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Abstract

In this paper, we consider a semiparametric partially linear regression model where missing
data occur in the response. We propose robust Fisher–consistent estimators for the regression
parameter, the regression function and for the marginal location parameter of response variable.
A robust cross–validation method is briefly discussed, even when, from our numerical results,
the marginal estimators seem to be not sensitive to the bandwidth parameter. Finally, a Monte
Carlo study is carried out to compare the performance of the robust proposed estimators among
them and also with the classical ones, in normal and contaminated samples, under different
missing data models. An example based on a real data set is also discussed.
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1 Introduction

Partially linear regression models assume that the regression function can be modeled linearly on
some covariates, while it depends nonparametrically on some others. To be more precise, assume
that we have a response yi ∈ IR and covariates or design points (xt

i , ti) such that xi ∈ IRp, ti ∈ [0, 1]
satisfying

yi = m(xi, ti) + εi = xt
i β0 + g0 (ti) + σ0εi 1 ≤ i ≤ n , (1)

with the errors εi i.i.d., independent of (xt
i , ti) such that E(εi) = 0 and VAR(εi) = 1. Note that

m stands for the regression function which is modeled linearly on x and nonparametrically on t.

As it is well known, most of the statistical methods in nonparametric and semiparametric
regression models are designed for complete data sets and problems arise when missing observations
are present. This is a common situation in biomedical or socioeconomic studies, for instance.
Typical examples are found in the field of social sciences where non–responses in sample surveys
occur very often and also, in physics and genetics (Meng, 2000), among others. Even if there are
many situations in which both the response and the explanatory variables are missing, we will focus
our attention on those cases where missing data occur only in the responses. This situation arises
in many biological experiments where the explanatory variables can be controlled. This pattern is
common, for example, in the scheme of double sampling proposed by Neyman (1938), where first a
complete sample is obtained and then some additional covariate values are computed since perhaps
this is less expensive than to obtain more response values. In this paper, we will thus assume that
missing occurs only on the responses variables.

In the regression setting, a common method is to impute the incomplete observations and then
proceed to carry out the estimation of the conditional or unconditional mean of the response variable
with the complete sample. The methods considered include linear regression (Yates, 1933), kernel
smoothing (Cheng, 1994; Chu and Cheng, 1995) nearest neighbor imputation (Chen and Shao,
2000), semiparametric estimation (Wang et al., 2004), nonparametric multiple imputation (Aerts
et al., 2002), empirical likelihood over the imputed values (Wang and Rao, 2002), among others. For
a nonparametric regression model, González–Manteiga and Pérez–Gonzalez (2004) considered an
approach based on local polynomials to estimate the regression function when the response variable
y is missing but the covariate x is totally observed. Wang et al. (2004) considered inference on the
mean of y under regression imputation of missing responses based on the semiparametric regression
model (1). Under the setting considered in this paper, the missingness of y is allowed to depend
on (xt, t). All the proposals considered up to now are very sensitive to anomalous observations
since they are based on a local least squares approach. Recently, Boente et al. (2009) introduced
a robust proposal to estimate the regression function under missingness in the response.

The goal of this paper is to introduce resistant estimators for the marginal location of y, say
θ, under the partially linear model (1), when the response variable has missing observations but
the covariates (xt, t) are totally observed. The paper is organized as follows. Section 2 introduces
the robust semiparametric estimators. An algorithm to compute the given estimators is described
in Section 3, while their consistency is discussed in Section 4. A simulation study is described in
Section 5 while an example based on a real data set is discussed in Section 6. Concluding remarks
are provided in Section 7. Finally, technical proofs are given in the Appendix.

2



2 Proposals

We will consider inference with an incomplete data set
(
yi,xt

i , ti, δi
)
, 1 ≤ i ≤ n where δi = 1 if yi

is observed and δi = 0 if yi is missing and

yi = xt
i β0 + g0 (ti) + σ0 εi 1 ≤ i ≤ n , (2)

with errors εi independent, identically distributed with symmetric distribution F0(·).
Let (Y,Xt, T, δ) be a random vector with the same distribution as (yi,xi, ti, δi). Our aim is to

estimate, with the data set at hand, the regression parameter and the regression function robustly
to provide a robust estimator for the marginal location parameter. An ignorable missing mechanism
will be imposed by assuming that Y is missing at random (MAR), i.e., δ and Y are conditionally
independent given (X, T ), i.e.,

P (δ = 1|(Y,X, T )) = P (δ = 1|(X, T )) = p (X, T ) . (3)

We will consider kernel smoothers weights for the nonparametric component given by

wi(t) =
K

(
ti − t

hn

)
δi

n∑

j=1

K

(
tj − t

hn

)
δj

, (4)

with K a kernel function, i.e., a nonnegative integrable function on IR and hn the bandwidth
parameter. Note that the kernel weights are modified multiplying by the indicator of the missing
variables in order to adapt to the complete sample and avoid bias.

For the sake of completeness, we remind the classical proposals. The least squares regression
estimators are defined by considering preliminary kernel estimators, η̂n(t) and η̂0,n(t), of the quan-
tities η(t) = E(δX|T = t)/E(δ|T = t) and η0(t) = E(δY |T = t)/E(δ|T = t), respectively. Note
that using (3), δ is conditionally independent of Y and so we have that η0(t) = E(Y |T = t). Since
δY = δXtβ0 + δg0(T ) + δσ0ε, taking conditional expectation, we get η0(t) = η(t)tβ0 + g0(t) if
E (ε|(x, t)) = 0 and so, δi (yi − η0(ti)) = δi (xi − η(ti))

t β0 +δiσ0εi, 1 ≤ i ≤ n. Then, the estimator
of the regression parameter β0, introduced by Wang et al. (2004), is defined as the value minimiz-

ing
∑n

i=1 δi
{
(yi − η̂0,n(ti)) − (xi − η̂n(ti))

t β
}2

. This estimator is based on weighted means of the
response variables and so, it is higly sensitive to anomalous data. This suggests that some resistant
estimation procedure needs to be considered.

It is worth noticing that Wang et al. (2004) assumed only that E(εi|(xi, ti)) = 0 instead
of the independence between the errors and the covariates. However, the stronger independence
assumption stated in (1) will be needed to obtain robust consistent estimators of β as in linear
regression models.

2.1 Robust estimators of the regression parameter and regression function

The estimation of the robust location conditional functional related to each component of xi causes
no problem since all covariates are complete, while that of the response yi is problematic since there
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are missing responses. We will consider the approach given in Boente et al. (2009) to estimate
the regression functions. The simplified local M−smoother defined therein uses the information
at hand and defines the estimator with the complete observations only. The main problem is that
if we proceed as in Bianco and Boente (2004) with the complete sample, the conditions needed
to ensure Fisher–consistency entail that p (X, T ) = p(T ), which eliminates many situations arising
in practice. Thus, to guarantee Fisher–consistency, a robust profile–likelihood approach will be
considered.

Let ψ1 be an odd and bounded score funtion and ρ be a rho–function as defined in Maronna et
al. (2006, Chapter 2), i.e., a function ρ such that

• ρ(x) is a nondecreasing function of |x|,

• ρ(0) = 0,

• ρ(x) is increasing for x > 0 when ρ(x) < ‖ρ‖∞,

• if ρ is bounded, it is also assumed that ‖ρ‖∞ = 1.

To define a robust estimator, we can proceed as follows

• Step 1 For each t and β, define gβ(t) and its related estimate ĝβ(t) using the simplified local
M−smoothers defined in Boente et al. (2009). That is, gβ(t) and ĝβ(t) are, respectively, the
solutions of

E

[
δψ1

(
Y −Xtβ − gβ(t)

σ

)
|T = t

]
= 0 , (5)

n∑

i=1

wi(t)ψ1

(
yi − xt

i β − ĝβ(t)
ŝ(t)

)
= 0 , (6)

where ŝ(t) is a preliminary robust consistent scale estimator.

• Step 2 The functional β(F ), where F is the distribution of (δ, Y,Xt, T ), is defined as

β(F ) = argmin
β

E

[
δρ

(
Y −Xtβ − gβ(T )

σ

)
υ (X)

]

and its related estimate as

β̂ = argmin
β

n∑

i=1

δiρ

(
yi − xt

i β − ĝβ(ti)
σ̂

)
υ (xi) ,

with σ̂ a preliminary estimate of the scale σ0, i.e., a robust M−scale computed using an initial
(possible inefficient) estimate of β with high breakdown point. Therefore, if ψ = ρ′ denotes
the derivative of ρ, the estimator is the solution of

n∑

i=1

δiψ



yi − xt

i β̂ − ĝ
β̂
(ti)

σ̂


 υ (xi)

(
xi +

∂

∂β
ĝβ(ti)

∣∣∣
β=β̂

)
= 0 . (7)
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• Step 3 Then, the functional g(t, F ) is defined as g(t, F ) = gβ(F )(t), while the estimate of the
nonparametric component is ĝn(t) = ĝ

β̂
(t).

An estimator of the regression function m is thus given by m̂(x, t) = xtβ̂ + ĝn(t).

In the Appendix, it is shown that, under mild conditions, these functionals are Fisher–consistent
since the errors ε are independent of (δ, T ). Moreover, it will be shown that Fisher–consistency is
preserved under the heteroscedastic model yi = xt

i β0 + g0 (ti) + σ0(xi, ti) εi, 1 ≤ i ≤ n, where the
errors εi are i.i.d. and independent of the covariates.

Remark 2.1.1. As in nonparametric regression without missing observations, the aim of a robust
smoother, as the local M− estimator, is to provide reliable estimations when outliers observations
are present in the responses yi. Indeed, the researcher is seeking for consistent estimators of
the regression functions gβ(t) and m(x, t) without requiring moment conditions on the errors εi.
This includes the well–known α-contaminated neighborhood for the errors distribution. More
precisely, in a robust framework, one seeks procedures that remain valid when εi ∼ F0 ∈ Fα =
{G : G(y) = (1 − α)G0(y) + αH(y)}, with H any symmetric distribution and G0 a central model
with possible first or second moments. In fact, the same framework can be considered in this paper.
In these neighborhoods, no moment conditions are required to the errors and outliers correspond to
deviations on the errors distribution. Moreover, the condition that ψ1 is an odd function and the
errors have a symmetric distribution, can be replaced by E(ψ1(ε/σ)) = 0 and E(ψ(ε/σ)) = 0, for
any σ > 0 which are standard conditions in robustness in order to guarantee Fisher consistency of
the location or regression parameters. Further dicussion can be found in He et al. (2002), Bianco
et al. (2006) and Boente et al. (2009). Otherwise, if this assumption is not fulfilled the regression
and location estimators are asymptotically biased, see for instance, Maronna et al. (2006, Chapter
4).

On the other hand, as in any regression model, leverage points in the explanatory variables x,
can cause breakdown. To overcome this problem, GM− and S−estimators have been introduced,
see for instance, Maronna et al. (2006). In Step 2, we have considered a score function ρ combined
with a weight υ to include both families of estimators. Our proposal is thus resistant against
outliers in the residuals and in the carriers x as well.

2.2 Estimation of the marginal location

Let us denote by θ the marginal location of Y , for instance, we are interested in the M−location
parameter of Y solution of λ(a, σ) = Eψ2 ((Y − a)/σ) = 0 for all σ, where ψ2 is an odd and bounded
score funtion. When ψ2(u) = sg(u) = I(0,∞)(u)− I(−∞,0)(u), θ is the median of Y . The same score
functions ψ1 and ψ2 can be considered both in Step 1 and when computing the marginal parameter
estimators defined below.

Denote by σ̂, σ̂wi and σ̂a robust consistent estimators of the marginal scale of the variables
involved, such as the mad. Since we only have the responses at hand, the unknown values can be
predicted by xt

i β̂+ ĝn(ti), where ĝn(t) and β̂ are defined in Section 2.1. Besides, to correct the bias
caused in the estimation by the missing mechanism, an estimator of the missingness probability
needs to be considered. Denote by pn(x, t) any estimator of p(x, t), such as the nonparametric
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kernel estimator

pn(x, t) =

n∑

i=1

K1

(
xi − x
λn

)
K2

(
ti − t

bn

)
δi

n∑

j=1

K1

(
xj − x
λn

)
K2

(
tj − t

bn

) , (8)

where K1 : IRp → IR and K2 : IR → IR are kernel functions and λn and hn denote the smoothing
parameters. If a parametric model is assumed, other choices for estimating p(x, t) can be considered.

• Weighted Simplified M−estimate. This estimate uses the complete sample and is the
solution, θ̂ws, of

n∑

i=1

δi
pn(xi, ti)

ψ2

(
yi − θ̂ws

σ̂

)
= 0 .

• Averaged M−estimate. This estimator uses the predicted values to compute the marginal
parameter estimator. If the errors distribution is symmetric, as assumed, and Z = m(X, T ) =
Xtβ0 + g0 (T ) = θ + u with u having symmetric distribution, we get that the median of
the distribution of Y equals the median of Z. The same will happen when considering an
M−functional, that is, Y and Z will have the same M−location, and so we get the estimator,
θ̂a as the solution of

n∑

i=1

ψ2

(
xt

i β̂ + ĝn(ti) − θ̂a
σ̂a

)
= 0 .

• Weighted Imputed M−estimate. This estimator combines the ideas of the previous ones
by imputing the missing responses. The estimate θ̂wi is the solution of

n∑

i=1

δi
pn(xi, ti)

ψ2

(
yi − θ̂wi

σ̂wi

)
+

n∑

i=1

(
1 − δi

pn(xi, ti)

)
ψ2

(
xt

i β̂ + ĝn(ti) − θ̂wi

σ̂wi

)
= 0 . (9)

The Fisher–consistency of the related functionals is derived in the Appendix.

2.2.1 On the strong robustness

In the classical setting, the target parameter is the mean θ = E(Y ). When considering ψ2(t) = sg(t)
the target is now the median of the response Y . For general score functions ψ2, the target is the
robust M−location functional related to ψ2, as introduced in Huber (1981).

It is worth noticing that the assumption of symmetry required to the error’s distribution is
needed if we want to guarantee that we are estimating the same quantity when using all robust
location functionals. As discussed in Remark 2.1.1, it can be replaced by E(ψ2(ε/σ)) = 0, for
any σ > 0. Furthermore, the weak continuity of these robust location functionals for bounded
score functions can be seen in Huber (1981). Therefore, by applying this functional to weak
consistent estimators of the distribution of Y , we obtain consistent and asymptotically strongly
robust estimators of θ. These results can, thus, be applied in our missing setting by defining
suitable empirical distributions.
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Note that all the estimators introduced in Section 2.2 can be written as M−functionals applied
to some modified empirical distribution. In fact, we have

• θ̂ws, is the solution of λ̂n(a, σ̂) = 0 with

λ̂n(a, σ) =
1
n

n∑

i=1

δi
pn(xi, ti)

ψ2

(
yi − a

σ

)
=
∫
ψ2

(
y − a

σ

)
dF̂n(y) ,

F̂n(y) =
1
n

n∑

i=1

δi
pn(xi, ti)

I(−∞,y](yi) .

From the above discussion and since F̂n(y) provides weak consistent estimators of F (y) un-
der mild conditions, the weighted simplified M−estimator provides asymptotically strongly
robust estimators.

• Denote by m̂i the predicted values using the partially linear model (1), m̂i = m̂(xi, ti) =
xt

i β̂ + ĝn(ti). Then, θ̂a is the solution of λ̃n(a, σ̂a) = 0

λ̃n(a, σ) =
1
n

n∑

i=1

ψ2

(
m̂i − a

σ

)
=
∫
ψ2

(
z − a

σ

)
dF̃n(z) ,

F̃n(z) =
1
n

n∑

i=1

I(−∞,z](m̂i) .

In this case, if β̂ and ĝ are robust consistent estimators of β0 and g0, F̃n will be a weak con-
sistent estimator of the distribution, FZ , of Z = m(X, T ). Thus, the average M−estimators
are a sequence of asymptotically strongly robust estimators.

• θ̂wi is the solution of ̂̂λn(a, σ̂wi) = 0 with

̂̂
λn(a, σ) =

1
n

n∑

i=1

δi
pn(xi, ti)

ψ2

(
yi − a

σ

)
+
(

1 − δi
pn(xi, ti)

)
ψ2

(
m̂i − a

σ

)
=
∫
ψ2

(
y − a

σ

)
d
̂̂
F n(y) ,

̂̂
F n(y) =

1
n

n∑

i=1

[
δi

pn(xi, ti)
I(−∞,y](yi) +

(
1 − δi

pn(xi, ti)

)
I(−∞,y](m̂i)

]
.

As it will be shown, ̂̂F n is a weak consistent estimator of F if pn(x, t) is a consistent estimator
of p(x, t) = P (δ = 1|(X, T ) = (x, t)). Thus, the weighted imputed M−estimators provide a
sequence of asymptotically strongly robust estimators.

2.2.2 Selection of the smoothing parameter

Even when the bias and variance of the marginal location estimators is less sensitive to the band-
width than in other semiparametric settings, see for instance, Cheng (1994) and Wang and Sun
(2007), a least squares cross–validation scheme to choose the smoothing parameter is usually con-
sidered. Besides, the sensitivity of L2 cross–validation methods in nonparametric regression was
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pointed out, among others, by Wang and Scott (1994) and Cantoni and Ronchetti (2001) who also
proposed robust alternatives, while Boente et al. (2009) considered the case when missing responses
are present.

The ideas of robust cross–validation can be adapted to the present situation. Let θ̂ be the robust
estimator to be considered, i.e., the average or the weighted imputed one. Denote by θ̂(i)(h) the
estimator computed with bandwidth h using all the data except (yi,xt

i , ti). Taking into account
that the L2 cross–validation criterion tries to measure both bias and variance, it would be sensible
to introduce, as in Bianco and Boente (2007), a new measure that establishes a trade–off between
robust measures of bias and variance. Let µn and σn denote robust estimators of location and scale,
respectively. A robust cross–validation criterion can be defined by minimizing on h

RCVr(h) = µ2
n (r̂i(h), w (ti)) + σ2

n (r̂i(h), w (ti)) , (10)

where the weight function w may be chosen so as to protect against boundary effects, r̂i(h) =
yi − θ̂(i)(h) are the residuals and µn (ui, wi) and σn (ui, wi) indicates that to compute the robust
location and scale, respectively, each observation ui receives a weight wi. As location estimator,
µn, one can consider the median while σn can be taken as the bisquare a–scale estimator or the
Huber τ−scale estimator. For the situation we are dealing with, it is enough, to compute RCVr

with the observations at hand, i.e, to compute RCVr we use only the observed residuals {r̂i}i:δi=1

and discard the incomplete vectors.

3 Algorithm

3.1 Computation of the parametric and nonparametric components

We will consider kernel smoothers weights for the nonparametric component which are given by (4).
In this section, we describe an algorithm, which is a slight modification of the procedure described
in Maronna et al. (2006, Chapter 5). Let ρ0 and ρ be two bounded rho–functions such that ρ0 ≥ ρ.

When β ∈ IRp, p = 1, 2, the algorithm to compute the estimator β̂ defined in Step 2 may be
based on a search over a grid of points as follows.

• Step A0 Take a net βj of possible values for β, j = 1, . . . , J .

• Step A1 Fix 1 ≤ j ≤ J . We first compute the regression function estimate ĝβ(t) for each
β = βj of the net and each ti and also, an estimator for the scale σ0.

? For any 1 ≤ i ≤ n, evaluate ĝj,i = ĝβj
(ti) using the simplified M− estimator introduced

by Boente et al. (2009) applied to {(yk − xt
k βj , tk, δk)}1≤k≤n i.e., as the solution of

n∑

k=1

wk(ti)ψ1

(
yk − xt

k βj − ĝj,i

ŝ(ti)

)
= 0 , (11)

where ŝ(ti) is a preliminary robust scale estimator, such as, the local mad, i.e., ŝ(t) =
madk∈I(hn)

∣∣∣rk,j − median`∈I(hn) (r`,j)
∣∣∣ with rk,j = yk − xt

k βj and I(hn) = {` : 1 ≤ ` ≤
n and |t` − t| ≤ hn}.
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? Compute

L0(βj) = median
1≤i≤n:δi=1

((
yi − xt

i βj − ĝj,i

)2
)
.

• Step A2 In order to define the residuals scale estimator, let β̂ini = βj0 be the preliminar
estimator of β such that

β̂ini = argmin
j

L0(βj) = L0(βj0) ,

and, for each 1 ≤ i ≤ n, let ĝini,i be the solution of (11) when using β̂ini. Note that there is
no need to evaluate again the solution ĝini,i, since they were already computed in Step A1
for all the values of β in the grid.

Let m =
∑n

i=1 δi. The estimator of the scale σ, σ̂, is then defined as the solution of

1
m

n∑

i=1

δiρ0

(
yi − xt

i β̂ini − ĝini,i

σ̂

)
=

1
2
. (12)

• Step A3 To compute the final estimator of β, let

L(βj) =
n∑

i=1

δiρ

(
yi − xt

i βj − ĝj,i

σ̂

)
υ (xi) ,

where ĝj,i are obtained in Step A1 as the solution of (11). Note that, as in Step A2, ĝj,i

do not need to be computed again since we have already calculated them in Step A1. A
common choice is υ ≡ 1, since ρ is bounded.

Let β̂ be the value minimizing L over the grid, i.e., β̂ = argmin1≤j≤J L(βj).

• Step A4 The estimator of the nonparametric component is the solution ĝn(t) = ĝ
β̂
(t) of

n∑

i=1

wi(t)ψ1

(
yi − xt

i β̂ − ĝn(t)
ŝ(t)

)
= 0 .

When p > 2, a subsampling scheme must be considered as is usual in robust linear regression
when computing, for instance, S−estimators. The algorithmic complexity involved in this setting
is mainly due to the fact that we cannot ensure that a reweighted procedure will decrease the
objective function, as it does in linear regression, since we follow now a robust profile–likelihood
approach. To be more precise, in order to find an approximate solution to (7), we can compute the
objective function over a “large” finite set of candidate solutions., and replace the minimization
over β ∈ IRp in Step 2 by minimizing L(β) over that finite set. The main problem is how to obtain
a set of candidate solutions and a possible way is to adapt the well known subsampling methods
used in linear regression models. Let us assume that initial estimates of the regression function
g0 are available, denoted by g̃ini. Among the complete data, i.e., those with δi = 1, one may take
subsamples of size p, {(yij ,xij , tij ) : 1 ≤ j ≤ p}, where i1 < . . . < ip and I = {i1, . . . , ip} ∈ {i :
δi = 1}. Clearly, more than p observed responses are needed. For each I find βI that satisfies the
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exact fit on the adjusted responses yij − g̃ini(tij ) = xtijβI for i ∈ I. If a subsample is collinear, it
is replaced by another. Then, the problem of minimizing L(β) for β ∈ IRp is replaced by the finite
problem of minimizing L(βI) over I. Since choosing all

(m
p

)
subsamples where m = #{i : δi = 1}

would be prohibitive unless both m and p are rather small, we choose N of them at random.

To improve the computational time, the initial estimator g̃ini of the regression function g0
can be computed as (β̃(t), g̃ini(t)) = argmin(β,a)

∑n
i=1 δiK ((t− ti)/h) ρ

(
(yi − xt

i β − a)/σ̂
)
υ (xi) .

Note that these estimators correspond to define weighted regression estimators over the complete
data set, where the weights are higher if the observation (yi,xi, ti) is such that ti is close to t.
It is worth noticing that in order to compute these preliminary estimators the uniform kernel
K(u) = I[−1,1](u)/2 can be considered so that any routine for computing a high breakdown point
estimator can be used locally, i.e., for the observations lying in the neighborhood of t. Moreover,
in order to guarantee the computation of the initial estimators, one needs to ensure that a large
enough number of observations is available at each neighborhood of ti. Besides, similar arguments
to those considered in Section 8.2 allow to show that the functionals related to (β̃(t), g̃ini(t)) are
Fisher–consistent if condition c) stated therein holds. Note that this preliminary estimator of β
depends on t, since it is computed locally and so, it may have a nonparametric rate of convergence.

3.2 Computation of the robust marginal location estimators

To compute θ̂ws and θ̂a, any standard algorithm to compute M−estimators can be used. For
instance, they can be computed iteratively using reweighting, as described in the location setting
in Chapter 2 of Maronna et al. (2006). On the other hand, the following algorithm can be used to
compute θ̂wi. Using that θ̂wi is the solution of (9) and denoting by W2(u) = ψ2(u)/u, pi = pn(xi, ti)
and m̂i = xt

i β̂ + ĝn(ti), we get that
n∑

i=1

δi
pi
ψ2

(
yi − θ̂wi

σ̂wi

)
+

n∑

i=1

(
1 − δi

pi

)
ψ2

(
m̂i − θ̂wi

σ̂wi

)
= 0

and so

θ̂wi =

n∑

i=1

[
δi
pi
W2

(
yi − θ̂wi

σ̂wi

)
yi +

(
1 − δi

pi

)
W2

(
m̂i − θ̂wi

σ̂wi

)
m̂i

]

n∑

i=1

[
δi
pi
W2

(
yi − θ̂wi

σ̂wi

)
+
(

1 − δi
pi

)
W2

(
m̂i − θ̂wi

σ̂wi

)] .

Let θ(0) = θ̂a and σ̂a = mad
1≤i≤n

(m̂i) The algorithm can be defined as follows

• For k = 0, 1, . . ., given θ(k) define

θ(k+1) =

n∑

i=1

[
δi
pi
W2

(
yi − θ(k)

σ̂wi

)
yi +

(
1 − δi

pi

)
W2

(
m̂i − θ(k)

σ̂wi

)
m̂i

]

n∑

i=1

[
δi
pi
W2

(
yi − θ(k)

σ̂wi

)
+
(

1 − δi
pi

)
W2

(
m̂i − θ(k)

σ̂wi

)]

• Iterate until convergence or for a fixed number of steps kmax.

10



4 Main results

In this section, we will derive the strong consistency of the marginal location M−estimators under
the following conditions:

A1 ψ2 : IR → IR is a bounded, differentiable function with bounded derivative ψ′
2, such that∫

|ψ′
2(u)|du <∞.

A2 inf
(x,t)

p(x, t) = A > 0.

A3 sup
(x,t)

|pn(x, t) − p(x, t)| a.s.−→ 0.

Assumption A1 is a standard condition on the score function ψ1, while A2 states that response
variables are observed, which is a common assumption in the literature.

Theorem 4.1. Assume that A2 and A3 hold. Then,

a) ‖F̂n − F‖∞ = supy |F̂n(y) − F (y)| a.s.−→ 0.

b) If in addition σ̂
a.s.−→ σ0, A1 holds and in a neighborhood of θ, the function λ(a, σ0) has a

unique change of sign, there exists a solution θ̂ws of λ̂n(a, σ̂) = 0, such that θ̂ws
a.s.−→ θ.

Theorem 4.2. Denote by Π(Q,P ) the Prohorov distance between the probability measures Q
and P . Let m̃(x, t) be an estimator of m(x, t) such that for any compact set K1 ∈ IRp K2 ∈ IR

sup
x∈K1
t∈K2

|m̃(x, t) −m(x, t)| a.s.−→ 0 .

Then,

a) Π(P̃n, PZ)| a.s.−→ 0 where PZ is the probability measure induced by Z = m(X, T ) and

P̃n(A) =
1
n

n∑

i=1

IA(m̂(xi, ti)) =
1
n

n∑

i=1

IA(m̂i) .

b) If in addition σ̂ is an estimator of the scale σZ of Z such that σ̂
a.s.−→ σZ , A1 holds and in a

neighborhood of θ, the function λ(a, σZ) has a unique change of sign, there exists a solution

θ̃ of
˜̃
λn(a, σ̂) = 0, such that θ̃

a.s.−→ θ where

˜̃
λn(a, σ) =

1
n

n∑

i=1

ψ2

(
m̃i − a

σ

)
=
∫
ψ2

(
z − a

σ

)
d
˜̃
F n(z)

m̃i = m̃(xi, ti)

˜̃
F n(z) =

1
n

n∑

i=1

I(−∞,z](m̃i) .
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Note that Theorem 4.2 entails the following result.

Corollary 4.1. Assume that

i) β̂
a.s.−→ β0.

ii) For any compact set K, supt∈K |ĝn(t) − g0(t)|
a.s.−→ 0.

If in addition σ̂a
a.s.−→ σZ , A1 holds and in a neighborhood of θ, the function λ(a, σZ) has a unique

change of sign, there exists a solution θ̂a of λ̃n(a, σ̂a) = 0, such that θ̂a
a.s.−→ θ.

Theorem 4.3. Assume that A2 and A3 hold. Then,

a) ‖ ̂̂F n − F‖∞ = supy |
̂̂
F n(y) − F (y)| a.s.−→ 0.

b) If in addition σ̂wi
a.s.−→ σ0, A1 holds and in a neighborhood of θ, the function λ(a, σ0) has a

unique change of sign, there exists a solution θ̂wi of
̂̂
λn(a, σ̂wi) = 0, such that θ̂wi

a.s.−→ θ.

4.1 Some comments

It is worth noticing that Theorem 4.3 entail that θ̂wi
a.s.−→ θ even if the estimators of the regression

function are not consistent when we estimate consistently the probability of missing. Obviously,
the same happens with θ̂ws that uses the observations at hand. Besides, θ̂a is consistent if the
regression model is correct without any need of estimating the probability of missing.

One could try to combine both proposals in order to get the double–protected property in the
sense of Scharfstein et al. (1999). Let

θ̂ = θ̂a +
1
n

n∑

i=1

δi
pn(xi, ti)

(
θ̂ws − θ̂wa

)

with θ̂wa the solution of

n∑

i=1

δi
pn(xi, ti)

ψ2

(
xt

i β̂ + ĝn(ti) − θ̂wa

σ̂wa

)
= 0 ,

where σ̂wa is a preliminary robust scale estimator. It is clear that, if A3 holds, θ̂ a.s.−→ θ since

• θ̂ws
a.s.−→ θ

• θ̂wa
a.s.−→ θwa(F )

• θ̂a
a.s.−→ θa(F )

• θa(F ) = θwa(F ),

12



where θa(F ) and θwa(F ) stand for the functionals related to each proposal (see Section 8.3).

However, if sup
(x,t)

|pn(x, t) − p?(x, t)| a.s.−→ 0 with p?(x, t) 6= p(x, t) but m(x, t) = xtβ0 + g0(t),

from the consistency of θ̂a, we get that θ̂ a.s.−→ θ + E (p(X, T )/p?(X, T )) (θws(F ) − θwa(F )) and we
cannot ensure that both location functionals, θws(F ) and θwa(F ), will be equal. However, note
that, when ψ2 is the identity function, this equality holds due to the linearity of the expectation.

Moreover, assume that there exists a M−functional θ(F ) such that if θ̂ is the corresponding
estimator then, θ̂ satisfies the double–protected property. Hence, assuming that scale σ is known,
we must have

a) If sup
(x,t)

|pn(x, t) − p(x, t)| a.s.−→ 0, then θ(F ) should be equal to θws(F ), i.e., it should satisfy

E
δ

p(X, T )
ψ2

(
Y − θ(F )

σ

)
= 0 .

b) If sup
(x,t)

|m̂n(x, t) −m(x, t)| a.s.−→ 0, then θ(F ) should be equal to θa(F ), i.e., it should satisfy

Eψ2

(
m(X, T ) − θ(F )

σ

)
= 0 .

Thus, if one wants to obtain a robust and double–protected M−estimator, both equations should
be satisfied. Clearly, when ψ2 ≡ id, this is fulfilled when the errors ε are independent of (x, t) and
have symmetric distribution. So, if sup

(x,t)
|pn(x, t)−p?(x, t)| a.s.−→ 0 and sup

(x,t)
|m̂(x, t)−m?(x, t)| a.s.−→ 0,

we need that

a) if p?(x, t) = p(x, t), then θ(F ) will satisfy

E
δ

p?(X, T )
ψ2

(
Y − θ(F )

σ

)
= E

p?(X, T )
p?(X, T )

ψ2

(
m(X, T ) + σ0ε− θ(F )

σ

)
= 0 ,

or equivalently in this situation

Eψ2

(
m(X, T ) + σ0ε− θ(F )

σ

)
= 0 .

b) On the other hand, if m?(x, t) = m(x, t), θ(F ) should satisfy

Eψ2

(
m(X, T ) − θ(F )

σ

)
= 0 .

For the regular score functions used in robustness this seems difficult to be attained due to the
non–linearity of ψ2.
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Another possibility could be to consider the solution θ̂ of λ?
n(θ̂, σ̂wa) = 0 with

λ?
n(a, σ) = λ̃n(a, σ) +

(
1
n

n∑

i=1

δi
pn(xi, ti)

)
1
n

n∑

i=1

δi
pn(xi, ti)

[
ψ2

(
yi − a

σ

)
− ψ2

(
m̂i − a

σ

)]
= 0 ,

where m̂i are the predicted values using the partially linear model (1), m̂i = m̂(xi, ti) = xt
i β̂+ĝn(ti)

and λ̃n(a, σ) was defined in Section 2.2.1 as

λ̃n(a, σ) =
1
n

n∑

i=1

ψ2

(
m̂i − a

σ

)
.

Note that if sup
(x,t)

|pn(x, t)− p?(x, t)| a.s.−→ 0 and sup
(x,t)

|m̂(x, t)−m?(x, t)| a.s.−→ 0, θ̂ will be consistent to

the solution θ?(F ) of λ?(a, σ) = 0 with

λ?(a, σ) = λZ(a, σ) +
(
E
p(X, T )
p?(X, T )

)
E

{
p(X, T )
p?(X, T )

[
ψ2

(
Y − a

σ

)
− ψ2

(
Z − a

σ

)]}
,

where λZ(a, σ) = Eψ2((Z − a)/σ), Z = m?(X, T ). Again,

a) If p?(x, t) = p(x, t), then λ?(a, σ) = Eψ2((Y − a)/σ) and so θ?(F ) = θws(F ), attaining the
desired Fisher–consistency.

b) If m?(x, t) = m(x, t), then, if R(X, T ) = p(X, T )/p?(X, T ), we have

λ?(a, σ) = Eψ2

(
m(X, T ) − a

σ

)

+ (ER(X, T ))E
(
R(X, T )

[
ψ2

(
m(X, T ) + σ0ε− a

σ

)
− ψ2

(
m(X, T ) − a

σ

)])
.

Thus, using that m(X, T ) has a symmetric distribution around θ, we obtain

λ?(θ, σ) = (ER(X, T ))E
(
R(X, T )

[
ψ2

(
m(X, T ) + σ0ε− θ

σ

)
− ψ2

(
m(X, T ) − θ

σ

)])
.

So, if we want that θ?(F ) = θa(F ) = θ we need that

E

(
R(X, T )

[
ψ2

(
m(X, T ) + σ0ε− θ

σ

)
− ψ2

(
m(X, T ) − θ

σ

)])
= 0 . (13)

Equation (13) will be fulfilled for instance if the ratio R(X, T ) is an even function ofm(X, T )−
θ. This assumption seems unnatural and that is why these estimators where not considered
in this paper. Again, if ψ2 is the identity function, (13) is automatically fulfilled.

Analogous conclusions can be obtained if we define, as in Wang and Sun (2007), the M−location
estimator of the weighted responses (δi/pn (xi, ti)) yi + (1 − δi/pn (xi, ti))

(
xt

i β̂ + ĝn(ti)
)
.
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5 Monte Carlo study

A simulation study was carried out when the regression parameter has dimension 1. The S–code
is available upon request to the authors.

In all Tables and Figures WSEls, AEls and WIEls denote the classical estimates obtained
using the weighted simplified estimate, the averaged estimate and the weighted imputed estimate,
respectively. On the other hand, the corresponding robust estimates are denoted as WSEr, AEr

and WIEr.

The aims of this study are to compare

• the behavior of the classical and robust estimators under contamination and under normal
samples, for different missing probabilities.

• the performance of the robust proposals, the weighted simplified, the averaged and the
weighted imputed estimators, between them and also with that of the robust estimator that
would be computed if the complete data set were available (WSEr). Note that this estima-
tor, which corresponds to p(x, t) ≡ 1, cannot be computed in practice. The goal is to detect
which of the proposals would give mean square errors closer to those obtained if there were
no missing responses.

In both, the clasical and robust smoothing procedures, we have used the gaussian kernel with
standard deviation 0.37 such that the interquartile range is 0.5. The robust smoothing procedure
used local M−estimates with score function ψ1 the bisquare function with tuning constant 4.685,
using local medians as initial estimates. The chosen tuning constant for the local M−estimator
gives a 95% efficiency with respect to its linear relative. The same score function was used to
compute the marginal estimators, that is, we choose ψ2 = ψ1.

The robust estimator of the regression parameter β was computed as described in Section 3
using as rho–functions the bisquare function, that is,

ρ0(x) = ρ1

(
x

c0

)
and ρ(x) = ρ1

(
x

c1

)

with c0 = 1.56, c1 ≥ c0 and ρ1(x) = min(1, 1 − (1 − x2)3). The value selected for c0 ensures
Fisher–consistency of the scale when the errors are gaussian, while c1 = 4.68 guarantees that under
a regression model the MM−estimates will achieve 95% efficiency.

Two different models have been considered to study the behavior of the proposed methods. In
both of them, due to the expensive computing time when evaluating the robust estimators, we only
performed 500 replications generating independent samples of size n = 100.

5.1 Model I

Under this model, we first generate observations as

zi = β0xi + 2 sin(4π(ti − 0.5)) + σ0εi 1 ≤ i ≤ n , (14)
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where β0 = 2,
(
xt

i , ti
)t

∼ N(µ,Σ) with µ = (0, 1
2)t and Σ =


 1 1/

(
6
√

3
)

1/
(
6
√

3
)

1/36


, and

εi ∼ N(0, 1) with σ2
0 = 0.25 in the non–contaminated case.

The results for normal data sets will be indicated by C0 in Tables 1 to 7, while C1 to C4 will
denote the following contaminations:

• C1: ε1, . . . , εn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25). This contamination corresponds to inflating
the errors and thus, will only affect the variance of the location estimates.

• C2: ε1, . . . , εn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 10 observations of the response
zi but not of the carriers xi, were modified to be equal to 20 at equally spaced values of t. This
case corresponds to introduce outliers with high–residuals. The aim of this contamination is
to study changes in bias in the estimation of the location parameter.

• C3: ε1, . . . , εn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 10 observations of the carriers
xi but not of the response zi, were modified to be equal to 20 at equally spaced values of t.
This case corresponds to introduce high–leverage points. The aim of this contamination is to
study changes in bias in the estimation of the location parameter when using the averaged
and the weighted imputed estimates, since this contamination affects mainly the estimation
of the regression parameter.

• C4: ε1, . . . , εn, are i.i.d. 0.9N(0, 1) +0.1N(0, 25) and artificially 5 observations of the carriers
xi and 5 of the response zi, were modified to be equal to 20 and −20, respectively at equally
spaced values of t. The modified observations at the response were not allocated at the
same t as those of the carriers. This case corresponds to introduce both high–leverage points
and high–residuals. The aim of this contamination is to study changes in bias in the different
estimators of the location parameter since this contamination affects the regression parameter
and also the marginal one.

In a first step, when computing the marginal estimators, the missing probabilities are not
estimated but assumed to be known, i.e., we have taken pn(x, t) = p(x, t). This decision was taken
in order to avoid increasing biases due to the estimation of the missing probability (see, for instance,
Chen et al. (2006)). Moreover, as discussed in Wang et al. (1998), it seems natural to argue that
the weighted estimators using the estimated probabilities are at least as efficient as those using the
true model and this phenomenom will also be studied below.

The missing models considered can be described as follows. Let π(u) = 0.4+0.5(cos (2u+0.4))2.
We define yi = zi, if δi = 1, and missing otherwise, where δi are generated according to the following
missingness mechanism (see (3))

a) p(x, t) ≡ 1 that corresponds to the complete data situation. As in nonparametric regression
with missing responses, in this case, the WSEls and WIEls give the same results. However,
even if WSEr and WIEr also should be identical, they provide slightly different results since
the algorithms used to compute them where not identical. To compute WSEr we have used
the S–plus routine location.m with 20 iterations, while to compute the WIEr, we used the
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reweighted method described in Section 3.2 with kmax = 10, i.e., only 10 iterations were
performed.

b) p(x, t) ≡ 0.8, corresponding to data missing completely at random.

c) p(x, t) = π(t).

d) p(x, t) = π(x).

e) p(x, t) = π(x t).

The classical least squares cross–validation method constructs an asymptotically optimal data–
driven bandwidth and thus, adaptive data–driven estimators, by minimizing

CVls(h) =
1
n

n∑

i=1

δi
(
yi − θ̂(i)(h)

)2
w2 (ti) .

In our study, the function w was chosen equal to 1. In order to study the sensitivity of the
resulting estimator to the bandwidth, Table 1 shows the minimum, mean and maximum values
of CVls as a function of h for the missing models b) to e), for the average and weighted average
estimators and for one of the samples generated as above. We have generated the sample according
to C0 and C2 to show the sensitivity of the least squares procedure and we have computed the
cross–validation errors for a grid of 20 equally spaced values of h between 0.05 and 1. As it
could be seen, when considering both the classical or the robust procedures, for non–contaminated
samples, the cross–validation error of all the estimators is almost constant on its domain showing
the lack of sensitivity of the marginal estimators to the smoothing parameter. It is also clear that
the least–squares cross–validation error is highly sensitive to anomalous data, since its values are
almost 7 times those obtained with the non–contaminated samples. The robust procedure has a
behavior similar to that described for the least squares method, under C0. For instance, when
considering p(x, t) = 0.4 + 0.5(cos (2t+ 0.4))2, the minimum (m) and maximum values (M) of the
robust cross–validation function related to AEr andWIEr aremAEr = 7.3511, MAEr = 7.3953 and
mWIEr = 7.3601 andMWIEr = 7.3943, respectively. The robust cross–validation RCVr(h), defined
in (10), is much more stable under contamination. Effectively, under C2, the minimum (m) and
maximum values (M) of the robust cross–validation function are mAEr = 12.0666, MAEr = 12.1572
and mWIEr = 11.9976 and MWIEr = 12.0888 and the shape of the function is almost the same as
in the non–contaminated situation.

Considering the above discussion, a robust cross–validation procedure was not performed in
this preliminary study, taking into account that it is very expensive computationally when it is
combined with the robust profile procedure and since it was clear from the results obtained that, in
all situations, the bandwidth choice did not seem crucial for the estimation of the marginal location
parameter. Even when we have performed the simulation with bandwidths h = 0.1, 0.2 and 0.4,
we only present in this paper the results for h = 0.2. In fact, all the considered bandwidths lead to
the same conclusions.

The perfomance of the location estimators was measured using the bias, standard deviation and
mean square error (bias, sd and MSE, respectively) in Tables 2 to 6. Also, boxplots are given in
Figures 1 to 5.
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The results reported in Tables 2 to 6 show that when there is no contamination, the linear
estimators perform better than the robust ones (both in bias and mean square error) showing the
loss of efficiency related to the score function used to compute the location M−estimators. On
the other hand, the robust estimators show their advantage over the classical ones when outliers
with high residuals are present having a similar performance when contaminating the errors. In
fact, the MSE of the classical estimators is more than 20 times larger than the one observed under
no contamination and also than the MSE of the robust estimators which are much more stable
under C2 or C4. Note that this is mainly due to the increased bias of the classical estimators using
any of the methods (weighted simplified, averaged or weighted imputed one). This explains the
better efficiency of the robust estimators under C2 and C4. This is also reflected in Figures 1 to
5. It is worth noticing that the classical estimators seem stable with respect to contaminating only
the carriers with high leverage points (C3). This is natural when using the weighted simplified
estimator since responses with large residuals were not included in this contamination, but it could
seem unnatural when using the average or weighted imputed estimators, since it could be expected
that large values of the covariates x would lead the classical estimate to explode. However, the
good performance observed is mainly due to the fact that the least squares regression parameter
estimates β almost as 0, in all the missingness schemes. Effectively, under C3 the median of β̂ls is
close to 0 while β̂r is close to 2 as it should be (see, Figure 6). The same behavior is observed also
under C4, where the classical estimates of β exhibit a large bias which decreases the influence of
the leverage points when using the average or the weighted imputed estimators. In both cases, the
classical regression parameter estimators are useless and in this sense, the least squares procedures
seem not reliable to estimate the marginal parameter.

It is worth noticing that, when there is no contamination, except for the complete data es-
timators, the weighted imputed estimators (linear or robust) perform better than the two other
competitors leading to smaller mean square errors. Their advantage over the weighted simplified
is specially reflected when the missing probability depends on x, t or in both variables. In this
situation, see Tables 4 to 6, the weighted simplified estimators have almost twice mean square er-
rors than the weighted imputed. The worst situation for the weighted simplified procedure is when
p(x, t) only depends on t. This fact can be explained since it gives the larger proportion of missing
data in each sample, near 70%, while in the two other situations the proportion of missing data is
about 65%. The same conclusion holds under C1. However, under C2 to C4 a different behavior is
observed for the classical and robust estimators. As expected, the weighted imputed M−estimators
perform much better than the weighted simplified method leading to almost the same ratios be-
tween the mean square error of the weighted simplified M−estimator and the weighted imputed
M−estimator as in the non–contaminated situation. On the contrary, when using the linear esti-
mators, the mean square errors of the three estimators are almost the same due to the bias of all
procedures. Note also that, under C2 and C4, when using the robust estimators the smallest mean
square errors are attained by the averaged M−estimators, even if they are almost of the same order
than the weighted imputed M−estimator.

In order to evaluate the impact of the estimation of the missing probabilities on the final
marginal estimator, we have performed a moderate simulation study for some of the situations
discussed above. We have considered the setting in which the missing probability is given by
p(x, t) = π(t) since the results for the other missing schemes lead to similar conclusions. We have
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estimated π(t) using a kernel density estimator with bandwidth γ = 0.2 and gaussian kernel K as
described above. Table 7 reports summary measures for the marginal location estimators. It is
worth noticing that the results corresponding to AEls and AEr are not given since these estimators
do not depend on estimators of the missing probabilities. The results obtained for other choices
for the smoothing parameter γ are similar to those reported here. The comparison between the
behavior of the robust and linear estimators in this case is similar to that observed when the missing
probability is assumed to be known. On the other hand, as expected, when estimating p(x, t) the
bias of the estimators increase, in particular, in most cases WSEls (WSEr) has a larger bias than
AEls (AEr), in spite of what happens when p(x, t) is known. However, mean square errors reported
in Table 7 are smaller to those given in Table 4 due to a reduction on the standard deviation. This
surprising fact has been observed, for instance, by Wang et al. (1997) in the classical setting.

5.2 Model II

As in Robins et al. (1994) in some situations a parametric model, pα(x, t), α ∈ IRq, for the
missing probabilities can be assumed. The goal of the following simulation study is to analyze
the impact of estimating the unknown parameters α on the final marginal estimators. Again the
observations zi satisfy model (14) where β0 = 2, but the covariates were generated as xi ∼ N(0, 1)
and ti ∼ U(0, 1), while the errors are εi ∼ N(0, 1) with σ2

0 = 0.25 in the non–contaminated case.
The results for normal data sets will be indicated by C0,l in the Tables, while C1,l refers to the
following contamination:

• C1,l: ε1, . . . , εn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 5 observations of the carriers
xi and 5 of the response zi, were modified to be equal to 5 and −20, respectively at equally
spaced values of t. The modified observations at the response were not allocated at the same
t as those of the carriers.

Note that C1,l is similar to C4. The subscript l indicates the fact that the missing scheme considered
is a logistic model, where p(x, t) = 1/(1+exp(−2x−12(t−0.5))). As above, we then define yi = zi,
if δi = 1, and missing otherwise to obtain the missing responses. This missing model is analogous
to that considered by Croux and Haesbroeck (2003) who studied the behavior of robust estimators
under a logistic regression model. In Tables 8 and 9 we summarize the results obtained under
Model II for non–contaminated samples and under C1,l, when the true probability or the estimated
one is used to compute the marginal estimators, respectively. As in Wang et al. (1997), the
missing probablity was estimated using the parametric model and using a smoothed estimator.
The nonparametric estimator was computed, using a product gaussian kernel, as defined in (8)
with bn = 0.2 and λn = 0.4. On the other hand, when computing the classical marginal location
estimators, α was estimated using the maximum likelihood method, while for the robust marginal
procedures the robust estimators implemented by Croux and Haesbroeck (2003) were used. As
in Section 5.1, the classical and robust estimators of θ perform similarly under C0,l while under
C1,l the robust procedures show their advantage, either when the missing probabilty is assumed
to be known or when it is estimated. Moreover, as in Section 5.1, the standard deviations of the
classical estimators are reduced when estimating parametrically the missing probabilities or when
using the Nadaraya–Watson estimator. However, this phenomenom is not observed for the robust
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estimators when estimating parametrically the missing probabilities. It is worth noticing that when
α is estimated, biases are also reduced under C0,l for both the classical and robust methods. This
fact was already pointed out by Wang et al. (1997) when the missing probablities depend on both
covariates, for the estimators defined therein. Besides, when the missing probabilities are estimated
non–parametrically biases are enlarged. In all cases, except when α is estimated using a robust
procedure, estimating p reduces mean square errors of the marginal location estimators under C0,l,
the lower values correspond to estimating the missing probability with the kernel estimator.

6 An example

Daniel and Wood (1980) studied a data set obtained in a process variable study of a refinery
unit. The response variable y is the octane number of the final product, while the covariates x =
(x1, x2, x3)

t represent the feed compositions and the covariate t is the logarithm of a combination of
process conditions scaled to [0, 1]. We computed the estimators with bandwidth h = 0.06. In order
to avoid boundary effects and to improve the performance of the regression function estimator, we
used Gasser and Müller’s weights with boundary kernels, as described in González–Manteiga and
Aneiros–Pérez (2003).

We first compute the estimates of the marginal location θ for this data set. The robust estimators
were computed as in Section 5, but we use the rho–function with tuning constant c1 = 3.44 that
guarantees, under a regression model, an 85% efficiency. In this case, due to the dimension of
the covariates, we have selected a smaller tuning constant to make a trade–off between bias and
efficiency. The obtained values are θ̂(all)

ws,ls = 91.855, θ̂(all)
a,ls = 91.901, θ̂(all)

wi,ls = 91.855, θ̂(all)
ws,r = 91.667,

θ̂
(all)
a,r = 91.670 and θ̂

(all)
wi,r = 91.668. It is worth noticing that, in all cases, the robust procedures

lead to smaller values than the classical ones.

Daniel and Wood (1980) discussed the presence of three anomalous observations (labeled 75 to
77) which correspond to high values of octanes associated with high leverage points. We repeat
the analysis for the classical procedure excluding these three observations and we also compute
standard deviations of the least squares estimates, reported between brackets, through jackniffe.
The obtained values are θ̂ws,ls = 91.674 (0.118), θ̂a,ls = 91.716 (0.130), θ̂wi,ls = 91.674 (0.118)
which are quite similar to the values obtained with the related robust method. Moreover, we
compute the standardized absolute differences, SAD, between the classical estimates computed
with all data and without the outliers, where the standardization was done with respect to the
deviations reported above, for example, SADws,ls stands for SADws,ls =

∣∣∣θ̂(all)
ws,ls − θ̂ws,ls

∣∣∣ /σ̂
θ̂ws,ls

.
We also compute the standardized absolute difference between the robust estimates computed
with all data and the classical without the outliers. The obtained values are SADws,ls = 1.533,
SAD, als = 1.428, SADwi,ls = 1.533, SADws,r = 0.060, SADa,r = 0.352, SADwi,r = 0.058
showing the high sensitivity of the classical procedure to anomalous data.

Missing responses were introduced completely at random with probability p(x, t) ≡ 0.8 and the
described analysis was repeated. The values of the estimators with outliers are θ̂ws,ls = 92.013,
θ̂a,ls = 91.905, θ̂wi,ls = 91.888, θ̂ws,r = 91.782, θ̂a,r = 91.678 and θ̂wi,r = 91.690. As with the
complete data set, the robust procedures lead to smaller values than the classical ones. When
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excluding the three outliers identified by Daniel and Wood (1980), the results are θ̂ws,ls = 91.795
(0.130), θ̂a,ls = 91.711 (0.122), θ̂wi,ls = 91.697 (0.110) which are quite similar to the values obtained
with the related robust method. Besides, the standardized absolute differences are SADws,ls =
1.687, SADa,ls = 1.604, SADwi,ls = 1.739, SADws,r = 0.099, SADa,r = 0.274, SADwi,r = 0.065
and so, the resistance to anomalous data of the robust proposals is preserved under this missing
scheme.

7 Final comments

We have introduced three robust procedures to estimate the marginal location parameter under
a partially linear model when there are missing observations in the response variable and it can
be suspected that anomalous observations are present in the sample. All procedures are Fisher–
consistent and thus they lead to strongly consistent estimators.

Under the contaminations considered, they show their advantage over the classical estimators.
Moreover, the average and weighted imputed M−estimators, even if they are computationally more
expensive, should be used since they perform better than the weighted simplified M−estimator in
all situations. Both the classical and robust procedures do not seem to be very sensitive to the
choice of the smoothing parameter and so an exhaustive bandwidth search can be avoided. As
mentioned by Wang and Sun (2007) the selection of bandwidths is not so critical if one is only
interested in estimation of parametric components.

The results of our simulation study suggest that smaller mean square errors can be attained
using a smooth estimator of the missing probabilities instead of a parametric one, if the dimension
of the covariates and the number of observations allow to compute the kernel estimator.
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8 Appendix

In Section 8.1 we give the proofs of the Theorems stated in Section 4, while in Sections 8.2 and 8.3,
we will study the Fisher–consistency of the given proposals.

21



8.1 Proofs

Proof of Theorem 4.1. a) It is enough to show that for any borelian set B, φ̂(B) a.s.−→ P (Y ∈ B)
where

φ̂(B) =
1
n

n∑

i=1

δi
pn(xi, ti)

IB(yi) .

Note that φ̂(B) = S1n + S2n where

S1n =
1
n

n∑

i=1

[
1

pn(xi, ti)
− 1
p(xi, ti)

]
δi IB(yi)

S2n =
1
n

n∑

i=1

1
p(xi, ti)

δi IB(yi) .

Using A2 and A3, we have that |S1n|
a.s.−→ 0. On the other hand, using the strong law of large

numbers and the mar assumption, we have that S2n
a.s.−→ P (Y ∈ B), concluding the proof.

The proof of b) follows easily using a), the following bound

sup
a∈IR

σ∈[σ0/2,2σ0]

|λ̂(a, σ) − λ(a, σ)| ≤
∫

|ψ′
2(u)|du ‖F̂n − F‖∞ ,

the continuity of λ(a, σ) as a function of σ and the fact that in a neighborhood of θ, the function
λ(a, σ0) has a unique change of sign.

Proof of Theorem 4.2. a) It is enough to show that Π(P̃n,
˜̃
P n)| a.s.−→ 0 with

˜̃
P n(A) =

1
n

n∑

i=1

IA(xt
i β0 + g0(ti)) .

This result follows if we show that for any bounded and continuous function f : IR −→ IR we have
that ∣∣∣∣E˜̃

Pn

(f) −E
P̃n

(f)
∣∣∣∣

a.s.−→ 0

which follows using analogous arguments to those considered in Lemma 1 of Bianco and Boente
(2004).

The proof of b) is derived as in Theorem 4.1 using the following bound

sup
a∈IR

σ∈[σ0/2,2σ0 ]

|˜̃λn(a, σ) − λZ(a, σ)| ≤ 2‖ψ′
2‖∞Π(P̃n, PZ)

with λZ(a, σ) = Eψ2 ((Z − a)/σ).

Proof of Theorem 4.3. a) It is enough to show that for any borelian set B, ̂̂φ(B) a.s.−→ P (Y ∈ B)
where

̂̂
φ(B) =

1
n

n∑

i=1

δi
pn(xi, ti)

IB(yi) +
1
n

n∑

i=1

[(
1 − δi

pn(xi, ti)

)
IB(xt

i β̂ + ĝn(ti))
]
.
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Note that ̂̂φ(B) = φ̂(B) + S1n + S2n where φ̂(B) is defined in the proof of Theorem 4.1 and

S1n =
1
n

n∑

i=1

[
1

pn(xi, ti)
− 1
p(xi, ti)

]
δi IB(xt

i β̂ + ĝn(ti))

S2n =
1
n

n∑

i=1

[
1 − δi

p(xi, ti)

]
IB(xt

i β̂ + ĝn(ti)) .

In the proof of Theorem 4.1 it was shown that φ̂(B) a.s.−→ P (Y ∈ B). Using A2, we have that

|S1n| ≤
1

A inf
(x,t)

pn(x, t)
sup
(x,t)

|pn(x, t) − p(x, t)|

which together with A3 entail that S1n
a.s.−→ 0. Besides,

|S2n| ≤
1
n

n∑

i=1

[
1 − δi

p(xi, ti)

]

and so, using the strong law of large numbers, we have that S2n
a.s.−→ 0, concluding the proof.

The proof of b) follows as in Theorem 4.1.

8.2 Fisher–consistency of the parametric and nonparametric components

Fisher–consistency will be derived under the more general heteroscedastic model yi = xt
i β0 +

g0 (ti)+σ0(xi, ti) εi, 1 ≤ i ≤ n, with the errors εi i.i.d. and independent of the covariates. Moreover,
we will assume that for any σ > 0,

a) E(ψ1(ε/σ)) = 0

b) E(ψ1((ε− a)/σ)) = 0 ⇒ a = 0

c) E(ρ((ε − a)/σ)) ≥ E(ρ(ε/σ)).

For a discussion on condition a) see Remark 2.1.1. Note that, condition b) is fulfilled for instance,
if ψ1 is strictly monotone. On the other hand, using that ρ is a rho–function, from well–known
results on robust location estimation, we have that the symmetry of the errors distribution imply
c).

We first consider the functionals defined in Section 2.1. Note that

E

[
δψ1

(
Y −Xtβ − gβ(T )

σ

)
|T
]

= E

[
p(X, T )ψ1

(
Y −Xtβ − gβ(T )

σ

)
|T
]

= E

{
p(X, T )E

[
ψ1

(
Xt(β0 − β) + (g0(T ) − gβ(T )) + σ0(X, T )ε

σ

)
|(X, T )

]
|T
}
.
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Thus, it is easy to see that condition b) entails that gβ0
(t) ≡ g0(t). On the other hand, we get

easily that

E

[
δρ

(
Y −Xtβ − gβ(T )

σ

)
υ (X)

]
= E

[
p(X, T )ρ

(
Y −Xtβ − gβ(T )

σ

)
υ (X)

]

= E

[
p(X, T )ρ

(
Xtβ0 + g0 (T ) + σ0(X, T )ε−Xtβ − gβ(T )

σ

)
υ (X)

]

= E

[
p(X, T )υ (X)E

{
ρ

(
σ0(X, T )ε+ Xt (β0 − β) + g0(T ) − gβ(T )

σ

) ∣∣∣(X, T )

}]

From the independence between the errors and the covariates and condition c), we get

E

{
ρ

(
σ0(x, t)ε+ xt (β0 − β) + g0(t) − gβ(t)

σ

) ∣∣∣(X, T ) = (x, t)

}

= E

{
ρ

(
σ0(x, t)ε+ xt (β0 − β) + g0(t) − gβ(t)

σ

)}

≥ E

{
ρ

(
σ0(x, t)ε

σ

)}
.

and so β(F ) = β0, which concludes the proof.

8.3 Fisher–consistency of the marginal location functionals

For the sake of simplicity, throughout this section we assume that the errors distribution is sym-
metric and xt

i β0 + g0 (ti) = θ + ui where ui has a symmetric distribution too. The functionals
related to the proposed estimators are given by

• Weighted Simplified functional This functional is the solution, θws(F ), of

E
δ

p(X, T )
ψ2

(
Y − θws(F )

σ

)
= 0 .

Note that, by taking conditional expectation and using that we have a MAR missingness
scheme, we have

E
δ

p(X, T )
ψ2

(
Y − θs(F )

σ

)
= E

p(X, T )
p(X, T )

ψ2

(
Y − θs(F )

σ

)

= Eψ2

(
Y − θs(F )

σ

)
,

and so θws(F ) = θ if u+ σ0ε has a symmetric distribution.

• Averaged M−functional The functional θa(F ) is the solution of

Eψ2

(
Xtβ(F ) + gβ(F )(T ) − θa(F )

σ

)
= 0 .
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Using that ε has a symmetric distribution, from Section 8.2 we get β(F ) = β0 and gβ(F ) = g0.
Thus,

Eψ2

(
Xtβ(F ) + gβ(F )(T ) − θma(F )

σ

)
= Eψ2

(
Xtβ0 + g0(T ) − θma(F )

σ

)

= Eψ2

(
u+ θ − θma(F )

σ

)
.

Since we have assumed that u has a symmetric distribution, we obtain that θa = θ.

• Weighted Imputed functional. The functional θwi(F ) solves

E

[
δ

p(X, T )
ψ2

(
Y − θw(F )

σ

)
+
(

1 − δ

p(X, T )

)
ψ2

(
Xtβ(F ) + gβ(F )(T ) − θw(F )

σ

)]
= 0 .

As above, we get

E

[
δ

p(X, T )
ψ2

(
Y − θw(F )

σ

)
+
(

1 − δ

p(X, T )

)
ψ2

(
Xtβ(F ) + gβ(F )(T ) − θw(F )

σ

)]

= E

[
p(X, T )
p(X, T )

ψ2

(
Y − θw(F )

σ

)
+
(

1 − p(X, T )
p(X, T )

)
ψ2

(
Xtβ(F ) + gβ(F )(T ) − θw(F )

σ

)]

= Eψ2

(
Y − θw(F )

σ

)

and so θwi(F ) = θ.
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González–Manteiga, W. and Pérez–González, A., 2004. Nonparametric mean estimation with
missing data. Comm. Statist. Theory Methods 33, 277-303.

Huber, P., 1981. Robust statistics, Wiley, New York.

Maronna, R.; Martin, D. and Yohai, V., 2006. Robust Statistics: Theory and Methods , Wiley,
New York.

Meng, X.-L., 2000. Missing data: Dial M for ???. J. Amer. Statist. Assoc. 95, 452, 1325-1330.

Neyman, J., 1938. Contribution to the theory of sampling human populations. J. Amer. Statist.
Assoc. 33 101-116.

Scharfstein, D.; Rotnitzky, A. and Robins, J., 1999. Adjusting for nonignroable drop out in
semiparametric nonresponse models (with discussion). J. Amer. Statist. Assoc., 94, 1096-
1146.

Wang, C.; Wang, S.; Gutierrez, R. and Carroll, R., 1998. Local linear regression for generalized
linear models with missing data. Ann. Statist., 26, 1028-1050.

Wang, C.; Wang, S.; Zhao, L.P. and Ou,S.T., 1997. Weighted semiparametric estimation in
regression analysis regression with missing covariates data. J. Amer. Statist. Assoc. 92,
512-525.

Wang, F. and Scott, D., 1994. The L1 method for robust nonparametric regression. J. Amer.
Stat. Assoc., 89, 65-76.
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p(x, t) 0.8 π(t) π(x) π(xt)
AEls WIEls AEls WIEls AEls WIEls AEls WIEls

Minimum 5.6703 5.6702 6.7913 6.7911 6.0852 6.0846 5.7455 5.7442
Mean 5.6713 5.6709 6.7972 6.8010 6.0880 6.0863 5.7496 5.7491 C0

Maximum 5.6717 5.6713 6.7992 6.8056 6.0891 6.0871 5.7516 5.7512
Minimum 34.7509 34.7516 40.9682 40.9641 35.0603 35.1356 36.3458 36.3825

Mean 34.7542 34.7540 41.0222 41.0219 35.0668 35.1434 36.3476 36.3922 C2

Maximum 34.7554 34.7550 41.5475 41.5549 35.0831 35.1623 36.3497 36.4062

Table 1: Minimum, mean value and maximum of least squares cross–validation error, under C0 and
C2, for Model I.

WSEls AEls WIEls WSEr AEr WIEr
bias -0.0072 -0.0077 -0.0072 -0.0135 -0.0137 -0.0132
sd 0.2486 0.2515 0.2486 0.2612 0.2653 0.2608 C0

MSE 0.0618 0.0633 0.0618 0.0684 0.0706 0.0682
bias -0.0081 -0.0091 -0.0081 -0.0171 -0.0161 -0.0166
sd 0.2636 0.2666 0.2636 0.2767 0.2702 0.2762 C1

MSE 0.0696 0.0712 0.0696 0.0769 0.0733 0.0766
bias 1.9922 2.0318 1.9922 -0.01287 -0.0078 -0.0126
sd 0.2517 0.2574 0.2517 0.2888 0.2703 0.2884 C2

MSE 4.0322 4.1946 4.0322 0.0836 0.0731 0.0833
bias 0.0017 0.0010 0.0017 -0.0058 -0.0119 -0.0056
sd 0.2601 0.2621 0.2601 0.2730 0.2831 0.2724 C3

MSE 0.0676 0.0687 0.0676 0.0746 0.0803 0.0742
bias -1.0070 -1.0502 -1.0070 -0.0145 -0.0081 -0.0141
sd 0.2563 0.2551 0.2563 0.2803 0.2763 0.2800 C4

MSE 1.0796 1.1681 1.0796 0.0788 0.0764 0.0786

Table 2: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 1, for Model I.
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WSEls AEls WIEls WSEr AEr WIEr
bias -0.0032 -0.0062 -0.0054 -0.0103 -0.0126 -0.0124
sd 0.2786 0.2511 0.2481 0.2957 0.2646 0.2605 C0

MSE 0.0776 0.0631 0.0616 0.0875 0.0701 0.0680
bias -0.0036 -0.0071 -0.0059 -0.0136 -0.0166 -0.0161
sd 0.2981 0.2704 0.2673 0.3152 0.2702 0.2793 C1

MSE 0.0889 0.0731 0.0715 0.0996 0.0733 0.0783
bias 1.9818 2.0232 1.9846 -0.0102 -0.00756 -0.0145
sd 0.4017 0.4016 0.3954 0.3280 0.2712 0.2933 C2

MSE 4.0889 4.2547 4.0952 0.1077 0.0736 0.0862
bias 0.0066 0.0101 0.0101 -0.0021 -0.0118 -0.0019
sd 0.2945 0.2840 0.2819 0.3110 0.2844 0.2781 C3

MSE 0.0868 0.0807 0.0796 0.0967 0.0811 0.0773
bias -0.9914 -1.0299 -0.9888 -0.0112 -0.0079 -0.0121
sd 0.3764 0.3776 0.3716 0.3200 0.2773 0.2891 C4

MSE 1.1246 1.2033 1.1158 0.1025 0.0769 0.0837

Table 3: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 0.80, for Model I.

WSEls AEls WIEls WSEr AEr WIEr
bias -0.0016 -0.0227 -0.0102 -0.0104 -0.0313 -0.0183
sd 0.3750 0.2618 0.2579 0.4009 0.2748 0.2703 C0

MSE 0.1406 0.0691 0.0666 0.1608 0.0765 0.0734
bias -0.0054 -0.0285 -0.0159 -0.0145 -0.0369 -0.0250
sd 0.4018 0.2933 0.2899 0.4269 0.2850 0.3006 C1

MSE 0.1614 0.0868 0.0843 0.1821 0.0826 0.0910
bias 1.9820 1.9777 1.9753 -0.0096 -0.0288 -0.0260
sd 0.8037 0.8111 0.8079 0.4435 0.2889 0.3223 C2

MSE 4.5747 4.5691 4.5547 0.1968 0.0843 0.1046
bias 0.0046 0.0022 0.0271 -0.0035 -0.0325 -0.0092
sd 0.4008 0.4080 0.4041 0.4254 0.3018 0.3130 C3

MSE 0.1607 0.1665 0.1640 0.1810 0.0921 0.0981
bias -0.9985 -0.9497 -0.9112 -0.0162 -0.0291 -0.0258
sd 0.6778 0.8168 0.8146 0.4340 0.2952 0.3247 C4

MSE 1.4564 1.5692 1.4937 0.1887 0.0880 0.1061

Table 4: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 0.4 + 0.5 cos2 (2t+ 0.4), for Model I.
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WSEls AEls WIEls WSEr AEr WIEr
bias -0.0040 -0.0090 -0.0068 -0.0139 -0.0155 -0.0137
sd 0.3336 0.2547 0.2539 0.3551 0.2684 0.2668 C0

MSE 0.1113 0.0650 0.0645 0.1263 0.0723 0.0713
bias -0.0042 -0.0095 -0.0085 -0.0173 -0.0202 -0.0170
sd 0.3545 0.2784 0.2789 0.3754 0.2769 0.2904 C1

MSE 0.1257 0.0776 0.0778 0.1412 0.0771 0.0846
bias 1.9946 2.0265 1.9953 -0.0093 -0.0114 -0.0125
sd 0.6059 0.5389 0.5776 0.3835 0.2784 0.3055 C2

MSE 4.3456 4.3970 4.3148 0.1471 0.0777 0.0935
bias 0.0082 0.0011 0.0088 -0.0023 -0.0152 -0.0021
sd 0.3423 0.3073 0.3096 0.3623 0.2921 0.2880 C3

MSE 0.1172 0.0944 0.0959 0.1313 0.0856 0.0829
bias -0.9857 -1.0313 -0.9883 -0.0112 -0.0115 -0.0132
sd 0.5026 0.4605 0.4896 0.3731 0.2846 0.2998 C4

MSE 1.2241 1.2757 1.2165 0.1393 0.0811 0.0900

Table 5: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 0.4 + 0.5 cos2 (2x+ 0.4), for Model I.

WSEls AEls WIEls WSEr AEr WIEr
bias -0.0124 -0.0203 -0.0086 -0.0308 -0.0283 -0.0158
sd 0.3238 0.2535 0.2511 0.3481 0.2666 0.2637 C0

MSE 0.1050 0.0647 0.0631 0.1221 0.0719 0.0698
bias -0.0131 -0.0229 -0.0098 -0.0347 -0.0323 -0.0189
sd 0.3421 0.2725 0.2719 0.3647 0.2732 0.2834 C1

MSE 0.1172 0.0748 0.0739 0.1342 0.0757 0.0807
bias 1.9982 1.9659 1.9995 -0.0262 -0.0235 -0.0202
sd 0.5411 0.4862 0.5206 0.3757 0.2744 0.2983 C2

MSE 4.2855 4.1010 4.2690 0.1419 0.0759 0.0894
bias -0.0036 -0.1115 0.0021 -0.0215 -0.0269 -0.0062
sd 0.3364 0.2917 0.3122 0.3583 0.2871 0.2857 C3

MSE 0.1132 0.0975 0.0975 0.1288 0.0831 0.0817
bias -1.0132 -1.1413 -1.0053 -0.0309 -0.0233 -0.0179
sd 0.4784 0.4513 0.4862 0.3697 0.2799 0.2946 C4

MSE 1.2555 1.5063 1.2470 0.1376 0.0789 0.0871

Table 6: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 0.4 + 0.5 cos2 (2xt+ 0.4), for Model I.
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WSEls WIEls WSEr WIEr
bias -0.0206 -0.0109 -0.0309 -0.0189
sd 0.3314 0.2569 0.3554 0.2694 C0

MSE 0.1102 0.0661 0.1273 0.0729
bias -0.0259 -0.0173 -0.0364 -0.0261
sd 0.3564 0.2895 0.3797 0.3013 C1

MSE 0.1277 0.0841 0.1455 0.0914
bias 1.9529 1.9682 -0.0306 -0.0266
sd 0.8035 0.8171 0.4008 0.3225 C2

MSE 4.4593 4.5414 0.1616 0.1047
bias -0.0138 0.0246 -0.0232 -0.0111
sd 0.3600 0.4032 0.3840 0.3128 C3

MSE 0.1298 0.1632 0.1480 0.0980
bias -1.0052 -0.9092 -0.0363 -0.0280
sd 0.6623 0.8173 0.3908 0.3253 C4

MSE 1.4491 1.4946 0.1541 0.1066

Table 7: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0 to C4, when h = 0.2 and p(x, t) = 0.4 + 0.5 cos2 (2t + 0.4) is estimated using a kernel
estimator with bandwidth γ = 0.2, for Model I.

WSEls AEls WIEls WSEr AEr WIEr
bias 0.2896 -0.0920 -0.0735 0.2717 -0.0843 -0.0702
sd 0.5710 0.3089 0.3387 0.6350 0.2972 0.3300 C0,l

MSE 0.4099 0.1039 0.1201 0.4770 0.0954 0.1139
bias -0.8423 -0.7951 -0.9040 0.2669 -0.1896 -0.2088
sd 1.1216 0.8471 1.2317 0.6709 0.4937 0.7005 C1,l

MSE 1.9674 1.3497 2.3344 0.5214 0.2797 0.5344

Table 8: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0,l and C1,l, when h = 0.2 and the missing probability is assumed to be known, for Model
II.

Parametric estimator of p(x, t) Nadaraya–Watson estimator of p(x, t)
WSEls WIEls WSEr WIEr WSEls WIEls WSEr WIEr

bias 0.2708 -0.0838 0.2166 -0.0856 0.4283 -0.0906 0.4239 -0.0898
sd 0.5291 0.3377 0.7649 0.4476 0.2911 0.3089 0.3054 0.2973 C0,l

MSE 0.3533 0.1211 0.6319 0.2077 0.2682 0.1036 0.2729 0.0964
bias -0.8799 -0.8581 0.2152 -0.2001 -0.7877 -0.8146 0.3864 -0.2897
sd 1.1104 1.0871 0.7853 0.8359 0.6049 0.8689 0.3251 0.5558 C1,l

MSE 2.0073 1.9182 0.6630 0.7388 0.9865 1.4186 0.2550 0.3928

Table 9: Biases, standard deviations and mean square errors of the classical and robust procedures,
under C0,l and C1,l, when h = 0.2 and the missing probability is estimated parametrically or
nonparametrically,, for Model II.
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Figure 1: Boxplots for the estimates of the marginal location parameter for the classical and robust proposals with bandwidth
h = 0.2 when p(x, t) ≡ 1, for Model I.
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Figure 2: Boxplots for the estimates of the marginal location parameter for the classical and robust proposals with bandwidth
h = 0.2 when p(x, t) ≡ 0.8, for Model I.
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Figure 3: Boxplots for the estimates of the marginal location parameter for the classical and robust proposals with bandwidth
h = 0.2 when p(x, t) ≡ 0.4 + 0.5 cos2(2t+ 0.4), for Model I.
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Figure 4: Boxplots for the estimates of the marginal location parameter for the classical and robust proposals with bandwidth
h = 0.2 when p(x, t) ≡ 0.4 + 0.5 cos2(2x+ 0.4), for Model I.
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Figure 5: Boxplots for the estimates of the marginal location parameter for the classical and robust proposals with bandwidth
h = 0.2 when p(x, t) = 0.4 + 0.5 cos2(2x t+ 0.4), for Model I.
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p(x, t) ≡ 1 p(x, t) ≡ 0.8 p(x, t) = π(t) p(x, t) = π(x) p(x, t) = π(x t)
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Figure 6: Boxplots for the estimates of the regression parameter β with bandwidth h = 0.2, for Model I.
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