thus, α−mixing. When g is unbounded it should be
required that there exist some positive constants b and vo and some a ≥ 0, such that
|g(v)| ≤ a|v| − b for |v| > vo sup

|v|≤vo

|g(v)| < ∞ and the unique nonnegative zero of the

polynomial P (z) = z2 − |β|z − a, i.e, ρ =
|β| +

√
β2 + 4a

2
, satisfies ρ < 1.

• As noted by Robinson (1988), condition N2 will prevent any element of yt−1 from being
a.s. perfectly predictable by yt−2. It is worth noticing that if the errors have symmetric
distribution and g and ψ2 are odd functions, condition N4 is fulfilled. Assumption N4
is needed in order to obtain a uniform result over a class of Lipschitz functions, using
the results given in Arcones (1996). For VC–classes of functions, Andrews and Pollard
(1994) and Yu (1994) provided a similar result for strong mixing triangular arrays and
for stationary α−mixing sequences, respectively.

• The smoothness condition N5 is a standard requirement in classical kernel estimation
in semiparametric models in order to guarantee asymptotic normality, see for instance,
Robinson (1988) and Severini and Wong (1992).

It is worthwhile noticing that no moment conditions are required to the errors distribution
to derive the asymptotic distribution of the autoregression parameter.

Theorem 4.1. Let {yt , j ≥ 3} be a stationary α−mixing process satisfying (2) with εt
independent of {yt−j , j ≥ 1} with symmetric distribution. Moreover, assume that the mixing
coefficients are geometric. Denote rt = yt−φ2(yt−2) and zt = yt−1−φ1(yt−2) where φ1(y) and
φ2(y) are robust location conditional functionals satisfying φ2(y) = βoφ1(y) + g(y). Assume
that N0 to N4 and N6 hold. Moreover, assume that one of the following two assumptions
a) or b) are satisfied

a) N5 holds and φ̂j(y) are robust estimates of φj(y) such that, for j = 1, 2, φ̂j(y) is
continuously differentiable and

T
1
4 sup
y∈K

|φ̂j(y) − φj(y)|
p−→ 0 , (13)

sup
y∈K

|φ̂′
j(y) − φ′

j(y)|
p−→ 0 , (14)
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where K is defined in N6.

b) φ̂j(y) are robust estimates of φj(y) which admit a linear expansion φ̂j(y) − φj(y) =

L̂j(y) + R̂j(y), where

L̂j(y) =
T∑

t=3

wtT (y) νj (yt−2+j, y) ,

with νj bounded functions, such that E (νj (yt−2+j, y) |yt−2 = y) = 0 almost everywhere.
Moreover, assume that for j = 1, 2

T
1
4 sup
y∈K

|L̂j(y)|
p−→ 0, (15)

T
1
2 sup
y∈K

|R̂j(y)|
p−→ 0, (16)

T− 1
2

∣∣∣∣∣
T∑

t=3

L̂j(yt−2)ϑ1 (εt) ϑ2 (zt) w3 (yt−2)

∣∣∣∣∣
p−→ 0 (17)

hold for bounded functions ϑ1 and ϑ2 such that E(ϑ1(εt)) × E (ϑ2(zt)|yt−2 = y) = 0,
for almost all y, where K is defined in N6.

Then,

T
1
2

(
β̂ − βo

)
D−→ N

(
0, σ2

ψ1,w2,w3

)
,

where A is defined in N2 and

σ2
ψ1,w2,w3

= A−2σ2
o E

(
ψ2

1

(
εt
σo

))
E
(
w2

2 (zt) z
2
t w

2
3 (yt−2)

)

= σ2
o

E
(
ψ2

1

(
εt
σo

))

[
E
(
ψ′

1

(
εt
σo

))]2
E (w2

2 (zt) z
2
t w

2
3 (yt−2) )

[E (w2 (zt) z2
t w3 (yt−2) )]

2 .

Remark 4.2. When w2 ≡ 1 and w3 ≡ 1, the asymptotic efficiency of the autoregres-
sion estimates is the same as in the one dimensional location setting, that is V (ψ1) =

E
(
ψ2

1 (εt/σo)
)
[E (ψ′

1 (εt/σo))]
−2

.

Remark 4.3. Conditions (13) and (14) are related to the trade–off between the stochas-
tic equicontinuity needed to derive the asymptotic distribution of β̂ and the smoothness
requirements on the estimators φ̂j, when plugging–in general preliminary estimators of φj.
For a highlighting discussion on this task we refer to Section 4.3 in Andrews (1994). It
is worth noticing that, even in the independent setting, when dealing with semiparametric
models, derivability of the estimates of the nuisance parameters together with their uniform
convergence is usually required, see for instance, Severini and Wong (1992) and Severini and
Staniswalis (1994). As it will be discussed below, the uniform convergence rates required
in (13) and (14) are fulfilled when we consider, in Step 1, local kernel M–type estimates
solutions of (7) and (8) if the optimal bandwidth is used. The convergence requirements in
a) are analogous to those required in Condition (7) in Severini and Staniswalis (1994, p. 510)
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and are needed in order to obtain the desired rate of convergence for the autoregression esti-
mates. More precisely, assumption (13) avoids the bias term and ensures that GT (φ̂1, φ̂2) will
behave asymptotically as GT (φ1, φ2), where for any β ∈ IR and any differentiable functions
υj : IR→ IR, j = 1, 2

GT (υ1, υ2) =
1√
T − 2

T∑

t=3

ψ1

(
yt − υ2(yt−2) − βo (yt−1 − υ1(yt−2))

σo

)
ψ2 (yt−1 − υ1(yt−2))w3(yt−2) .

Assumption b) avoids equicontinuity arguments by requiring a linear approximation to
the estimators of φ1 and φ2 which allows to deal with the reminder terms as in the classical
setting, i.e., when using the linear kernel estimators. However, under assumption a) Theorem
4.1 includes other estimators than those based on kernel weights.

Remark 4.3. When, in Step 1, we consider local kernel M–type estimates, φ̂1(y) = φ̂1,m(y)

and φ̂2(y) = φ̂2,m(y), solution of (7) and (8), both assumptions a) and b) in Theorem 4.1
are fulfilled, under mild conditions.

To be more precise, if

i) the kernel K is a bounded density function, Lipschitz continuous, such that |u|2K(u)
is bounded

ii) ψ is an odd, strictly increasing, bounded and continuously differentiable function such
that uψ′(u) ≤ ψ(u)

iii) the marginal density f of yt is a bounded function such that infy∈K f(y) > 0

iv) the conditional distribution functions F1(z|yt−2 = y) of yt−1|yt−2 = y and F2(z|yt−2 =
y) of yt|yt−2 = y are uniformly Lipschitz in a neighborhood Kε of K, i.e., there exists
a positive constant C such that

|Fj(z|yt−2 = y) − Fj(z|yt−2 = v)| < C|y − v|

for all z ∈ IR, y, v ∈ Kε.

v) Moreover, the following equicontinuity condition hold for j = 1, 2

∀ε > 0 ∃δ > 0 : |u− z| < δ ⇒ sup
y∈K

|Fj(u|yt−2 = y) − Fj(z|yt−2 = y)| < ε

analogous arguments to those used in Boente and Fraiman (1991, a) allow to show that

(13) holds for the optimal bandwidth of order T− 1
5 . Furthermore, if the kernel K and the

scale functions sj have continuous derivatives K ′ and s′j, respectively and if we denote by
η(u) = u ψ′(u), we have that

φ̂′
1(y) = −

s1(y)

hT

T∑

t=3

K ′
(
yt−2 − y

hT

)
ψ′
(
yt−1 − φ̂1(y)

s1(y)

)
− s′1(y)

T∑

t=3

K
(
yt−2 − y

hT

)
η

(
yt−1 − φ̂1(y)

s1(y)

)

T∑

t=3

K
(
yt−2 − y

hT

)
ψ′
(
yt−1 − φ̂1(y)

s1(y)

)
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and similarly for φ̂′
2(y). These expressions suggest that if i) to iv) hold, the proof of (14)

parallels the proofs given in Härdle and Gasser (1985) and in Boente and Rodriguez (2006)
together with the standard arguments used in the α−mixing case.

On the other hand, using a Taylor’s expansion, it is easy to see that an M–estimator
admits the linear expansion given in b), where the remainder term satisfies (16), since, as

mentioned above, M–estimators satisfy T
1
4 sup
y∈K

|φ̂j(y)−φj(y)|
p−→ 0 when φj are continuously

differentiable functions. Note that this approach avoids the derivability requirements on φj,

φ̂j, the kernel K and the scale functions sj needed to guarantee a).

5 Resistant choice of the smoothing parameter

The sensitivity to outliers of the classical methods for the selection of the smoothing para-
meter has been widely discussed for independent observations in nonparametric regression.
Because it is based on squared residuals, least squares cross–validation is very sensitive to
outliers, even when it is used with local M–estimates. As noted by Wang and Scott (1994),
in the presence of outliers, the least squares cross–validation function is nearly constant on
its whole domain and thus, essentially worthless for the purpose of choosing a bandwidth.
Moreover, it can be seen that just one outlier may cause the bandwidth (and so the estimate)
to break down, in the sense that it often results in oversmoothing or undersmoothing. Boente
and Fraiman (1991, b) pointed out that robust cross–validation methods should be an al-
ternative. Also, Wang and Scott (1994) proposed an L1 cross–validation method in order to
avoid the problems of L2 cross–validation, while Cantoni and Ronchetti (2001) considered a
resistant choice of the smoothing parameter for smoothing splines based on a robust version
of Cp and of cross-validation. A similar proposal was suggested by Leung, Marriott and Wu
(1993) for kernel M-smoothers. On the other hand, the classical plug–in bandwidth selector
also breaks down in the presence of outliers. Boente, Fraiman and Meloche (1997) proposed
a robust plug–in bandwidth selection procedure in noparametric regression.

To make explicit the dependence on the bandwidth parameter h, let us denote, from
now on, β̂h and ĝh the estimates computed using the kernel weights (6) with smoothing
parameter h. As mentioned by Härdle, Liang and Gao (2000), in the setting of partial
linear autoregression models, the optimal bandwidth involves functionals of the unknown
underlying distribution. These authors considered the average square error as measure of
the goodness of the estimates β̂h and ĝh. For each bandwidth h they defined

D1(h) =
1

T − 2

T∑

t=3

({
β̂h yt−1 + ĝh (yt−2)

}
− {βo yt−1 + g (yt−2)}

)2
w (yt−2)

=
1

T − 2

T∑

t=3

u2
t (h)w (yt−2) ,

where the weight function w protects against boundary effects. The cross-validation criterion
they have considered to construct an asymptotically optimal data–driven bandwidth and
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thus, adaptive data–driven estimates, is defined through

C1(h) =
1

T − 2

T∑

t=3

(
yt −

{
β̃h yt−1 + ĝh,t (yt−2)

})2
w (yt−2) =

1

T − 2

T∑

t=3

û2
t (h)w (yt−2) ,

where ĝh,t(y) = φ̂2,t(y)− β̃hφ̂1,t(y), φ̂1,t(y) and φ̂2,t(y) are the linear smoothers obtained with

all the data except yt−2 and β̃h is the estimator obtained by least squares considering the
residuals yt − φ̂2,t(yt−2) and yt−1 − φ̂1,t(yt−2).

A small simulation study was carried on to show that the asympotically optimal band-
width is very sensitive to outliers. For each value of h, we have computed an estimate of
MSE(h) = E(D1(h)), with w ≡ 1, by replicating over samples, both for the classical estima-
tor and for the M–smoother combined with a GM–estimator. We have considered a kernel
smoother with the gaussian kernel with standard deviation 0.37 such that the interquartile
range is 0.5, both for the least squares estimates and for the local M–estimate with bisquare
score function. The tuning constant for the local M–estimator is 4.685, which gives a 95%
efficiency with respect to its linear relative. Local M–estimates were computed through an
iterative procedure with local medians as initial points. After the robust smoothing, GM–
estimates with Huber function on the residuals with constant 1.6 and bisquare weights on
yt−1 − φ̂1 (yt−2) with constant 5.57 were computed. This choice of the tuning constants gives
aproximately a numerically computed 95% asymptotic efficiency under normal errors, for the
considered model, with respect to the least squares estimate. We performed 50 replications.
In order to stabilize the series, we first generate a series of size N = 1100 following the model

zt = βozt−1 + 0.25 π sin(πzt−2) + εt 3 ≤ t ≤ N ,

where βo = 0.25. As initial values, we took zt = εt, for 1 ≤ t ≤ 2. In the case of normal
errors, we have chosen εt ∼ N(0, σ2

o) with σ2
o = 0.25. The data set of size T = 100 to be

considered consists on the series {yt : 1 ≤ t ≤ T}, where in the non–contaminated case
yt = zt+1000. The contaminated data set corresponds to additive outliers in the series, as
follows: εt, 1 ≤ t ≤ 1100, are i.i.d. N(0, σ2

o) and yt = zt+1000 +6δt with δt ∼ Bi(1, 0.05). The
bandwidth h was choosen on a grid of 50 equidistant points between 0.05 and 1.

As can be seen in Figure 5 the shape of the curve is highly influenced by anomalous data
and the minimum is highly modified when introducing outliers, since it changes from 0.4 to
almost 0.7, both for the least squares and for the GM–estimator.

This suggests that resistant procedures should also be introduced in this context. By
analogy with the least median of squares, we can consider the following measures

D2(h) = median
3≤t≤T

{
u2
t (h)w (yt−2)

}
and C2(h) = median

3≤t≤T

{
û2
t (h)w (yt−2)

}
.

In the right panels of Figure 5, we plot the estimates of MedSE(h) = E(D2(h)) obtained by
replicating over samples. These plots show the stability of the criterion, since the minimum
value is reached at almost the same value for the GM–estimator, while the least squares
estimator is still sensitive. Note that the minimum value of the curve obtained for the
classical estimator is shifted to the right, leading to undersmoothing.
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Another approach can be to replace the square function in D1(h) and C1(h) by a ρ
function as Huber or Tukey’s function, after scaling the differences, i.e.,

D3(h) =
σ2
T (h)

T − 2

T∑

t=3

ρ

(
ut(h)

σT (h)

)
w (yt−2) and C3(h) =

σ̂2
T (h)

T − 2

T∑

t=3

ρ

(
ût(h)

σ̂T (h)

)
w (yt−2) ,

where σT (h) = mad (ut(h)) and σ̂T (h) = mad (ût(h)). The results obtained with Huber’s
function were disappointing and this is due to its unboundness. As expected, similar results
to those obtained with Tukey’s ρ−function, were obtained by weighting ut(h) with a Huber’s
weight function, which suggests that the measures defined through

D4(h) =
σ2
T (h)

T − 2

T∑

t=3

ψ2

(
ut(h)

σT (h)

)
w (yt−2) and C4(h) =

σ̂2
T (h)

T − 2

T∑

t=3

ψ2

(
ût(h)

σ̂T (h)

)
w (yt−2) ,

could also be an alternative. Based on the stationarity of the process and taking into account
that D1(h) tries to measure both bias and variance, it would make sense to introduce a new
measure that establishes a trade–off between bias and variance. Then, we have defined
measures based on a robust estimate of the bias, defined through a location estimate µT ,
and on a robust scale estimator σT , as follows,

D5(h) = µ2
T (ut(h)w (yt−2)) + σ2

T (ut(h)w (yt−2))

C5(h) = µ2
T (ût(h)w (yt−2)) + σ2

T (ût(h)w (yt−2)) .

We can consider as µT the median and as σT the bisquare a–scale estimate or the Hu-
ber τ−scale estimate. Figure 6 shows the stability of this procedure combined with GM–
estimators since, for the τ−scale estimator, the minimum value is attained at the same value
for both the contaminated and the normal samples. A similar plot was obtained for the
a–scale estimate. The procedures based on a ψ−function also show a good performance.

In Table 1 we report the optimal values obtained through the simulation study. For
the measures D3 and D4, we have considered the Huber’s function, while for D5 the Huber
τ−scale estimator as σT and the median as µT . Similar results were obtained using the
Tukey’s function and the a–scale. This table shows the advantage of using D5 over the other
procedures.

Normal Data Contaminated Data
D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

LS 0.395 0.367 – – – 0.709 0.108 – – –
GM 0.399 0.380 0.380 0.360 0.399 0.670 0.360 0.418 0.399 0.399

Table 1: Optimal Asymptotic bandwidth for the autoregression function

Based on these results we conducted a simulation study to compare the performance of
the five cross–validation criteria. Samples of size T = 100 were generated as described above.
We have choosen the optimal bandwidth by minimizing Cj(h) over a grid of 50 equidistant
points between 0.05 and 1 in the non–contaminated case and in the contaminated one we
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took a grid of 256 points between 0.05 and 5, so that the distance among values was the
same as in the normal case. The weight function w was selected in two ways: w ≡ 1 and

w(yt−2) =





1 if

∣∣∣∣∣
yt−2 −my

sy

∣∣∣∣∣ < 3

0 otherwise ,

with my = mediant(yt) and sy =mad(yt). Moreover, as described by Chu and Marron (1991),
Hart and Vieu (1990) and Hart (1996), cross-validation under dependence can show a bias for
small samples. For that reason, they modified the leave–out technique involved in the cross–
validation method and they proved that, if the leave–out sequence, `T , does not increase too
fast the bandwidth that minimizes the cross–validation criterion is asymptotically optimal.
Thus, for all the criteria, we have also compute the cross-validation bandwidth with `T = 2.
Therefore, for each criterion Cj we obtained 4 values for the bandwidth corresponding to
the two choices of w and to `T = 0 and `T = 2. We plot the results for C1, when we
use the least squares estimate. Since for the GM–estimator, the sensitivity of least squares
cross–validation is well known, we have only considered C2, C4 and C5. In C4, we used as
ψ−function the Huber function, with constant 1.345, while in C5 the τ−scale estimator was
considered. In the plots, we label the results according to the criterion used to select the
bandwidth. Once the bandwidth has been computed, the data–driven estimates of βo and g
were calculated.

Figures 7 and 8 show the boxplots of the obtained values of h. In the second one, the
range of values in the vertical axis was truncated to make comparisons easier. As expected
the L2−criterion, C1, is very sensitive to outliers. The cross–validation criterion based on
the median, i.e., C2, tends to provide smaller bandwidths than the classical cross–validation
under normal errors when w ≡ 1 and `T = 0. The best criterion is, in all cases, C5. For this
particular model, by weighting we obtain a smaller dispersion and the classical procedure
performs better even under contamination. Leaving–out one data or taking `T = 2, produce
similar results. More research should be done in this direction to find a way to select the
leaving sequence.

Figure 9 shows the boxplots of the data–driven estimators of βo. These plots show
the GM–estimators obtained using C2 and `T = 2 perform better than those computed
with `T = 0. This can be explained by the dependence structure that produces smaller
data–driven bandwidths in this situation. Again, the best performance is obtained by the
criterion based on the τ−scale estimator. The behavior of the estimators of the g function
was evaluated computing at each replication

M (ĝ, g) = median
3≤t≤T

(
[ĝ(yt) − g(yt)]

2
)
.

Figure 10 shows the estimates of the density of M (ĝ, g). A density kernel estimate with
bandwidth 0.02 was computed in all cases, except for the classical estimates under contami-
nation, where due to a different range of values, we took 0.05. Again, the τ−scale estimator
shows its advantage over the other criteria.
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6 Uniform Asymptotic Distribution

In most practical situations data–driven estimators of βo are computed. In this Section,
we will consider the case where the robust smoothers computed in Step 1 are obtained
using the kernel weigths defined in (6). In the classical setting, the optimal bandwidth,

which minimizes D1(h), has order T− 1
5 . If we denote by ĥ1 = argmin

h∈HT

C1(h), where HT =

[aT− 1
5
−c, bT− 1

5
+c] with 0 < a < b < ∞ and 0 < c < 1

20
, it has been shown (see, for instance,

Härdle, Liang and Gao (2000)) that the bandwidth minimizing C1(h) is asymptotically
optimal, in the sense that

D1

(
ĥ1

)

inf
h∈HT

D1(h)

p−→ 1 .

This property suggests that results regarding the asymptotic behavior of the estimator β̂
(
ĥ
)

are needed, where ĥ denotes a bandwidth selector and β̂ (h) is the estimate of the parameter
βo obtained when the bandwidth h is used in the M-smoothing procedure. Several data–
driven methods for choosing the bandwidth were discussed in Section 5 and we conjecture
that, beyond their resistance to anomalous observations, they will lead to optimal bandwidths
in the sense that if ĥj = argmin

h∈HT

Cj(h), 2 ≤ j ≤ 5, then

Dj

(
ĥj
)

inf
h∈HT

Dj(h)

p−→ 1 .

That’s why, in this Section, we will focus our attention to derive results regarding the
asymptotic distribution of T− 1

2

(
β̂ (h) − βo

)
, uniformly over h ∈ HT , which will imply that,

for 2 ≤ j ≤ 5, the data–driven estimators β̂(ĥj) of βo will be asymptotically normally
distributed.

Theorem 6.1. Let {yt , j ≥ 3} be a stationary α−mixing process satisfying (2) with εt
independent of {yt−j , j ≥ 1} with symmetric distribution. Moreover, assume that the mixing

coefficients are geometric. Let HT = [aT− 1
5
−c, bT− 1

5
+c] with 0 < a < b <∞ and 0 < c < 1

20
.

Denote rt = yt−φ2(yt−2) and zt = yt−1 −φ1(yt−2) where φ1(y) and φ2(y) are robust location
conditional functionals satisfying φ2(y) = βoφ1(y) + g(y). Let wtT (y) be the kernel weights
defined in (6). Consider robust estimates of φj(y), φ̂j(y), which admit a linear expansion

φ̂j(y) − φj(y) = L̂j(y) + R̂j(y), where

L̂j(y) =
T∑

t=3

wtT (y) νj (yt−2+j, y) , (18)

with νj bounded functions, such that E (νj (yt−2+j, y) |yt−2 = y) = 0 almost everywhere.
Moreover, assume that for j = 1, 2

T
1
4 sup
h∈HT

sup
y∈K

|L̂j(y)|
p−→ 0, (19)
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T
1
2 sup
h∈HT

sup
y∈K

|R̂j(y)|
p−→ 0, (20)

T− 1
2 sup
h∈HT

∣∣∣∣∣
T∑

t=3

L̂j(yt−2)ϑ1 (εt) ϑ2 (zt) w3 (yt−2)

∣∣∣∣∣
p−→ 0 (21)

hold for bounded functions ϑ1 and ϑ2 such that E(ϑ1(εt)) × E (ϑ2(zt)|yt−2 = y) = 0, for
almost all y, where K is defined in N6. Then, under N0 to N4 and N6, the following
assertion holds uniformly over h ∈ HT

T
1
2

(
β̂(h) − βo

)
D−→ N

(
0, σ2

ψ1,w2,w3

)
,

where σ2
ψ1,w2,w3

is defined in Theorem 4.1.

Remark 6.1. Note that (19) and (20) entail that T
1
4 sup
h∈HT

sup
y∈[0,1]

|φ̂j(y) − φj(y)|
p−→ 0 , for

j = 1, 2.

Using a Taylor’s expansion, it is easy to see that an M–estimator can be written φ̂j(y) =

φj(y) + L̂j(y) + R̂j(y), where the remainder term satisfies (20), since M–estimators satisfy

T
1
4 sup
h∈HT

sup
y∈K

|φ̂j(y)−φj(y)|
p−→ 0 when φj are continuously differentiable functions. This last

result and (19) hold if the kernel is of bounded variation and can be derived using similar
arguments to those considered in Boente and Fraiman (1991, a) and a bound for the covering
number of the family h−1K (·/h). Conditions to guarantee (21) can be found in Lemma 6.6.7
in Härdle, Liang and Gao (2000).

A Appendix

From now on, Cχ will denote the Lipschitz constant for a Lipschitz function χ.

In the following Lemma, we get a consistent sequence of estimates of the matrix A given in
N2.

Lemma A.1. Let {yt}, t ≥ 3 be a stationary and ergodic process satisfying (2) with εt
independent of {yt−j , j ≥ 1}. Denote rt = yt − φ2(yt−2) and zt = yt−1 − φ1(yt−2). Assume

N1 to N3 and N6 and that β̃ is a sequence of estimates such that β̃
p−→ βo. Let φ̂j(y),

j = 1, 2 be robust estimates of φj(y) such that

sup
y∈K

|φ̂j(y) − φj(y)|
p−→ 0, j = 1, 2 ,

where K is defined in N6. Then, AT
p−→ A, where A is given in N2 and

AT =
1

T − 2

T∑

t=3

ψ′
1

(
r̂t − ẑtβ̃

σo

)
w2 (ẑt) ẑ

2
t w3 (yt−2) .

Proof. Denote ξt intermediate points between rt−ztβ̃ and r̂t−ẑtβ̃ and η̂j(y) = φ̂j(y)−φj(y)
for j = 1, 2. A first order Taylor’s expansion and some algebra lead us to AT = A1

T + A2
T +
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A3
T + A4

T , where

A1
T =

1

T − 2

T∑

t=3

ψ′
1

(
rt − ztβ̃

σo

)
w2 (zt) z

2
t w3 (yt−2)

A2
T = − 1

T − 2

T∑

t=3

ψ′
1

(
r̂t − ẑtβ̃

σo

)
w2 (ẑt) [η̂1(yt−2)zt + ẑt η̂1(yt−2)] w3 (yt−2)

A3
T = − 1

T − 2

T∑

t=3

ψ′′
1

(
ξt
σo

) (
η̂2(yt−2) − η̂1(yt−2)β̃

σo

)
w2 (zt) z

2
t w3 (yt−2)

A4
T =

1

T − 2

T∑

t=3

ψ′
1

(
r̂t − ẑtβ̃

σo

)
[w2 (ẑt) − w2 (zt)] z

2
t w3 (yt−2) .

Analogous arguments to those used in Lemma 1 in Bianco and Boente (2001) allow us to show

that A1
T

p−→ A, since Theorem 2 in Pollard (1984) holds under stationarity and ergodicity.

From N3, it is easy to see that

z2
t |w2 (ẑt) − w2 (zt) | ≤ |η̂1(yt−2)|

(
‖ψ2‖∞ + |η̂1(yt−2)| (‖w2‖∞ + ‖ψ′

2‖∞) + ‖λ2‖∞
)
.

Now, the result follows from N2, the consistency of β̃, the Ergodic Theorem and the fact
that max

1≤j≤2
sup
y∈K

|η̂j(y)|
p−→ 0 and ‖w3‖∞ ≤ 1, since

|A2
T | ≤ ‖ψ′

1‖∞ max
1≤j≤2

sup
y∈K

|η̂j(y)|
(
2 ‖ψ2‖∞ + ‖w2‖∞ max

1≤j≤2
sup
y∈K

|η̂j(y)|
)

|A3
T | ≤ ‖ψ′′

1‖∞ max
1≤j≤2

sup
y∈K

|η̂j(y)|
(

1 + |β̃|
σo

)
1

T − 2

T∑

t=3

w2 (zt) z
2
t

|A4
T | ≤ ‖ψ′

1‖∞ sup
y∈K

|η̂1(y)|
(
‖ψ2‖∞ + sup

y∈K
|η̂1(y)| (‖w2‖∞ + ‖ψ′

2‖∞) + ‖λ2‖∞
)
.

Proof of Theorem 4.1. Denote

LT (β) =
σo

T − 2

T∑

t=3

ψ1

(
rt − ztβ

σo

)
w2 (zt) zt w3 (yt−2)

L̂T (β) =
σo

T − 2

T∑

t=3

ψ1

(
r̂t − ẑtβ

σo

)
w2 (ẑt) ẑt w3 (yt−2) .

Using a first order Taylor’s expansion around β̂T , we get

L̂T (βo) =
σo

T − 2

T∑

t=3

ψ1

(
r̂t − ẑtβ̂T

σo

)
w2 (ẑt) ẑt w3 (yt−2) +

+ (β̂T − βo)
1

T − 2

T∑

t=3

ψ′
1

(
r̂t − ẑtβ̃

σo

)
w2 (ẑt) ẑ

2
t w3 (yt−2) ,
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with β̃ an intermediate point between β̂T and βo. This implies that

L̂T (βo) = 0 + (β̂T − βo)
1

T − 2

T∑

t=3

ψ′
1

(
r̂t − ẑtβ̃

σo

)
w2 (ẑt) ẑ

2
t w3 (yt−2)

and so, we get that (β̂T − βo) = A−1
T L̂T (βo) with AT defined in Lemma A.1. From the

consistency of β̂T , Lemma A.1 implies that AT
p−→ A and therefore, from N2 it will be

enough to show that

a) T
1
2LT (βo)

D−→ N (0, σ2) with σ2 = σ2
o E

(
ψ2

1

(
εt
σo

))
E (w2

2 (zt) z
2
t w

2
3 (yt−2) ),

b) T
1
2

[
L̂T (βo) − LT (βo)

]
p−→ 0.

a) Follows inmediately from the Central Limit Theorem for geometrically α−mixing process,
since rt − ztβo = εt is independent of {ys : s ≤ t} (see for instance, Theorem 1.7 in Bosq
(1996)).
b) Denote ξt intermediate points between rt − ztβo and r̂t − ẑtβo and η̂j(y) = φ̂j(y) − φj(y)
for j = 1, 2. Using a second order Taylor’ s expansion, we have that L̂T (βo) = LT (βo) +
L̂T,1 + L̂T,2 + L̂T,3 + L̂T,4 + L̂T,5, where

L̂T,1 =
1

T − 2

T∑

t=3

ψ′
1

(
rt − ztβo

σo

)
[η̂1(yt−2)βo − η̂2(yt−2)] w2 (zt) zt w3 (yt−2)

L̂T,2 =
σo

T − 2

T∑

t=3

ψ1

(
rt − ztβo

σo

) [
w2 (ẑt) ẑt − w2 (zt) zt

]
w3 (yt−2)

L̂T,3 =
σo

T − 2

T∑

t=3

[
ψ1

(
r̂t − ẑtβo

σo

)
− ψ1

(
rt − ztβo

σo

)]
w2 (ẑt) (ẑt − zt) w3 (yt−2)

L̂T,4 =
1

2 σo

1

T − 2

T∑

t=3

ψ′′
1

(
ξt
σo

)
[η̂1(yt−2)βo − η̂2(yt−2)]

2 w2 (ẑt) zt w3 (yt−2)

L̂T,5 =
1

T − 2

T∑

t=3

ψ′
1

(
rt − ztβo

σo

)
[η̂1(yt−2)βo − η̂2(yt−2)] [w2 (ẑt) − w2 (zt)] zt w3 (yt−2) .

Since, ‖w3‖∞ ≤ 1 and N3 entails |w2 (ẑt)−w2 (zt) | ≤ C
|η̂1(yt−2)|

|zt|
, where C = ‖w2‖∞ +Cψ2 ,

we get

T
1
2 ‖L̂T,3‖ ≤ p ‖w2‖∞‖ψ′

1‖∞T
1
2

[
sup
y∈K

|η̂1(y)|
]2

(1 + |βo|)

T
1
2 ‖L̂T,4‖ ≤ 1

2

1

σo
‖ψ′′

1‖∞T
1
2

[
sup
y∈K

max
1≤j≤2

|η̂j(y)|
]2

(1 + |βo|)2
(
‖ψ2‖∞ + ‖w2‖∞ sup

y∈K
|η̂1(y)|

)

T
1
2 ‖L̂T,5‖ ≤ pC‖ψ′

1‖∞ (1 + |βo|) T
1
2

[
max
1≤j≤2

sup
y∈K

|η̂j(y)|
]2

,
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which together with (13), implies that, for 3 ≤ j ≤ 5, T
1
2 ‖L̂T,j‖

p−→ 0. Note that

L̂T,2 =
σo

T − 2

T∑

t=3

ψ1

(
rt − ztβo

σo

) [
w2 (ẑt) ẑt − w2 (zt) zt

]
w3 (yt−2)

=
σo

T − 2

T∑

t=3

ψ1

(
εt
σo

) [
ψ2 (ẑt) − ψ2 (zt)

]
w3 (yt−2)

=
σo

T − 2

T∑

t=3

ψ1

(
εt
σo

)
ψ′

2 (zt) η̂1 (yt−2)w3 (yt−2) +
T∑

t=3

ψ1

(
εt
σo

) [
ψ′

2 (ξt) − ψ′
2 (zt)

]
η̂1 (yt−2)w3 (yt−2)

= L̂
(1)
T,2 + L̂

(2)
T,2

where ξt denotes intermediate points between ẑt and zt. Using that ψ′
2 is Lispchitz of order

1, with constant Cψ′
2
, we get

T
1
2 |L̂(2)

T,2| ≤ Cψ′
2
‖ψ1‖∞ T

1
2 sup
y∈K

|η̂1 (y) |2

which together with (13) and (16) entail that T
1
2 |L̂(2)

T,2‖
p−→ 0.

It remains to show that T
1
2 L̂T,1

p−→ 0 and T
1
2 ‖L̂(1)

T,2‖
p−→ 0, that is,

R̂T,j = T− 1
2

T∑

t=3

ψ′
1

(
εt
σo

)
η̂j(yt−2)w2 (zt) zt w3 (yt−2)

p−→ 0 , j = 1, 2 (A.1)

R̂T,3 = T− 1
2

T∑

t=3

ψ1

(
εt
σo

)
ψ′

2 (zt) η̂1 (yt−2) w3 (yt−2)
p−→ 0 , (A.2)

since εt = rt − ztβo.

We begin by proving the desired result when a) holds.

Note that proving (A.1) is equivalent to show that, for j = 1, 2

R̂T,j,1 = T− 1
2

T∑

t=3

[
ψ′

1

(
εt
σo

)
− E

(
ψ′

1

(
εt
σo

))]
η̂j(yt−2)w2 (zt) zt w3 (yt−2)

p−→ 0 , (A.3)

R̂T,j,2 = T− 1
2

T∑

t=3

η̂j(yt−2)w2 (zt) zt w3 (yt−2)
p−→ 0 . (A.4)

For any function υ with domain on the compact support of the weight function w3, K,
we define

JT,1 (υ) = T− 1
2

T∑

t=3

[
ψ′

1

(
εt
σo

)
− E

(
ψ′

1

(
εt
σo

))]
υ(yt−2)ψ2 (zt) w3 (yt−2)

JT,2 (υ) = T− 1
2

T∑

t=3

ψ1

(
εt
σo

)
ψ′

2 (zt) υ(yt−2) w3 (yt−2)

JT,3 (υ) = T− 1
2

T∑

t=3

υ(yt−2)ψ2 (zt) w3 (yt−2) .
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Let L = {υ ∈ C1(K) : ‖υ‖1,∞ = ‖υ‖∞ + ‖υ′‖∞ ≤ 1}. Note that, from Theorem 2.7.1
in van der Vaart and Wellner (1996) the covering number N (ε,L, ‖ · ‖∞) ≤ exp (Kε−1) for
every ε > 0, where K is a constant.

For any ε > 0, let 0 < δ < 1. Using that (13) and (14) entail, for j = 1, 2

T
1
4 sup
t∈K

|η̂j(t)| = T
1
4 sup
t∈K

|φ̂j(t) − φj(t)|
p−→ 0,

sup
t∈K

|η̂′j(t)| = sup
t∈K

|φ̂′
j(t) − φ′

j(t)|
p−→ 0 ,

we have that, for T large enough, P
(
η̂j ∈ L and ‖η̂j‖∞ < δT− 1

4

)
> 1 − δ, for j = 1, 2.

Denote by A1 = 2 ‖ψ′
1‖∞‖ψ2‖∞, A2 = ‖ψ1‖∞‖ψ′

2‖∞ , A3 = ‖ψ2‖∞ and A = max1≤i≤3Ai

and by Lδ = {υ ∈ L : ‖υ‖1,∞ < δ and ‖υ‖∞ < δT = δT− 1
4}. Let αT =

ε

2A
T− 1

2 and

NT = N
(
αT
2
,Lδ, ‖ · ‖∞

)
≤ N (ϑT ,L, ‖ · ‖∞) with ϑT = (2 δ)−1αT =

ε

4Aδ
T− 1

2 . Note that,

if υ` ∈ Lδ and υ ∈ Lδ satisfy ‖υ` − υ‖∞ < αT , then, from N6, |JT,i (υ`) − JT,i (υ) | ≤ ε

2
, for

1 ≤ i ≤ 3. For any υ ∈ Lδ, denote V (υ) = {u ∈ Lδ : ‖u − υ‖∞ < αT}. Note that given

υ ∈ Lδ there exists 1 ≤ ` ≤ NT and υ` ∈ Lδ such that υ ∈ V (υ`) and so, ‖υ`‖∞ ≤ δT− 1
4 .

Thus, for j = 1, 2, we have that for i = 1, 2

P (|JT,i (η̂j) | > ε) ≤ P
(
|JT,i (η̂j) | > ε , η̂j ∈ L and ‖η̂j‖∞ < δT− 1

4

)
+ δ

≤ P

(
sup
υ∈Lδ

|JT,i (υ) | > ε

)
+ δ

≤ P

(
max

1≤`≤NT

sup
υ∈V(υ`)

|JT,i (υ) | > ε

)
+ δ

≤ P

(
max

1≤`≤NT

sup
υ∈V(υ`)

{|JT,i (υ) − JT,i (υ`) | + |JT,i (υ`) |} > ε

)
+ δ

≤ P
(

max
1≤`≤NT

|JT,i (υ`) | > ε/2
)

+ δ

≤ NT max
1≤`≤NT

P (|JT,i (υ`) | > ε/2) + δ ,

Let us consider Ft be the σ− field generated by {yj : j ≤ t− 1}, which forms an increasing

family of σ−fields. Note that Xt,1(υ) =
[
ψ′

1

(
εt
σo

)
− E

(
ψ′

1

(
ε1
σo

))]
υ(yt−2)ψ2 (zt) w3 (yt−2)

is bounded and a martingale difference with respect to Ft since the independence between

εt and {yt−j : j ≥ 1} entail E(Xt,1(υ)|Ft) = 0. Similarly, since Eψ1

(
εt
σo

)
= 0, Xt,2(υ) =

ψ1

(
εt
σo

)
ψ′

2 (zt) υ(yt−2) w3 (yt−2) is also a martingale difference with respect to Ft. Using

Theorem 2.3.1 in Györfi, Härdle, Sarda and Vieu (1989) and using that Xt,i(υ`) ≤ KT =

AδT− 1
4 , 1 ≤ i ≤ 3, we obtain that for i = 1, 2

P (|JT,i (υ`) | > ε) ≤ 2 exp

{
− ε2T

2T K2
T

}
= 2 exp



−

ε2T
1
2

2A2δ2




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Therefore, if B1 = ε2(2A2 δ2)−1 and B2 = 4KAδε−1, we have that

NT max
1≤`≤NT

P (|JT,i (υ`) | > ε) ≤ 2 exp
(
Kϑ−1

T

)
exp



−

ε2T
1
2

2A2δ2





≤ 2 exp
{
−B1T

1
2 +B2T

1
2

}
= 2 exp

{
−T

1
2 (B1 −B2)

}
.

Choosing δ <
ε

2A(K)
1
3

, we get that B1 − B2 > 0 which entails that

lim sup
T→∞

P (|JT,i (η̂j) | > ε) ≤ δ . i = 1, 2

which entails that (A.3) and (A.2).

Finally, under a) assumption N4 entail that Xt,3(υ) = υ(yt−2)ψ2 (zt) w3 (yt−2) satisfies

E (Xt,3(υ)) = 0 for any bounded function υ and JT,3 (υ) = T− 1
2
∑T
t=3Xt,3(υ). Using that

the process is geometrically α−mixing, Theorem 1.5 in Bosq (1996) and Theorem 1 in
Doukhan et al. (1994) we have that the finite dimensional distributions of {JT,3 (υ) : υ ∈ L}
converge to the finite dimensional distributions of an eventually degenerate Gaussian Process
{J3 (υ) : υ ∈ L} with covariance given by

E (J3 (υ1) J3 (υ2)) = E
(
υ1(y1)υ2(y1)ψ

2
2 (y2 − φ(y1)) w

2
3 (y1)

)

+
∞∑

j=1

E ([υ1(y1)υ2(yj+1) + υ1(yj+1)υ2(y1)] ψ2 (y2 − φ(y1))ψ2 (y2+j − φ(y1+j)) w3 (y1)w3 (yj+1))

On the other hand, using Jensen’s inequality, Theorem 1.2 in Rio (1993) and the fact that
the mixing coefficients are geometric, we have that for some finite constant C depending on
the mixing coefficients, and any p > 2

E |JT,3 (υ)| ≤
[
EJ2

T,3 (υ)
] 1

2

≤ C [E |υ(yt−2)ψ2 (zt) w3 (yt−2)|p]
1
p

≤ C‖ψ2‖∞ [E |υ(yt−2)|p]
1
p .

Therefore, Theorem 2.1 in Arcones (1996) implies the weak convergence of {JT,3 (υ) : υ ∈ L}
to the a Gaussian Process {J3 (υ) : υ ∈ L} which entails that the process {JT,3 (υ) : υ ∈ L}
is stochastically equicontinuous. As noted by Andrews (1994), the stochastic equicontinuity

of the process and the fact that from (13) supy∈K |η̂j(t)| = supy∈K |φ̂j(y) − φj(y)|
p−→ 0, we

obtain that JT,3 (η̂j)
p−→ and so (A.4) holds, concluding the proof when a) holds.

Assume now that b) holds.

Using the linear expansion for η̂j(y), we get that for j = 1, 2

T
1
2 R̂T,j =

T∑

t=3

ψ′
1

(
εt
σo

)
η̂j(yt−2)ψ2 (zt) w3 (yt−2) =

T∑

t=3

ψ′
1

(
εt
σo

)
L̂j(yt−2)ψ2 (zt) w3 (yt−2) +

+
T∑

t=3

ψ′
1

(
εt
σo

)
R̂j(yt−2)ψ2 (zt) w3 (yt−2) ,
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which implies that

|R̂T,j| ≤
∣∣∣∣∣

1√
T

T∑

t=3

ψ′
1

(
εt
σo

)
L̂j(yt−2)ψ2 (zt) w3 (yt−2)

∣∣∣∣∣+ ‖ψ′
1‖∞‖ψ2‖∞ T

1
2 sup
y∈K

|R̂j(y)| .

Now (A.1) follows from N4, (16) and (17) with ϑ1(t) = ψ′
1(t/σo) and ϑ2 ≡ ψ2.

Finally, (A.2) follows using similar arguments to those used to deal with (A.1), applying
(17) to ϑ1(t) = ψ1(t/σo) and ϑ2 ≡ ψ′

2 and (16) which concludes the proof.

The following Lemma states a result analogous to that given in Lemma A.1, uniformly
on the bandwidth parameter.

Lemma A.2. Let {yt}, t ≥ 3 be a stationary and ergodic process satisfying (2) with εt
independent of {yt−j , j ≥ 1}. Let HT = [aT− 1

5
−c, bT− 1

5
+c] with 0 < a < b < ∞ and

0 < c < 1
20

. Denote rt = yt− φ2(yt−2) and zt = yt−1 − φ1(yt−2). Let φ̂j(y), j = 1, 2 be robust
estimates of φj(y) such that

sup
y∈K

|φ̂j(y) − φj(y)|
p−→ 0, j = 1, 2

uniformly for h ∈ HT and assume that β̃
p−→ βo also uniformly for h ∈ HT . Then, under

N1 to N3 and N6, AT
p−→ A uniformly for h ∈ HT , where A is given in N2 and AT is

defined in Lemma 4.1.

Proof. As in Lemma A.1, we have that AT = A1
T + A2

T + A3
T + A4

T . The bounds ob-
tained for AjT , for j = 2, 3, 4 hold uniformly for h ∈ HT . On the other hand, defining

AT (β) =
1

T − 2

T∑

t=3

ψ′
1

(
rt − ztβ

σo

)
w2 (zt) z

2
t w3 (yt−2) and using analogous arguments to

those considered in Lemma 1 in Bianco and Boente (2001), we get that, for any δ > 0,

sup
|β−βo|<δ

|AT (β)−E (AT (β)) | p−→ 0, which together with the uniform convergence of β̃ to βo

entails the desired result.

Remark A.1. It is worth noticing that the conclusion of Lemmas A.1 and A.2 still holds
without requiring N6. In that case, we need to assume that sup

y∈K
|φ̂j(y) − φj(y)|

p−→ 0 ,

j = 1, 2, for any compact set K ⊂ IR.

Proof of Theorem 6.1. Follows using analogous arguments as those considered in the

proof of Theorem 4.1. First notice that T
1
2LT (βo)

D−→ N (0, σ2) holds uniformly for h ∈ HT ,
since LT (βo) does not depend on the smoothing parameter. Therefore, it remains to show

that T
1
2

[
L̂T (βo) − LT (βo)

]
p−→ 0 uniformly in HT .

As in Theorem 4.1, using a second order Taylor’ s expansion, we have that L̂T (βo) =

LT (βo)+L̂T,1+L̂
(1)
T,2+L̂

(2)
T,2+L̂T,3+L̂T,4+L̂T,5, where L̂T,j are defined in Theorem 4.1. Moreover,

with the bounds obtained therein it is easy to see that, for 3 ≤ j ≤ 5, T
1
2 sup
h∈HT

|L̂T,j|
p−→ 0

and that T
1
2 sup
h∈HT

|L̂(2)
T,2|

p−→ 0.
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We need to show that T
1
2 L̂T,1

p−→ 0 and T
1
2 L̂

(1)
T,2

p−→ 0 uniformly for h ∈ HT , that is, for
j = 1, 2

sup
h∈HT

|R̂T,j| = sup
h∈HT

T− 1
2

∣∣∣∣∣
T∑

t=3

ψ′
1

(
εt
σo

)
η̂j(yt−2)w2 (zt) zt w3 (yt−2)

∣∣∣∣∣
p−→ 0 (A.5)

sup
h∈HT

|R̂T,3| = sup
h∈HT

T− 1
2

∣∣∣∣∣
T∑

t=3

ψ1

(
εt
σo

)
ψ′

2 (zt) η̂1(yt−2) w3 (yt−2)

∣∣∣∣∣
p−→ 0 . (A.6)

We begin by proving (A.5). Note that using the linear expansion for η̂j(y), we get

T∑

t=3

ψ′
1

(
εt
σo

)
η̂j(yt−2)ψ2 (zt) w3 (yt−2) =

T∑

t=3

ψ′
1

(
εt
σo

)
L̂j(yt−2)ψ2 (zt) w3 (yt−2) +

+
T∑

t=3

ψ′
1

(
εt
σo

)
R̂j(yt−2)ψ2 (zt) w3 (yt−2) ,

which implies that

|R̂T,j| ≤
∣∣∣∣∣

1√
T

T∑

t=3

ψ′
1

(
εt
σo

)
L̂j(yt−2)ψ2 (zt) w3 (yt−2)

∣∣∣∣∣+ ‖ψ′
1‖∞‖ψ2‖∞ T

1
2 sup
y∈K

|R̂j(y)| .

Now (A.5) follows from N4, (20) and (21) with ϑ1(t) = ψ′
1(t/σo) and ϑ2 ≡ ψ2.

On the other hand, (A.6) follows using similar arguments to those used to deal with
(A.5), applying (20) and (21) to ϑ1(t) = ψ1(t/σo) ϑ2 ≡ ψ′

2 which concludes the proof.
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Figure 1: Lynx data, Estimated g function and Predicted Values using the classical procedure.
Upper plots correspond to original data, while lower ones to the contaminated series.
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Figure 2: Lynx data, Estimated g function and Predicted Values using the GM–estimators. Upper
plots correspond to original data, while lower ones to the contaminated series.
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Figure 3: Estimated g function (upper plots) and fitted values (lower plost) for lynx data. Black
lines correspond to the original data, while red ones to the modified data.
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Figure 7: Boxplots of the bandwidth obtained through cross–validation. The red line corresponds
to h = 0.3989.
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Figure 8: Boxplots of the bandwidth obtained through cross–validation. The red line corresponds
to h = 0.3989.
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Figure 9: Boxplots of the data–driven estimates of βo. The red line corresponds to the true value.
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Figure 10: Density estimator of M (ĝ, g). The black lines correspond to normal errors, while the
red ones to the contaminated samples.
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