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1 Introduction

Analogous to classical principal components analysis (PCA), the projection-pursuit approach to
robust PCA is based on finding projections of the data which have maximal dispersion. Instead of
using the variance as a measure of dispersion, a robust scale estimator s,, is used for the maximiza-
tion problem. This approach was introduced by Li and Chen (1985), who proposed estimators based
on maximizing (or minimizing) a robust scale. In this way, the first robust principal component
vector is defined as
a = argmax s,(a’xy,---,a’x,),
{a:]lal|=1}

and the subsequent principal component vectors are obtained by imposing orthogonality conditions.
In the multivariate setting, Li and Chen (1985) argue that the breakdown point for this projection-
pursuit based procedure is the same as that of the scale estimator s,. Later on, Croux and Ruiz—
Gazen (2005) derived the influence functions of the resulting principal components, while their
asymptotic distribution was studied in Cui et al. (2003). A maximization algorithm for obtaining
a was proposed in Croux and Ruiz—Gazen (1996).

The aim of this paper is to adapt the projection pursuit approach to the functional data setting.
We focus on functional data that are recorded over a period of time and regarded as realizations
of a stochastic process, often assumed to be in the L? space on a real interval. Various choices of
robust scales, including the median of the absolute deviation about the median (MAD) and some of
its variants which are discussed in Rousseeuw and Croux (1993), will be explored and compared.

Principal components analysis, which was originally developed for multivariate data, has been
successfully extended to accommodate functional data, and is usually referred to as functional PCA.
It can be described as follows. Let {X(t) : ¢t € Z} be a stochastic process defined in (2, A, P) with
continuous trajectories and finite second moment, where Z C R is a finite interval. Without loss
of generality, we may assume that Z = [0, 1]. We will denote the covariance function by vx (t,s) =
cov (X (t), X (s)), and the corresponding covariance operator by I'x. We then have vx(t,s) =
> 21 Ajdi(t)¢s(s), where {¢; : j > 1} and {); : j > 1} are respectively the eigenfunctions and
the eigenvalues of the covariance operator I'x with A; > Aj11. Moreover, 22, )\? = |Tx||% =

fol fol Y% (t,s)dtds < co. Let Y = fol a(t)X (t)dt = (o, X) be a linear combination of the process
{X(s)}, so that var(Y) = (a,T'xa). The first principal component is defined as the random variable
Y1 = (a1, X)) such that

var(Y1) = sup var({a, X)) = sup (a,T'xa), (1)
{oz]lafl=1} {oz[lall=1}

where ||a||> = (a,a). Therefore, if A > Mg, the solution of (1) is related to the eigenfunction
associated with the largest eigenvalue of the operator I'x, i.e., a; = ¢1 and var(Yp) = A; . Dauxois
et al. (1982) derived the asymptotic properties of the principal components of functional data, which
are defined as the eigenfunctions of the sample covariance operator. Rice and Silverman (1991)
proposed to smooth the principal components by a roughness penalization method and suggested a
leave-one-subject-out cross validation method to select the smoothing parameter. Silverman (1996)
and Ramsay and Silverman (2005) introduced smooth principal components for functional data,
also based on roughness penalty methods, while Boente and Fraiman (2000) considered a kernel-
based approach. More recent work on estimation of the principal components and the covariance
function includes Gervini (2006), Hall and Hosseini-Nasab (2006), Hall et al. (2006) and Yao and
Lee (2006).

The literature on robust principal components in the functional data setting is rather sparse.
To our knowledge, the first attempt to provide estimators of the principal components that are
less sensitive to anomalous observations was due to Locantore et al. (1999), who considered the
coefficients of a basis expansion. Their approach, however, is multivariate in nature. Gervini (2008)



studied a fully functional approach to robust estimation of the principal components by considering
a functional version of the spherical principal components defined in Locantore et al. (1999) but
assuming a finite and known number of principal components in order to ensure Fisher—consistency.
Hyndman and Ullah (2007) proposed a method combining a robust projection—pursuit approach
and a smoothing and weighting step to forecast age—specific mortality and fertility rates observed
over time. However, they did not study its properties in detail.

In this paper, we introduce several robust estimators of the principal components in the func-
tional data setting and establish their strong consistency. Our approach uses a robust projection—
pursuit combined with various smoothing methods and our results hold even if the number of
principal components is not finite. In this sense, it provides the first rigorous attempt to tackle the
challenging properties of robust functional PCA.

In Section 2, the robust estimators of the principal components, based on both the raw and
smoothed approaches, are introduced. Consistency results and the asymptotic robustness of the
procedure are given in Section 3, while the selection of the smoothing parameters for the smooth
principal components is discussed in Section 4. The results of a Monte Carlo study are reported in
Section 5. Section 6 contains some concluding remarks and appendix A provides conditions under
which one of the crucial assumptions hold. Most proofs are relegated to Appendix B.

2 The estimators

We consider several robust approaches in this section and define them on a separable Hilbert space
H keeping in mind that the main application will be # = L?(Z). From now on and throughout
the paper, {X; : 1 < i < n} denote realizations of the stochastic process X ~ P in a separable
Hilbert space H. Thus, X; ~ P are independent stochastic processes that follow the same law.
This independence condition could be relaxed since we only need the strong law of large numbers
to hold in order to guarantee that the results established in this paper hold.

2.1 Raw robust projection—pursuit approach

Based on the property (1) of the first principal component and given oy (F’) a robust scale functional,
the raw (meaning unsmoothed) robust functional principal component directions are defined as

¢r,1(P) = argmaxog (Pla])
llof=1 (2)
¢rm(P) = argmax og(Pla]), 2<m,
Ha||:17a687n
where P[a] stands for the distribution of (a, X) when X ~ P, and B,,, = {a € H : (o, ¢r;(P)) =
0, 1 <j<m-—1}. We will denote the mth largest eigenvalues by
Arn(P) = of(Plonm)) = max  op (Pla]) . (3)
lal|=1,0€Bm
Since the unit ball is weakly compact, the maximum above is attained if the scale functional oy is
(weakly) continuous.

Next, denote by s2 : H — R the function s2(a) = o2 (P,[a]), where og(Py[a]) stand for
the functional or computed at the empirical distribution of («, X1),...,{(a, X,,). Analogously,
o : H — R will stand for o(a) = or(P[a]). The components in (2) will be estimated empirically by

¢1 = argmax s,(«)
. llee[[=1 (4)
¢m = argmax s,(a) 2 <m,

aegm



where By, = {a € H: |al| = 1, (« gb )=0,V1<j<m-—1}. The estimators of the eigenvalues
are then computed as
Am =85 (Pm), 1<m. (5)

2.2 Smoothed robust principal components

Sometimes instead of raw functional principal components, smoothed ones are of interest. The
advantages of smoothed functional PCA are well documented, see for instance, Rice and Silverman
(1991) and Ramsay and Silverman (2005). One compelling argument is that smoothing is a regular-
ization tool that might reveal more interpretable and interesting feature of the modes of variation
for functional data. Rice and Silverman (1991) and Silverman (1996) proposed two smoothing ap-
proaches by penalizing the variance and the norm, respectively. To be more specific, Rice and Silver-
man (1991) estimate the first prln(:lpal component by maximizing over HaH = 1 the obJectlve func—
tion var ({a, X)) — [, |, where var stands for the sample variance and [ fo a"(t)p"(t)
Silverman (1996) proposed a different way to penalize the roughness byAdeﬁnlng the penahzed inner
product («, ) = (a, ) + 7|, B]. Then, the smoothed first direction ¢; is the one that maximizes
var ((«, X)) over over |la||; = 1 subject to the condition that ||gZ>1||2 (p1,P1)r = 1.

Silverman (1996) obtained consistency results of the norm—penalized principal components es-
timators under the assumption that ¢; have finite roughness, i.e., [¢;,¢;] < oo. Clearly the
smoothing parameter 7 needs to converge to 0 in order to get consistency results.

Let us consider Hg, the subset of “smooth elements”of /. In order to obtain consistency results,
we need ¢g j(P) € Hs, or ¢g j(P) belongs to the closure, Hs, of Hs. Let D : Hg — H, a linear
operator that we will call the “differentiator”. Using D, we will define the symmetric positive
semidefinite bilinear form [-,-] : Hs x Hs — R, where [, ] = (Da,Dp). The “penalization
operator” is then defined as ¥ : Hg — R, ¥U(a) = [, |, and the penalized inner product as
(o, B)r = (a, B) + T[av, B]. Therefore, ||a]|?2 = ||a||?> + 7T (). As in Pezzulli and Silverman (1993),
we will assume that the bilinear form is closable.

Remark 2.2.1. The most common setting for functional data is to choose H = L?(T), Hs = {a €
L*(I),« is twice differentiable, and [, (o (t))%dt < oo}, Da = o and [, 8] = [; & (¢)B8”(t)dt so
that W(a) = [(a”(t))%dt.

Let or(F) be a robust scale functional and define s2(a) and o(a) as in Section 2.1. Then, we
can adapt the classical procedure by defining the smoothed robust functional principal components
estimators either

a) by penalizing the norm as

& s (6)
¢pn1 = argmax s2 () = argmax n
APN ol =1 sz0  (B,B)+ 7B, 5] ©
QSPN,m = argmax S?L(oz) 2 <m,
a€Bp +

where ng ={aecH: |al =1, <Oé,$PN,j>T =0,V1<j<m-—1};

b) or by penalizing the scale as

$PS71 = argmax {s2(a) — T[a, ]}
R lall=1 )
pps,;m = argmax {s2(a) — T[a,a]} 2<m,

aEB\S’m

where gpsﬂn ={aeH: ||a| =1,(a, (;EPSJ‘) =0,V1<j<m-—1}.
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The eigenvalue estimators are thus defined as

XPs,m = Si(ggps,m) (8)
)\PN,m = SZ(QSPN,m)- (9)

2.3 Sieve approach for robust functional principal components

A different approach can be defined that is related to B—splines, and more generally, the method of
sieves. The sieve method involves approximating an infinite-dimensional parameter space © by a
series of finite-dimensional parameter spaces ©,, that depend on the sample size n and estimating
the parameter on the spaces ©,, not ©.

Let {d;}i>1 be a basis of  and define H,,, the linear space spanned by d1,...,0p, and by S, =
{a€Hyp, :llall =1} ,ie, Hp, ={a €M : a=3"" a;0;} and Sp, = {a € H: a =300 a50;,
a=(ay,...,ap,)" such that [|of* = Y0 30", ajas(d;,0s) = 1}. Note that Sp,, approximates the

unit sphere S = {& € H : ||| = 1}. Define the robust sieve estimators of the principal components
as R
ds11 = argxg}ax 5p ()
ac Pn
& 10
bsim = argmax sp(a) 2 <m, (10)
a€Bn,m

where gnm ={acs,,: (o 5517]) =0, V1<j<m-—1}, and define the eigenvalue estimators as

XSI,m = Si($SI,m) . (11)

Some of the more frequently used bases in the analysis of functional data are the Fourier, polyno-
mial, spline, or wavelet bases (see, for instance, Ramsay and Silverman, 2005).

3 Consistency results

In this section, we show that under mild conditions the functionals ¢g ,(P) and Ag,,(P) are
weakly continuous. Moreover, we state conditions that guarantee the consistency of the estimators
defined in Section 2. Our results hold in particular for, but are not restricted to, the functional
elliptical families defined in Bali and Boente (2009). We recall here their definition for the sake of
completeness.

Let X be a random element in a separable Hilbert space H. Let p € H and I' : H — H be
a self-adjoint, positive semidefinite and compact operator. We will say that X has an elliptical
distribution with parameters (u, I'), denoted as X ~ &(u, I'), if for any linear and bounded operator
A:H — RY AX has a multivariate elliptical distribution with parameters Ay and ¥ = AT'A*,
ie, AX ~ &i(Ap,X), where A* : RP — H stands for the adjoint operator of A. As in the
finite—dimensional setting, if the covariance operator, I'x, of X exists then, I'xy = a T, for some
a €R.

The following transformation can be used to obtain random elliptical elements. Let Vi be a
Gaussian element in ‘H with zero mean and covariance operator I'y,, and let Z be a random variable
independent of V4. Given p € H, define X = u+2Z V4. Then, X has an elliptical distribution &(u, I")
with the operator I being proportional to I'y; and with no moment conditions required. It is worth
noting that the converse holds if all the eigenvalues of I' are positive. Specifically, if X ~ &(u,T)
and the eigenvalues of " are positive, then, X = pu+ ZV for some mean zero Gaussian process V' and
random variable Z € R, which is independent of V. This result can be obtained as a corollary to
the theorem in Kingman (1972), which states that if a random variable can be embedded within a
sequence of spherical random vectors of dimension k for any £ = 1,2, ..., then the random variable



must be distributed as a scale mixture of normals. Folr random elements which admit a finite

Karhunen Loeve expansion, i.e., X (t) = u(t) + 23:1 )\? Uj¢;(t), the assumption that X has an
elliptical distribution is analogous to assuming that U = (U1, ..., Uq)T has a spherical distribution.
This finite expansion was considered, for instance, by Gervini (2008).

To derive the consistency of the proposed estimators, we need the following assumptions.
S1. supjq=1 |s2(a) — o2 (a)] =20

S2. o0 :H — Ris a weakly continuous function, i.e., continuous with respect to the weak topology
in H.

Remark 3.1.

i) Assumption S1 holds for the classical estimators based on the sample variance since the
empirical covariance operator, f‘, is consistent in the unit ball. Indeed, as shown in Dauxois
et al. (1982), |T—Tx|| £ 0, which entails that SUD||of|=1 |52 (a) — o%(@)| < IT—Tx| <% 0.
However, this assumption can be harder to verify for other scale functionals since the unit
sphere S = {||a|| = 1} is not compact. The weaker conditions sup, |, =1 ‘si(a) - 02(04)‘ 2%0
Or SUp,es,, |s2(a) — 0% (a)| 2% 0 can be introduced for the smoothed proposals in Section
2.2., since the set {a € S, } is compact. Some more general conditions on the scale functional
that guarantee S1 are stated in Appendix A.

ii) If the scale functional oy is a continuous functional (with respect to the weak topology),
then S2 follows. This is because if a, — «, as k — oo, then (ay, X) - (o, X) and hence,
or(Plag]) — or(P[a]). For the case when the scale functional is taken to be the standard
deviation and the underlying probability P has a covariance operator I'x, we see from the
relationship o2(a) = (@, T'ya) that condition S2 holds, even though the standard deviation
itself is not a weakly continuous functional.

iii) If X has an elliptical distribution £(u,T"), then there exists a positive constant ¢ such that
for any a € H, 02 (P[a]) = ¢(a,Ta). Furthermore, it immediately follows that the function
o : H — R defined as o(a) = or(P[a]) is weakly continuous. Moreover, since there exists a
metric d generating the weak topology in H and the closed ball V, = {a : ||a|| < r} is weakly
compact, we see that S2 implies that o(«) is uniformly continuous with respect to the metric
d and hence, with respect to the weak topology, over V,. Weakly uniform continuity is used
in some of the results presented later in this section.

iv) The Fisher-consistency of the functionals defined through (2) follows immediately from the
previous result if the underlying distribution is elliptical. More generally, let us consider the
following assumption

S3. there exists a constant ¢ > 0 and a self-adjoint, positive semidefinite and compact
operator T, such that for any a € H, we have o%(a) = c(a, T'a).

Let X ~ P be a random element such that S3 holds. Denote by A1 > Ay > ... the eigenvalues
of ' and by ¢; the eigenfunction associated to A\j. Then, we have that ¢y ;(P) = ¢; and
)\RJ(P) =C )\j.

As in the finite-dimensional setting, the scale functional or can be calibrated to attain Fisher—
consistency of the eigenvalues.

v) Assumption S3 ensures that we are estimating the target directions. It may seem restrictive
since it is difficult to verify outside the family of elliptical distributions except when the scale is
taken to be the standard deviation. However, even in the finite-dimensional case, asymptotic



properties have been derived only under similar restrictions. For instance, both Li and Chen
(1985) and Croux and Ruiz—Gazen (2005) assume an underlying elliptical distribution in
order to obtain consistency results and influence functions, respectively. Also, in Cui et al.
(2003) the influence function of the projected data is assumed to be of the form h(x,a) =
20(F[a))IF(x, 0a; Fy), where F[a] stands for the distribution of a’x when x ~ F. This
condition, though, primarily holds when the distribution is elliptical.

Before stating the consistency results, we first establish some notations and then prove the con-
tinuity of the eigenfunction and eigenvalue functionals. Denote by L,,—1 the linear space spanned
by {¢r1,- .., Prm—1} and let Em_l be the linear space spanned by the first m — 1 estimated eigen-
functions, i.e., by {¢1,...,¢m—1}, {dps1s-- - Opsm—1}, {dpn1s- - Opnm—1} OF {Psi1,- ., Psim—1},
where it will be clear in each case which linear space we are considering. Finally, for any linear
space L, g : H — L stands for the orthogonal projection onto the linear space £, which exists if
L is a closed linear space. In particular, 7z, ,, 7 Foy and 7y, are well defined.

The following Lemma is useful for deriving the consistency and continuity of the eigenfunction
estimators. In this lemma and in the subsequent proposition and theorems, it should be noted that
g\d), #)? — 1 implies, under the same mode of convergence, that the sign of ¢ can be chosen so that
¢ — ¢. Throughout the rest of this section, ¢g j(P) and g j(P) stand for the functionals defined
through (2) and (3). For the sake of simplicity, denote by Ar;j = Ar;(P) and ¢r; = g ;(P).
Assume that Ag1 > A2 > ... > Ag ¢ > Agg¢+1 for some ¢ > 2 and that, for 1 < m < ¢, ¢r; are
unique up to changes in their sign.

Lemma 3.1. Let ¢, € S be such that <<$m, gg]) = 0 for j # m. If S2 holds, we have that
a) If o*(91) “ 0®(¢w,1), then, (1, dr1)” % 1.

b) Given 2 < m < q, if 02(QASm) 25 02(¢R7m) and ;#55 £5 ¢r,s, for 1 < s < m — 1, we have that
n 9 a.s,

for1 <m <g, <¢m7¢R,m> — L

Let dpr(P, Q) stands for the Prohorov distance between the probability measures P and Q.
Thus, P, — P if and only if dpg(P,, P) — 0. Proposition 3.1 below establishes the continuity of
the functionals defined as (2) and (3) hence, the asymptotic robustness of the estimators derived
from them, as defined in Hampel (1971). As it will be shown in Appendix A, the uniform conver-
gence required in assumption ii) is satisfied, for instance, if og is a continuous scale functional.

Proposition 3.1. Assume that S2 holds and that
SUp|q=1 lor (P, [a]) — or(P[a])| — 0 whenever P, - P.
Then, for any sequence P, such that P, — P, we have that
a) Ar,1(Pn) = Ar,1 and 0 (¢p1(Pn)) = 0% (dr.1).

b) (¢pr1(Pn), ¢r1)? — 1.

c) Forany 2 <m < q, if ¢p s(Pn) = ¢r,s, for 1 < s <m—1, then, Ag mm(P,) — 02(¢R7m) = AR,m
and 02(¢R,m(Pn)) — O'Q(QZSR’m).

d) For1<m< q, <¢R,m(Pn)a ¢R,m>2 — 1.



3.1 Consistency of the raw robust estimators
Theorem 3.1 establishes the consistency of the raw estimators of the principal components. The

proof of the theorem is similar to that of Proposition 3.1.

Theorem 3.1. Let ¢, and A, be the estimators defined in (4) and (5), respectively. Under S1
and S2, we have that

a) M 2% 0%(¢r1) and o2(d1) L 02 (dn)-

b) (1, ¢r1)? “5 1.
c) Given 2 <m < g, if 4/55 2% prs, for 1 < s <m — 1, then A 25 0?(¢r,m) and 02($m) 25

UQ(d)R,m)-

d) For1<m <gq, (pm, prm)> =5 1.

3.2 Consistency of the smoothed robust approach via penalization of the norm

Recall that Hg is the subspace of H of smooth elements a such that ¥(a) = [a, a] = ||Dal|? < cc.
To derive the consistency of the proposals given by (6) and (7), we will need one of the following
assumptions in S4.

S4. a) ¢rj; € Hs, Vj or b) g€ Hs, V5.

Condition S4b) generalizes the assumption of smoothness required in Silverman (1996), and holds,
for example, when Hg is a dense subset of H.

For the sake of simplicity, denote by T = Eé‘ the linear space orthogonal to ¢1,..., ¢, and by
m, = 77, the orthogonal projection with respect to the inner product defined in H. On the other
hand, let 7, ;, be the projection onto the linear space orthogonal to (}EPNJ, ceey $PN,k in the space Hg
in the inner product (-,-)r, i.e., for any o € Hg, 7 p(0) = a — Z§:1<O‘7 $pN7j>T$pN,j. Moreover, let
7\;713 be the linear space orthogonal to Ek with the inner product (-, ). Thus, 7, is the orthogonal
projection onto 7A:.k with respect to this inner product.

Theorem 3.2. Let ggpN,m and XPN,m be the estimators defined in (6) and (9), respectively. More-
over, assume conditions S1, S2 and S4b) holds. If T = 1, — 0, 7, > 0, then

a) /)\\PN,,l 2) 02(¢R’1) and 02($PN71) 2} 02(¢R’1)
b T((EPNJ’&;PN’H == 0, and so, ”?EPN,l =% 1.

C) <$PN,17¢R,1>2 251

d) Given 2 < m < ¢, if (ZPN,E &3 ¢r, and T[apN7g,$pN741 2% 0, for 1 < £ < m — 1, then
APN,m - 02(¢R,m)> U2(¢PN,m) 5 02(¢R,m)a TWPN,m,Cf)PN,M 2% 0 and 50, ||¢PN,m|| =51

e) For 1 <m < q, (fpnm, drm)? =5 1.



3.3 Consistency of the smoothed robust approach via penalization of the scale

Consistency of the proposal given by (7) under assumption S4a) is given below.

Theorem 3.3. Let (/gps’m and Xpsm be the estimators defined in (7) and (8), respectively. Moreover,
assume conditions S1, S2 and S4a) hold. If T = 1, — 0, 7, > 0, then

a.s.

a) /)\\ps71 ﬁ} 02(¢R,1) and 0'2(;5})571) ﬁ} 02(¢R,1)' Moreover, T[aPNﬂa(ZPN,lW — 0.

b) <$PS,17¢R,1>2 2%,
¢) Given 2 < m < gq, 1f¢psg L5 ¢Rg, and T[(;SPNg,gprﬂ 250, for 1 < ¢ < m — 1, then
)\PSm o (¢R m), O (¢Ps m) %0 (¢R m) and TWPN m) ¢PN m =2%0.

d) For1 <m <g, <$PS,m7 Pr,m)” —

Qas

1.

3.4 Consistency of the robust approach through the method of sieves

The following Theorem establishes the consistency of the estimators of the principal components
defined through (10).

Theorem 3.4. Let $SI,m and /)‘\Sl,m be the estimators defined in (10) and (11), respectively. Under
S1 and S2, if p, — oo, then

a) X51,1 =2 02(¢R,1) and 02($SI,1) =% 02(¢R,1)

b) Given 2 < m < gq, if ggng 25 ¢rye, for 1 < € < m — 1, then XsLm 2% 0%(¢r.m) and
02(¢Sl,m) ﬂ 02(¢R,m)

s

c) For1 <m <gq, <¢A5SI,m,¢m>2 51

4 Selection of the smoothing parameters

The selection of the smoothing parameters is an important practical issue. The most popular
general approach to address such a selection problem is to use the cross-validation methods. In
nonparametric regression, the sensitivity of L? cross—validation methods to outliers has been pointed
out by Wang and Scott (1994) and by Cantoni and Ronchetti (2001), among others. The latter
also proposed more robust alternatives to L? cross—validation. The idea of robust cross—validation
can be adapted to the present situation. Assume for the moment that we are interested in a fixed
number, £, of components. We propose to proceed as follows.

1. Center the data. i.e., define X, = X, — i where i is a robust location estimator such as
the trimmed means proposed by Fraiman and Muniz (2001), the depth—based estimators of
Cuevas et al. (2007) and Lépez—Pintado and Romo (2007), or the functional median defined
in Gervini (2008).

2. For the penalized roughness approaches and for each m in the range 1 < m < ¢ and 0 < 7,
let ¢$n‘, QL denote the robust estimator of the mth principal component computed without the
jth observation.

3. Define Xj-(Tn) = )?j - ﬂﬁ_j)()?j), where 7y, (X) stands for the orthogonal projection of
2

X onto the linear (closed) space Hs and ngj) stands for the linear space spanned by
e



4. Given a robust scale estimator around zero o,, we propose to minimize RCV(7r,) =
an(IX5- ()l - - 1 Xa (m))-

By robust scale estimator around zero, we mean that no location estimator is applied to center
the data. For instance, in the classical setting, we will take o2 (z1,...,2,) = (1/n) Y1, 22 while
in the robust situation, one may consider o, (z1,...,2,) = median(zy,..., z,) or the solution of
>ois1 X(zi/on) = n/2. For large sample sizes, it is well understood that cross-validation methods
can be computationally prohibitive. In such cases, K —fold cross—validation provides a useful alter-
native. In the following, we briefly describe a robust K —fold cross—validation procedure suitable

for our proposed estimates.
1. First center the data as above, using X, =X, — 1.

2. Partition the centered data set {XZ} randomly into K disjoint subsets of approximately equal
sizes with the jth subset havi‘ng size nj > 2, Zszl nj =n. Let {Xz‘(j)}lgz‘gnj be the elements
of the jth subset, and {Xi(_J)}lgign,nj denote the elements in the complement of the jth
subset. The set {)Nfzgfj)}lgign,nj will be the training set and {XZ»(J)}lggnj the validation set.

3. Similar to Step 2 above but leave the jth validation subset {Xi(j)}lgignj out instead of the
Jth observation.

4. Define X J(-j )L(Tn) the same way as in Step 2 above, using the validation set. For instance,

XZ-(j)J_(Tn) - xU_ D) ()N(Z-(j)), 1 <1 < nj, where ngj) stands for the linear space spanned

1

by 35930,

177—11 ) Zy‘rn

5. Given a scale estimator around zero o,,, the robust K —fold cross-validation method chooses
K

the smoothing parameter which minimizes RCVyxov () = S5 o2 (X (m) - IIXS (m) ).

A similar approach can be given to choose p, when considering the sieve estimators.

5 Monte Carlo Study

5.1 Algorithm and notation

All the methods to be considered here are modifications of the basic algorithm proposed by Croux
and Ruiz—Gazen (1996) for the computation of principal components using projection-pursuit.
The basic algorithm applies to multivariate data, say m-dimensional, and requires a search over
projections in R™. To apply the algorithm to functional data, we discretized the domain of the
observed function over m = 50 equally spaced points in Z = [—1,1]. We have also adapted the
algorithm to allow for smoothed principal components and for different methods of centering. In
this sense, there are three main characteristics which distinguish the different computed estimators:
the scale function, the method of centering, and the type of smoothing used.

e Scale function: Three scale functions are considered here: the classical standard deviation
(sD), the Median Absolute Deviation (MAD) and an M —estimator of scale (M —SCALE). The
latter two are robust scale statistics. The M —estimator combines both the robustness of
the (MAD) with the smoothness of the standard deviation. For the M —estimator, we used
as score function x.(y) = min (3 (y/e)* =3 (y/e)* + (y/c)°, 1), introduced by Beaton and
Tukey (1974), with tuning constant ¢ = 1.56 and breakdown point 1/2. To compute the
M —scale, the initial estimator of scale was the MAD.
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e Centering: For the classical procedures, i.e., those based on SD, we used a point—to—
point mean as the centering point. For the robust procedures, i.e., those based on MAD
or M —SCALE, we used either the L' median, which is commonly referred to as the spatial
median, or the point—to—point median to center the data. This avoids the extra complexity
associated with the functional trimmed means or the depth—based estimators. It turned out
that the two robust centering methods produced similar results and so, only the results for
the L' median are reported.

e Smoothing level 7: For both the classical and robust procedures defined in Section 2.2,
a penalization depending on the L? norm of the second derivative is included, multiplied
by a smoothing factor. Note that when 7 = 0, the raw estimators defined in Section 2.1
are obtained. We also considered smoothing the directional candidates in our algorithm, by
using a kernel smoother for the classical procedures and a local median for the robust ones.
However, this turned out to be extremely time consuming, without any noticeable difference
in the results.

e Sieve: Two different sieve bases were considered: the Fourier basis, i.e., taking §; to be the
Fourier basis functions, and the cubic B—spline basis functions. The Fourier basis used in
the sieve method is the same basis used to generate the data.

In all Figures and Tables, the estimators corresponding to each scale choice are labeled as
SD, MAD, M —SCALE. For each scale, we considered four estimators, the raw estimators where no
smoothing is used, the estimators obtained by penalizing the scale function defined in (7), those
obtained by penalizing the norm defined in (6), and the sieve estimators defined in (10). In all
Tables, as in§ection 2, the jth principal direction estimators related to each method are labelled
as ¢j, ¢ps j, Ppn,; and ¢g j, respectively.

When using the penalized estimators, several values for the penalizing parameters 7 and p
were chosen. Since large values of the smoothing parameters make the penalizing term to be the
dominant component independently of the amount of contamination considered, we choose T and p
equal to an™® for @ = 3 and 4 and a equal to 0.05, 0.10, 0.15, 0.25, 0.5, 0.75, 1, 1.5 and 2. However,
boxplots and density estimators are given only when o = 3 and a = 0.25, 0.75 and 2.

For the sieve estimators based on the Fourier basis, ordered as {1, cos(rz), sin(7x), . .., cos(gnmz),
sin(gpmx), ...}, the values p, = 2¢, with ¢, = 5, 10 and 15 were used, while for the sieve estimators
based on the B—splines, the dimension of the linear space considered was selected as p, = 10, 20
and 50. The basis for the B-splines is generated from the R function cSplineDes, with the knots
being equally spaced in the interval [-1,1] and the number of knots equal to p, + 1. The resulting
B—spline basis, though, is not orthonormal. Since it is easier to apply the algorithm for the sieve
estimators when an orthonormal basis is used, a Gram-Schmidt orthogonalization is applied to the
B—splines basis to obtained a new orthonormal bases spanning the same subspace.

5.2 Simulation settings

The sample was generated using a finite Karhunen-Loéve expansion with the functions, ¢; :
[-1,1] - R, i=1,2,3, where

¢1(x) = sin(4nx)

¢a2(x) cos(7mx)

¢3(x) = cos(lbmz) .

It is worth noticing that, when considering the sieve estimators based on the Fourier basis, the
third component cannot be detected when ¢, < 15, since in this case ¢3(x) is orthogonal to the
estimating space. Likewise, the second component cannot be detected when ¢, < 7.
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We performed N R = 1000 replications generating independent samples {X;}? ; of size n = 100
following the model X; = Z;1¢1 + Zja¢2 + Z;3¢3, where Z;; are independent random variables
whose distribution will depend on the situation to be considered. The central model, denoted
Cy, corresponds to Gaussian samples. We have also considered four contaminations of the central
model, labelled Cy, C3,, C3 and Ca3 depending on the components to be contaminated. The
central model and the contaminations can be described as follows. For each of the models, we took
01 =4,09=2and o3 = 1.

e Co: Ziy ~ N(0,0%), Zin ~ N(0,03) and Z;3 ~ N(0,03).

e Cy: Zjp are independent and identically distributed as 0.8 N(0,03) + 0.2 N(10,0.01), while
Zi ~ N(0,0%) and Z;3 ~ N(0,03). This contamination corresponds to a strong contamina-
tion on the second component and changes the mean value of the generated data Z;5 and also
the first principal component. Note that var(Z;2) = 19.202.

e C3,0 Zin ~ N(0,0%), Zin ~ N(0,03) and Z;3 ~ 0.8 N(0,0%) + 0.2 N(15,0.01). This
contamination corresponds to a strong contamination on the third component. Note that
var(Z;3) = 36.802.

e Cs3p0 Ziy ~ N(0,0%), Zio ~ N(0,03) and Z;3 ~ 0.8 N(0,03) + 0.2 N(6,0.01). This
contamination corresponds to a strong contamination on the third component. Note that
Val“(Zi3) = 6.562.

o Cb3: Z;; are independent and such that Z;; ~ N(0,0%), Zia ~ 0.9N(0,03)+0.1N(15,0.01) and
Ziz ~ 0.9N(0,0%) +0.1N(20,0.01). This contamination corresponds to a mild contamination
on the two last components. Note that var(Z;2) = 23.851, and var(Z;3) = 36.901.

We also considered a Cauchy situation, labelled C,, defined by taking (Z;1, Z;2, Zi3) ~ C3(0, %) with
¥ = diag(o?,03,0%), where Cp(0, %) stands for the p—dimensional elliptical Cauchy distribution
centered at 0 with scatter matrix 3. For this situation, the covariance operator does not exist and
thus the classical principal components are not defined.

It is worth noting that the directions ¢1, ¢2 and ¢3 correspond to the classical principal com-
ponents for the case Cp, but not necessarily for the other cases. For instance, C3 , interchanges the
order between ¢ and ¢s3, i.e., ¢3 is now the first classical principal component, i.e., that obtained
from the covariance operator, while ¢ is the second and ¢ is the third.

5.3 Simulation results

For each situation, we compute the estimators of the first three principal components and the
square distance between the true and the estimated direction (normalized to have L? norm 1), i.e.,

~ 2
i _
141

Table 7 to 12 give the mean of D, over replications for the raw and penalized estimators. Table 7
corresponds to the raw and penalized estimators under Cy for the different choices of the penalizing
parameters. This table allows to see that a better performance is achieved in most cases with o = 3.
Hence, as mentioned above, all the Figures correspond to values of the smoothing parameter equal
to 7 = an~3. To be more precise, the results in Table 7 show that the best choice for Ops,j
is 7 = 2n73 for all jNote that p = 1.5n73 give quite similar results, when using the M —scale,
reducing the error in about a half and a third for j = 2 and 3, respectively. When penalizing the

norm, i.e., when considering EPNJ» the choice of the penalizing parameter seems to depend both

i =

®;
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on the component to be estimated and on the estimator to be used. For instance, when using the
standard deviation, the best choice is 0.10n™3, for j = 1 and 2 while for j = 3 a smaller order
is needed to obtain an improvement over the raw estimators. The value 7 = 0.75n~% leads to a
small gain over the raw estimators. For the robust procedures, larger values are needed to see the
advantage of the penalized approach over the raw estimators. For instance, for j = 1, the larger
reduction is observed when 7 = 2n ™2 while for j = 2, the best choices correspond to 7 = 0.5n73
and 7 = 0.25n2 when using the MAD and M —scale, respectively. For instance, when using the
M —scale, choosing 7 = 0.75n 73 lead to a reduction of about 30% and 50% for the first and second
principal directions, respectively. On the other hand, when estimating the third component, again
smaller values of 7 are needed. Tables 4 and 5 report the mean of D; over replications for different
sizes of the grid under Cy for some values of the penalizing parameters. The size m = 50 selected
in our study gives a compromise between the performance of the estimators and the computing
time. As it can be seen, some improvement is observed when using m = 250 instead of 50 points
but at the expense of multiplying by five the computing time.

Besides, Tables 13 to 18 give the mean of D, over replications for the sieve estimators. Figures
1 to 6 show the density estimates of D;, for j = 1,2 and 3, respectively when o = 3 combined
with a = 1.5 for the estimators penalizing the scale and a = 0.75 for those penalizing the norm.
The density estimates were evaluated using the normal kernel with bandwidth 0.6 in all cases. The
plots given in black correspond to the densities of D; evaluated over the NR = 1000 normally
distributed samples, while those in red, gray, blue and green correspond to Cs, C34, C3; and
(a3, respectively. Finally, Figures 8 to 13 show the boxplots of the ratio Xm /Am for the different
eigenvalue estimators. The classical estimators are labelled sD, while the robust ones MAD and
MsS. For the norm or scale—penalized estimators the penalization parameter 7 is indicated after
the estimator type label while for the sieve estimators the parameter p, follows the name of the
scale estimator considered. For the Cauchy distribution, the large values obtained for the classical
estimators obscure any differences within the robust procedures and so, separate boxplots for the
robust methods only are given at the bottom of Figures 8 to 13.

The simulation confirms the expected inadequate behaviour of the classical estimators, in the
presence of outliers. A bias is observed when estimating the eigenvalues. The poorest efficiency of
the raw eigenvalue estimates is obtained using the projection—pursuit procedure combined with the
MAD estimator. It is also worth noticing that the level of smoothing 7 seems to affect the eigenvalue
estimators, introducing a bias even for Gaussian samples. Note that for some contaminations, the
robust estimators are also biased. However, the order among them is preserved and so, the target
eigenfunction is in most cases, recovered.

With respect to the principal direction estimation, under contamination, the classical estimators
do not estimate the target eigenfunctions very accurately, which can be seen from the shift in the
density of the norm towards 2. Note that when considering the Cauchy distribution, the main
effect is observed on the eigenvalue estimators since, even if the covariance operator does not exist,
the directions seem to be recovered when using the standard deviation. The robust eigenfunction
estimators seem to be affected mainly unaffected by all the contaminations except by Cs,. In
particular, the projection—pursuit estimators based on an M —scale seem to be more affected by
this contamination. On the other hand, (s, affects the estimators of the third eigenfunction when
penalizing the norm. With respect to C,, the robust estimators obtained penalizing the norm
¢pn,j show the lower effect among all the competitors. Note that even if the order of the classical
eigenfunctions is modified, as mentioned above, the robust estimators of the first principal direction
are not affected by this contamination.

It is worth noting that the classical estimators of the first component are not affected by C3,
for some values of the smoothing parameter, when penalizing the norm since the penalization
dominates over the contaminated variances. The same phenomena is observed under C'3; when
using the classical estimators for the selected amount of penalization. For the raw estimators, the
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sensitivity of the classical estimators under this contamination can be observed in Table 6.

As noted in Silverman (1996), for the classical estimators, some degree of smoothing in the
procedure based on penalizing the norm will give a better estimation of ¢; in the L? sense under
mild conditions. In particular, both the procedure penalizing the norm and the scale provide some
improvement with respect to the raw estimators if ¥(¢;) < ¥(¢y), when j < £. This means that the
principal directions are rougher as the eigenvalues decrease (see Pezzulli and Silverman, 1993 and
Silverman, 1996), which is also reflected in our simulation study. The advantages of the smooth
projection pursuit procedures are most striking when estimating ¢2 and ¢3 with an M —scale and
using the penalized scale approach.

As expected, when using the sieve estimators, the Fourier basis gives the best performance over
all the methods under Cj, since our data set was generated using this basis Lsee Table 13). The
choice of the B—spline basis give results quite similar to those obtained with ¢pg ;.

5.4 K —th fold simulation

Table 1 reports the computing times in minutes for 1000 replications and for a fixed value of 7.
This suggests that the leave-one-out cross—validation may be difficult to perform, and so a K —fold
approach is adopted instead. A simulation study was performed where the smoothing parameter
7 was selected using the procedure described in Section 4 with K = 4, £ = 1. We performed
500 replications. The results when penalizing the scale function, i.e., for the estimators defined
through (7), are reported in Table 2 and in Figure 7. The classical estimators are sensitive to
the considered contaminations and except for contaminations in the third component, the robust
counterpart show their advantage. Note that both C3, and Cy;, affect the robust estimators when
the smoothing parameter 7 is selected by the robust K —fold cross-validation method.

SD MAD M —SCALE
Raw 5.62 6.98 17.56
Smoothed 7.75 9.00 20.18
Smoothed Norm | 31.87 | 33.21 44.04

Table 1: Computing times in minutes for 1000 replications and a fixed value of 7.

Model Scale estimator | j =1 j=2 ji=3
PPS.;

SD 0.0073  0.0094 0.0078

Co MAD 0.0662 0.0993 0.0634

M-scale 0.0225 0.0311 0.0172

SD 1.2840  1.2837  0.0043

Ca MAD 0.3731 0.3915  0.0504

M-scale 0.4261 0.4286 0.0153

SD 1.7840 1.8901 1.9122

Csa MAD 0.2271  0.5227  0.5450

M-scale 0.2176  0.4873  0.5437

SD 0.0192  0.8350 0.8525

C3B MAD 0.0986  0.3930  0.3820

M-scale 0.0404 0.2251  0.2285

SD 1.7645 0.5438  1.6380

Cas MAD 0.2407 0.3443 0.2064

M-scale 0.2613  0.3707 0.2174

SD 0.3580 0.4835  0.2287

Clauchy MAD 0.0788 0.1511 0.1082

M-scale 0.0444 0.0707 0.0434

Table 2: Mean values of H&/H@H — ¢;||> when the penalizing parameter is selected using K —fold cross-validation.
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6 Concluding Remarks

In this paper, we consider robust principal component analysis for functional data based on a
projection—pursuit approach. The different procedures correspond to robust versions of the un-
smoothed principal component estimators, to the estimators obtained penalizing the scale and to
those obtained by penalizing the norm. A sieve approach based on approximating the elements of
the unit ball by elements over finite—dimensional spaces is also considered. A robust cross-validation
procedure is introduced to select the smoothing parameters. Consistency results are derived for the
four type of estimators. Moreover, the functional related to the unsmoothed estimators is shown
to be continuous and so, the related estimators are asymptotically robust.

The simulation study confirms the expected inadequate behaviour of the classical estimators in
the presence of outliers, with the robust procedures performing significantly better. The proposed
robust procedures themselves for the eigenfunctions, however, perform quite similarly to each other
under the contaminations studied. A study of the influence functions and the asymptotic distribu-
tions of the different robust procedures would be useful for differentiating between them. We leave
these important and challenging theoretical problems, though, for future research.

A Appendix A

In this Appendix, we provide conditions under which S1 hold by requiring continuity to the scale
functional. To derive these results, we will first derive some properties regarding the weak conver-
gence of empirical measures that hold not only in L?(Z) but in any complete and separable metric
space.

Let M be a complete and separable metric space (Polish space) and B the Borel o—algebra
of M. The Prohorov distance between two probability measures P and ) on M is defined as:
dpr(P, Q) = inf{e, P(A) < Q(A°) + ¢, VA € B}, where A° = {z € M,d(z,A) < €¢}. Theorem A.l
shows that, analogously to the Glivenko—Cantelli Theorem in finite-dimensional spaces, on a Polish
space the empirical measures converge weakly almost surely to the probability measure generating
the observations.

Theorem A.1. Let (2, A,P) be a probability space and X,, : @ — M, n € N, be a sequence of
independent and identically distributed random elements such that X; ~ P. Assume that M is a
Polish space and denote by P, the the empirical probability measure, that is, P,(A) = 2 31 I(X;)
with I4(X;) = 1 if X; € A and 0 elsewhere. Then, P, —~ P almost surely, i.e., dpg(P,, P) <5 0.
PRrOOF. Note that the strong law of large numbers entails that for any borelian set A, P,(A) 25
P(A), i.e., P,(A) — P(A) except for a set Ny C Q of P-measure zero.

Let us show that given j € N, there exists Nj C Q such that P(N;) = 0 and, for any w ¢ N,
there exists nj(w) € N such that if n > n;(w), then dpr(P,, P) < 1/j.

The fact that M is a Polish space entails that there exists a finite class of disjoint sets {A4;,1 <
i < k} with diameter smaller than o such that

2j
k
1
()= -

Denote by A the class of all the sets that are obtained as a finite union of the A;, i.e., B € A if
and only if there exists A;,,...,A;, such that B = U§:1Aij- Note that A has a finite number of
elements s. For each 1 < i < s, and B; € A, let N, C Q with P(Np,) = 0 such that if w ¢ Np,,
then |P,(B;) — P(B;)| = 0. We define N; = |J;_; Np,, then P(N;) = 0.
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Let w ¢ Nj, then we have that |P,(B;) — P(B;)| — 0, for 1 < i < s. Hence, there exists
nj(w) € N such that for n > n;(w) we have that |P,(B) — P(B)| < 2 for any B € A. We will now
show if n > nj(w) then dpr (P, P) < 1/j.

Consider B a borelian set and let A be the union of all the sets A; that intersect B. Note that
A € A and so |P,(A) — P(A)] < i.. Therefore, B C AU <Uf 1A->c and A C BYJ. This last

inclusion holds because the sets A; have diameter smaller than . Thus, using (A.1), we get that

Q)] e[ (00)] -

which together with the fact that |P,(A)—P(A)| < 27’ implies that P(B) < P(A)—i—Q—j < P,(A)+1/5.
Using that A C BYJ, we get that P,(A) + 1/j < P,(BY7) + 1/, so P(B) < P,(B'7) +1/j and
this holds for every B borelian set. Thus, dpr (P, P) < 1/j, as it was desired.

To conclude the proof, we will show that dpr(P,, P) — 0 except for a zero P-measure set.
Consider all the sets \j previously defined and let N = ;g Nj. It is clear that P(A) = 0. Thus,
for any w ¢ N, we will have that for each j there exists n; = nj(w) such that d(P,, P) < 1/j if
n > nj. This concludes the proof. [

1
P(B) < P(A A)+1-P (A)+ 5

Let P be a probability measure in M, a separable Banach space. Then, given f € M*, where
M* stands for the dual space, define P[f] as the real measure of the random variable f(X), with
X ~ P. Then, we have that

Theorem A.2. Let {P,},cn and P be probability measures defined on M such that P, - P,
i.e., dpR(Pn, P) — 0. Then, sup”f”*:l dpR(Pn[f], P[f]) — 0.

PROOF. Fix ¢ > 0 and let ng be such that dpr(P,, P) < €, for n > ng. We will show that
sup|f|.=1 der (Pl f], P[f]) <€, for n > ng . Fix n > ng.

Using that dpr(P,, P) < € and Strassen’s Theorem, we get that there exists {X,, },en and X
in M such that X;, ~ P,, X ~ P and P(||[X;,, — X|| <¢) > 1 —e¢ Note that for any f € M~

with [[f]l. = 1, f(Xn) ~ Pa[f] and f(X) ~ P[f]. Using that [f(X,) — f(X)] = [f(X, — X)| <
| f 11| X — X < || Xn — X||, we get that for any f € M*, such that ||f|. = 1,

{I1Xn = X < e} CH{[f(Xn) = F(X)] < e}
which entails that
1—e <P Xy = X[ <€) <P([f(Xn) = [(X)| <), Vf € M7, |[f]l« =1
Thus, P(|f(X,) — f(X)| <€) > 1 —¢, and so, using again Strassen’s Theorem, we get that
PolfI(A) < P[fI(A9) +6 VA€ B, Vfe M",[|f]. = 1.
Therefore, for any f € M* such that ||f|, = 1, we have that dpr(P,[f], P[f]) < e, ie.,
sup| ||, =1 der(Pn[f], P[f]) < € concluding the proof. [J

In the particular, when considering a separable Hilbert space H, if f € H* is such that || f]|« = 1,
then f(X) = (o, X) with ||a|| = 1. The following result states that when oy is a continuous scale
functional, uniform convergence can be attained.

Theorem A.3. Let {P,},cn and P be probability measures defined on a separable Hilbert space
‘H, such that P, N P, ie., dpr(P,,P) — 0. Let or be a continuous scale functional. Then,

SUp|a|=1 lor(Pala]) — or(Pla]))| — 0.
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PROOF. Denote by ap, = supjq|=1|or(Pnla]) — or(P[a]))], it is enough to show that L =
limsup,,_,o, an = 0.

First note that since § = {a € H : ||a| = 1} is weakly compact and og is a continuous
functional, for each fixed n such that a, # 0, there exists a,, € S such that

an = |or(Pnlan]) — or(Plan])) - (A.2)

Effectively, let v, € S be such that |or(Py[v¢]) — or(P[Ve]))| = an, then the weak compactness of
S, entails that there exists a subsequence vy, such that v, converges weakly to v € H. It is easy to
see that ||y]] < 1. Besides, using that oy is continuous we obtain that |or(Pps[ve,]) — or(P[7e,]))| —
lor(Pn[Y]) — or(P[Y]))|, as s — oco. Hence, |or(Po[7]) — or(P[7]))| = an which entails that v # 0.
Let 7 = v/||v]|, then ¥ € § and thus |or(P.[7]) — or(P[7]))| < apn. On the other hand, using that
or is a scale functional we get that

low(PafA]) - on(PD)| = 'UR(P”[’YDHQHU M ]

which implies that ||7y|| > 1 leading to ||7|| = 1 and to the existence of a sequence «,, € S satifying
(A.2).

Let a,, be a subsequence such that a,, — L, we will assume that a,, # 0. Then, using (A.2),
we have that o, € S such that ay, = |or(Py,[an,]) — or(P[an,]))| — L. Using that S is weakly
compact, we can choose a subsequence ; = Oy, such that §; converges weakly to 3, i.e., for any

a €M, (Bj,a) = (B,a). Note that since ||5;|| = 1, then ||5]| < 1 (5 could be 0) and that
tny, = |ow(Puy, [B5]) — o (P[B])] = L (A.3)

For the sake of simplicity denote PU) = Pnkj- Then, Theorem A.2 entails that

while the fact that §; converges weakly to 8 implies that dpr(P[3;], P[3]) — 0, concluding that
dpr(PY)[B4], P[B]) — 0. The continuity of oy leads to

ow(PD18)]) = on(PIS]) (A4)
Using again that 3; converges weakly to 3 and the weak continuity of o we get that

or(P[Bj]) = or(P[B]) - (A.5)

Thus, (A.4) and (A.5) imply that og (PY)[3;])—or(P[B;]) — 0 and so, from (A.3), L = 0, concluding
the proof. O

Moreover, using Theorem A.1, we get the following result that shows that S1 holds if o is a
continuous scale functional.

Corollary A.1 Let P be a probability measure in a separable Hilbert space H, P,, be the empirical
measure of a random sample X1, ..., X, with X; ~ P, and or be a continuous scale functional.
Then, we have that

e |or(Pala]) — or(P[a]))] = 0.
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B Appendix B: Proofs

PROOF OF LEMMA 3.1. a) Let N = {w : 0%(¢1(w)) 4 02(¢r.1)} and fix w ¢ N, then 02(d; (w)) —

02(¢r,1). Using that S is weakly compact, we have that for any subsequence 7 of ngbl( ) there
exists a subsequence ’yg such that "}/g converges Weakly to v € H. It is easy to see that ||| < 1.
Besides, using that o (qbl( )) = o2(g, 1) we get that o2(vs,) — 0%(¢r,1) while on the other hand,
the weakly continuity of o entaﬂs that 02 (7,) — 02(7), as s — co. Hence, 02(7y) = 0%(¢r,1) which
entails that v # 0. Let ¥ = v/||7||, then ¥ € S and thus ¢%(7) < 02(¢R,1). On the other hand,
using that oy is a scale functional we get that

~ _o(y) _o(dra
[l
which implies that [|y|| > 1 leading to ||y|| = 1 and so, using the uniqueness of ¢r 1 we obtain that

(v, ¢r.1)? = 1. Therefore, since any subsequence of g/b\l (w) will have a limit converging either to ¢g 1
or —¢g,1, we obtain a).
b) Write bm aS b = Z;;lajgbp\,j + Ym, with (Y, ¢r;) = 0, 1 < j < m — 1. To obtain b)
we only have to show that (3, drm)? =2 1. Note that <¢m,q§]> = 0, for j # m, 1mphes that
a; = (¢m, br,j) = <¢m, Prj — ¢5) + <¢m, ¢g> <¢m’ Pr,j — ¢J> Thus, using that ¢J =% ¢R,J’
1<j<m-—1, and ||<;5m|| =1, we get that @; = 0 for 1 < j < m — 1 and so, qu)m Amll 225 0.
Note that 1 = ||<Z>mH2 =i . AZ—i—H’ymHQ hence, |[Fm|/2 <2 1 which implies that ||¢p — Y| 23 0,
where ¥, = /|| Ym |- Using that o(a) is a weakly continuous function and the unit ball is weakly
compact, we obtain that R
U(&Jm) - U(qsm) ﬁ 0. (A6)

Effectively, let N = Q — {w : [|om — Fm[ =30}, then P(N) = 1. Fix w ¢ N and let b, =
o(Ym) — a(ggm) = 0(Yn,m) — a(anm). It is enough to show that every subsequence of {b,} converges
to 0. Denote by {b,s} a subsequence, then by the weak compactness of S, there exists a subsequence
{n;} C {n'} such that ¥, ,,) and QASn]m) converge weakly to v and ¢, respectively. The fact that
|y$m — Ym|l — 0, we get that v = ¢ and so the weak continuity of o entails that b,, — 0.

The fact that 02($m) 2% 02 (¢prm) and (A.6) imply that o(Fm) == 0 (¢rm). The proof follows
now as in a) using the fact that 7, € Cp,, with C;, = {a € S : (o, ¢r ;) =0, 1 < j <m —1} and
¢r,m is the unique maximizer of o(a) over Cp,. O

PROOF OF PROPOSITION 3.1. For the sake of simplicity denote by o, () = or(Fy[a]), .
drm(Prn) and Ay, = Ajm(Py). Moreover, let B, = {a € H: [lof = 1, (« (;S]) =0,V1<y
m — 1} and L,,—; the linear space spanned by ¢1, ..., ¢pm—1.

<

a) Using ii), we get that a,1 = o 2(h1) — 02(¢1) — 0 and bn1 = 02(¢r1) — 0*(¢r1) — 0 which
implies that

o2(Br1) = 02 (dr1)—bn1 < 02(h1)—bn1 = 02(d1)+an1—bn1 < 02 (¢r1)+an1—bn1 = 02 (dr1)+0(1),

where o(1) stands for a term converging to 0. Therefore, 02(¢g 1) < o2($1)+0(1) < o?(¢r1)+o(1),
which entails that o?(¢1) 2% 02(¢r,1), concluding the proof of a).
Note that we have not used the weak continuity of o as a function of « to derive a).

b) Follows as in Lemma 3.1 a).

c) Let 2 < m < g, be fixed and assume that ggs — ¢Prs, for 1 < s < m —1. We will begin by
showing that A, = Ag m.

Son = 2 (Grm)| = | max 02(a) — max 0%(a)] < max |o2(a) — 0%(@)] + | max o%(a) — max a*(a)|
a€Bm a&Bm aEBm aEBm a€Bm
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< max |o2(a) — o?(a)] + | max 0%(a) — max o2 (a)
llerf|=1 a€Bp, a€Bm

IN

o(1) + | max 02(a) — max 02(a)| = o(1) + | max 02(a) — 02(¢5R7m)\ .
acBm, a€Bm acB,

Thus, in order to obtain the desired result, it only remains to show max gz o?(a) — 0% (rm)-
We will show that

o (prm) < HEI%X o?(a) + o(1) (A.7)
max o*(a) < o(1) + 0*(¢rm) (A.8)

Using that qgs — ¢rs for 1 < s < m — 1, we obtain that ||7T2m_1 — 7z, .|| = 0. In particular,
we have that |7z — ¢rm — 7z, @rmll — 0, which, together with the fact that 7z, ¢r,m =0,
implies that 75 71¢Rm — 0 and 50, pm — 75 Prm = Pr,m- Using that ¢ = 75— Orm +
(Pr.m — WZmil(ﬁR?m) we obtain that ||¢g.m, — 7r£ Pramll = [[érgml = 1. Denote by i, =
(dr,m — me,l(f’mm)/H@me — 7r2m71¢)p\7m||, note that &, € Bm. Then, from the fact that ||¢gr m —
Ts  Oramll = 1and [z~ ¢rm| — 0, we obtain that ¢rm = aim + o(1) which together with the
continuity of o, implies that 02(Q,,) — 02(drm). Hence,

0 (prm) = 0% (Am) + 0o(1) < fé%x o?(a) + o(1),

where we have used the fact that &, belongs to f)’\m, concluding the proof of (A.7).
To derive (A.8) notice that

max o%(@) = max (0%(a) — 02(a) + 02(a)) < max [0*(a) — 0%(a)] + 02 ()
a€Bm a€Bm a€Bm
S max (0%() = 02()) + 07 (Dm) — (D) + 7 (Pm)

< QHYCIJ‘?XIIU (@) = o2 (@) + 0 (6m) = 0(1) + 0*(dn) -

Using that wEmiﬁm =0 and ||772m71$m - ng_lqASmH — 0 (since ||<Zm|| = 1) we get that
Om = Om = MLy 1 Om + (TLpy = Tp  )Om = Om — WL, dm +0(1)

Denote by Em = <$m ML 1$ma then we have that $m = ?)\m + o(1), which entails that H?)\mH — 1.
Let Bm stand for Bm = bm/HbmH Note that Bm € B,,, then U(Bm) < 0(¢r,m). On the other hand,

using that d)m ﬂm = o(1) and the fact that o is weakly continuous and S is weakly compact, we
obtain, as in Lemma 3.1, that o(ém) — 0(Bn) = o(1). Then,

max o%(a) < o(1) + 0*($yn) = o(1) + > (Bn) < o(1) + > ($rm) ,

CMEBm

~

concluding the proof of (A.8) and so, A\, = max gz 02(a) = 0*(drm) = Arom-
Let us show that o (qu) 02 (rm)-

’02($m) - 0'2(¢R,m)| < |J (@bm) -0 (¢m)’ + |U (¢m) -0 (¢R m)|
< “7 (¢m) - Un(¢m)’ + ’)‘mA_ g (¢Rm)|
< sup |o?(a) — o2(a)| + [Am — 0% (rm)| -

llall=1
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and the proof follows now using ii) and the fact that /)\\m — 0 (Prm)-

d) We have already proved that when m =1 the result holds. We will proceed by induction, we
will assume that (gbj, $r,;)? — 1 for 1 < j <m—1 and we will show that (gbm, brm)? — 1. Using

c¢) we have that 02($m) — 0 (qﬁR,m) and so, as in Lemma 3.1 b) we conclude the proof. [J

PROOF OF THEOREM 3.2. To avoid burden notation, we will denote QASj = apN,j and /)\\j = /):pN”j.
a) We will prove that

o (fr1) > A +0..(1) (A.9)
and that under S4a)
(br1) < A +0..(1), (A.10)

holds. A weaker inequality than (A.10) will be obtained under S4b).
Let us prove the first inequality. Using that o is a scale functional, and that H¢1|| <1, we get

easily that ()
N o? 51 ~
?(¢r,1) = supo” 22<¢3>= ~—2 > ().
7o) =R @ S ) T e 27

On the other hand, S1 entails that a,; = s 2(h1) — 02(d1) L5 0 and so, o2 (¢pr1) > o2(py) =
n(¢1) +0..(1) = A+ 0..(1), concluding the proof of (A.9).
We will derive a). Since clearly, S4b) implies S4a), we begin by showing the result under S4a)
to have an idea of the arguments to be used. The extension to S4b) can be made using some
technical arguments.

i) Assume that S4a) holds, then ¢r 1 € Hs, so that ||¢r 1]+ < co. Note that H(leHT > ||¢r, 1” =1,
then, defining 51 = ¢r.1/||¢r, 1||T, we have that Hﬁl”r = 1, which implies that A\; = s (qSl) > s2(81).
Again, using S1 we get that bn 1= 82(B1) — 02(B1) L5 0, hence,

‘72(¢R,1)
[ or,1l12

where, in the last inequality, we have used that ||¢r 1|~
proof of a) in this case.

A > s2(B1) = 0% (fra/ldrallr) + 0ae (1) = +0.. (1) = 0*(¢r1) + 0...(1)

ii) Assume that S4b) holds. In this case, we cannot consider ||¢r |- since ¢r 1 does not belong
to 7-[5, otherwise we argue as in i). Since, ¢r1 € Hs, we can choose a sequence 51 Lk € Hs such
that <;51 k= Or1, Hqﬁl gl =1 and |02 ((Z)l k) — 0%(¢r1)| < 1/k. Note that for any fixed k, H¢1 kllr >
| — ||¢1 k|| = 1 since 7, — 0. Thus, usmg that A\ = maX”aHT,l 52 (a) and

deﬁmng B = b1 k/H¢1 k||~, we obtain that ||8; k|| =1 and A= s2(dy) > s2(Brk)-
Note that S1 entails that by, 1= 52(B1g) — 02 (Brr) == 0, hence,

G1k) |y = O 0ra) = 1/k

M > s (Bix) = 0*(8 V=712 ¢
1> 55 (Brr) = 07 (Bui) + 0as (1) A o1, -

+ 0....(1) .

Therefore, using (A.9) and the fact that ||$1,k||7- > 1, we have that

~ 2 —
(drn) > A+ Op > TORD VR Ly 020 — (1 ot ) o (dn1) — % + O
|1, |- |1,k ]|~
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where O;,, = 0,.(1), 1 = 1,2. Let N = Uj=1 2{w : O; ,(w) # 0} and fix w ¢ N. Given € > 0, fix kg
such that 1/kg < e. Let ng be such that, for n > ng, O; ,(w) <€, i=1,2 and

1
0<(1- =) o%dn1) <e,
( ||¢1,k0||7>" wi) <€

where we have used that 7, — 0 and thus Hgl,ko |- — 1. Then, using

M (w) — 0%(¢r1)| < max{|O1.,

) ’OQ,n

+ 2¢e} < 3e

which entails that A; 2% 0?(¢r.1), as desired.

Using S1, we get that Ay — 02(¢1) = s2(¢1) — 02(¢1) =5 0, using that A, =5 0?(¢r.1), we
obtain that 02(51) 2% 62(¢r.1), concluding the proof of a).

It is worth noticing that as a consequence of the above results, we get that the following
inequalities converge to equalities

& > 02(h1) = A + 0,..(1
||¢1H>_U(¢l) 1 Oa.s.( ),

U2(¢R,1) > o? (

in particular,

o? (\,?,) 2% o2 (¢r1)  and o (d1) =3 0% (dra) - (A1)
1

b) Note that
g 2(51)
o2(¢1/l|61l)
Thus, using (A.11) we have that the second term is 1 + o, (1), concluding the proof of b).

T[(Zluaﬂ =1- ||¢A51H2 =1-

c¢) Note that since léllr = 1, we have that Hc}lH < 1. Moreover, from b) H‘EJH 2% 1. Let
¢1 = ¢1/||¢1]. Then, we have that ¢1 € S and o(¢1) = o(¢1)/||#1]|- Using that o2(¢1) == 0%(¢r.1)

and H&H 2% 1, we obtain that 02(¢;) L5 0?(¢r.1) and thus, the proof follows using Lemma 3.1.

d) Let us show that Xm &5 02 (¢r.m). We begin by proving the following extension of S1

sup |0 (mm_10) — 82 (Frm_10)] =50 . (A.12)
llrfl-<1
Using S1 and the fact that s, is a scale estimator and so, s,(a) = ||a||+ sn(a/||||), we get that
sup }3721(04) —o*(a)] 250 (A.13)
llafl-<1

Note that

sup 0% (-10) =85, (Frm-10)| < sup 0% (Mm-10)~0*(Frm-10)[+ sup |0°(Frm-10) =5, (Frm-10)|
el -<1 - <1 llell-<1

Using (A.13) and the fact that if |||, <1 then ||7;m—1a]r < 1, we get that the second term on
the right hand side converges to 0 almost surely.
To conclude the proof of (A.12), it remains to show that

sup |02 (Tm_10) — 0*(Frm_10)| 30 (A.14)
llel-<1
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As in Silverman (1996), using that &ﬁ\j 25 ¢r,j and that T\I/(ggj) = T[&ﬁ\j, @] 250, forl < j <m—1,
we get that

”suglll<a,¢R,j>¢R,j—<a,$j>7$jllﬂo for 1<j<m-—1 (A.15)

Effectively, for any a € Hg such that ||a|? = ||a||? + 7¥(a) < 1, we have that
e, drj)Prj — (@ dj)rdsll - < lelllldn; — @5l + N5 ‘<a7¢R,,j> — (@, 0j)~
< liong — Bl + (s bmg — 85} + e 5|

1

H<z5R,j—<5jH+{\¢Ra b5 + (r¥(a 5(7\1’ )}

IN

< lons =B+ {lons - Bl + (r0(3))*}

and so, (A.15) holds entailing that sup| o, <1 [|Trm—10 — Tm_10| 2% 0. Therefore, using that o is
weakly continuous and the unit ball is weakly compact, we get easily that (A.14) holds, concluding
the proof of (A.12).
As in a), we will show that
0% (brm) = A + 0, (1) (A.16)
and that when S4a) holds R
o (dram) < Am + 0. (1) . (A.17)

holds. A weaker inequality than (A.17) will be obtained under S4b).
Using again that o is a scale functional, we get easily that sup,csn7, , 02(a) = supyes 02 (Tm—10)
and so,

o (¢rm) = sup  o*(a) = supo’(my_10) > o’ ( 5 )

a€SNTim-1 s ||¢m||
From (A.12) we get that by, = 02 (16 ) =2 (Frn-19m) “% 0 and so, since Frp16m = o
and Wm\\ < 1, we get that
~ ) .
7 (n) 2 o (m I ) _ 7 (rosfm)
Bl Bl
o (Wm—1$m> =57 (%T,m—1$m> +o0..(1) = S%(Q/{)\m) +on (1) = ,/\\m ro (D).

concluding the proof of (A.16).
Let us show that (A.17) holds if S4a) holds.

v

i) If S4a) holds, ¢r,m € Hs, so that ||[¢rm|- < 0o and [|pr m|l+ = [|¢rm| = 1. Using that s, is a
scale estimator and the fact that for any a € Hg such that ||a|; = 1 we have that |7, m—1¢|; <1,
we get easily that

%fr,m—l ¢R,m >
P8, mll-

which together with (A.12) and the fact that ||¢rm|+ = ||¢rm|| = 1, entails that

N (0 71¢Rm 7Tm71¢Rm
Y > g2 (T’m’) — g2 (7>+Oas 1
moZ [énmllr ) F o)

2
> o () o) = T 0 (1) 2 22 6um) + 0nn ()

A = 52 () = sup s2(a) = sup 82(Frm_1a) > s2 (
llall-=1,0€Tr m_1 lloel| =1
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concluding the proof of (A.17) in this case and so, when S4a) holds A 25 0% (Pr.m)-

ii) Assume that S4b) holds. As in a), let us consider a sequence &mk € Hg such that $m7k — Or,m>
as k — 00, ||[¢m il = 1 and ]N(IQ(wm_lqﬁm,/i) — 0%(¢r.m)| < 1/k, since Tm—10rm = Grm- Then, for
each fixed k, we have that || kllr — ||@m.k]| = 1 since 7 — 0.

Using that s, is a scale estimator and the fact that for any o € Hg such that ||a||; = 1 we have
that |7 10l <1, we get that

h) b =~ T 15 k
Am = 3721(¢m) = SupA S%(a) = sup 3%(71—7_’7”_1 ) > g (Tmm)
lall- =107 m-1 lall=1 1Bl

Using (A.12) and the fact that ’0'2<7Tm_1$m’k) — 0%(¢r.m)| < 1/k and Hq}mkHT > 1, we get that

A > 52 (FT’T_lém’k> = g2 (ﬂm:@m’k) + 0..(1)
, | kel -

o? (¢Pﬁm) —1/k +0.4(1)
| b ]2

9 9 1 1
9 (¢R,m) -0 (¢R,m) (1 — W) % +o0..(1)

Vv

Therefore, arguing as in a) we obtain that A 225 2 (Prm)-

On the other hand, as in a), using S1, we get that Am — 02($m) = s%(am) - 02($m) 250
using that A\, <% 02(¢r.m), We obtain that o (gbm) 2% 02 (drm)-

Thus, it remains to show that 7 [¢m, qﬁf,ﬂ 2% 0. Asin a), we have that the following inequalities
converge to equalities

)= ( o H%H) 7 (mnmifn) 2 Rt 00 1) (19

Note that since o is a scale estimator, we have that
) ~
o (Tm—10m)
= ,
02 (Tm—10m/ |émll)

which together with (A.18) entails that the second term on the right hand side is 1 + 0, (1),
concluding the proof of d).

7[bms bm] =1 = |omll” =

e) For m = 1 the result was derived in ¢). Let us assume that for 1 < j < m—1, qgj 25 ¢r,; and that

[ggj, ggﬂ 2% 0, we will show that <<;A5m, brm)? =3 1, i.e., we will use an induction argument. By d)
we already know that 7 [, dm] == 0 which entails that qumH 2% 1. Denote by qu qu/thj H it
is enough to show that (¢r m, ¢m>2 2% 1. We have that, (qﬁm, <Z>j>7 = 0. Using that T{qﬁ], gzﬁﬂ 2500,
for 1 < j <m-—1, we get that T(qb],gi)m] L% 0for1 <j<m— 1 and so, <d>m,¢>]> 2% 0. Therefore,
arguing as in Lemma 3.1, we can write gbm as ¢m = Zj 1 aJQSRJ + Ym, with (’ym,quJ) =0,
1 < j <m — 1. To obtain e) it remains to show that (Y, pr.m)? —> 1. Note that (b, %) %00,
for j # m, implies that @; = (S, or3) = (Sm S —65)+(Gms 85) = (Gm, brj — ;) +0.. (1). Thus,
using that ¢; == ¢rj, 1 < j < m —1, and ||| <3 1, we get that a; =3 0 for 1 < j<m—1

a.s.

and 50, ||@m — Am|l =3 0. Note that 1 = || ||? = > 1A2 + |Am||?, hence, |[Fm]|> == 1 which
implies that ||¢m — Fm| <3 0, where pm = Fm/|Fmll- Us1ng that o(a) is a weakly continuous
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and S is weakly compact, we obtain that o(¥m) — o(dm) L2 0 which together with the fact that
02 (pm) =5 02 (prm) and ||om || =2 1, implies that o(Fm) > 0(drm). The proof follows now as
in Lemma 3.1 using the fact that 7,, € Cy,, with Cp, = {a € S: (o, ¢ ;) =0, 1 <j <m —1} and
®r,m is the unique maximizer of o(a)) over Cp,. O]

PRrROOF OF THEOREM 3.3. To avoid burden notation, we will denote qASj = $ps,j and /):j = XPSJ.
a) We will prove that

o2 (Pr1) > AL+ 0u.(1) (A.19)
and that under S4a)
o2 (dr1) < A +o.(l), (A.20)

holds.
Let us prove the first inequality. We easily get that

~

02(¢R,1) = sup 02(04) > 02(q§1).
aES

On the other hand, S1 entails that @,; = s%(al) — 02@5\1) 2% 0 and so, 0%(¢r1) > 02(51) =
52(¢1) + 0as.(1) = A1 + 0....(1), concluding the proof of (A.19).

We will derive (A.20). Since S4a) holds, we have that ¢r1 € Hs, so that ||¢r1]/- < co. Note
that

~

A = s2(d1) 2 2(d1) — 71, 1] = sgg{sim) —rla,al} > 2(dr,1) — T[dr,1, Pl (A21)

Using that 7 — 0, we obtain that 7[¢r1,¢r1] — 0. Also, using S1 we get that s2(dg1) =
02(¢r.1) + 0a.(1). Therefore, (A.21) can be written as

M > s2(dra) — T[or1s dri] = 02 (r1) + 0as (1)

Hence, (A.20) follows which together with (A.19) implies that 2% 0?(¢r.1). Using S1 we have
that R R R R

A =0 (¢1) = si(¢1) — 0% (o1) =30
therefore we also get that o2(¢y) L5 0?(¢r.1)). From the fact that 5 o (Pr1), $2(Pr1) =
0%(¢r,1), T — 0 and since

A > 8%(51) - T[$1,$ﬂ > 52 (¢r1) — T[dr,1s Gr,1 ]

we get that 7'[51, aﬂ 2% 0, concluding the proof of a).

b) Follows easily using Lemma 3.1 a), the fact that 02(51) 2% 62(¢r,1) and HQ/Z)\1|| =1

c) We will prove that

~

o2 (Pram) = Am +0a0(1) (A.22)
and that under S4a)

~

o (¢rm) < Am+0..(1), (A.23)
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holds. In order to derive (A.22), note that

0%(¢pr1) = sup o?(a) =supo?(m,_1a) > 02 (Tm—16m)- (A.24)
a€ESNTm—1 aES

Let us show that 02(7rm,1$m) = s%(ﬁm,lggm) + 0.5.(1). Indeed, if a € S, then
|0 (M_1a) — 82 (Rm_1a)| < |02 (Tm_10) — 0> (FRm_10)| + |02 Fm_10) — 82 (Fm_10)|.  (A.25)

The second term on the right hand side of (A.25) will be 0, (1) since S1 holds. Let us show that
the first one will also be o, (1). Using that ||T,_1 — Tm_1| =3 0, we get that T 10 =2 710
Finally, from S2, i.e., the continuity of o, we get that the first term on the right hand side of (A.25)
will be 0, (1). Therefore, 0%(mpm_10m) = 82 (Rm—10m) + 0a..(1). Therefore, (A.24) entails that

~

2 (¢r1) > 02 (Tm-10m) = 52 (Fm—10m) + 0as. (1) = 52 (dm) + 00s (1) = A + 0,..(1)

concluding the proof of (A.22).
Let us now proof that, under S4a, (A.23) holds.

Xm = S%((/Z.S\m) > 3721((/5771) - T[&Em: (er{l = sup {SEL<O‘) - T[av O[I}

a€SNTm—1
> sup{s(Tm_10) — T[Fm_10, Tm_10]} (A.26)
a€eS
> 5%(%n%71¢Rﬂn)_'T[%nvfl¢Rﬂnaﬁ}nfl¢Rﬂn1- (A“27)

Let us show that sup,cg |2 (Fm_1a) — 82 (Tm_1a)| == 0. Effectively,

sup |52 (Tim-100) — 5 (Tm—10)|

aES

< sup |82 (Rm_1a) — 02 (Fm_10)| + sup |02 (Fm_10) — 0?(Tm_10)| + sup |02 (Tm_10) — 82 (Tm_10)]
acS acS acS

< sup|s?(a) — o?(a)| + sup |02 (Fm_1a) — 0 (Tm_10)| + sup |02 (Tm_1a) — 52 (Tm_10)|

aeS aES aES

The first and third terms of the last inequality converge to 0 almost surely since S1 holds. Thus
we only have to show that sup,cg |02 (Fm—10) — 03 (Tm—10)| = 0,.(1). Using that ¢; <> ¢g ; for
1 <j<m~—1,itis easy to show that ||T_1 — Tm_1|| == 0 since it reduces to a difference of
finite dimensional projections. Therefore, we have uniform convergence in the set {a, ||af < 1}.
Using that o is weakly continuous in § = {«, ||| < 1} which is weakly compact we obtain that
Supyes |02 (Fm—1a) — 0%(mm—10a)]|, converges to 0 almost surely. In conclusion,

sup |s%(7?m_1a) — s%(wm_la)\ =0,.(1).
aES

Using that 7’(&5@,(}5@—‘ 2% 0,1 < £ < m — 1, analogous arguments to those considered in Pezzulli
and Silverman (1993) and the fact that 7 — 0 implies that 7[¢g m, drm| = o(1), it is not hard to
see that

Tn(%nv—1¢Rnnaﬁnv—1¢Rﬂn1 2% 0.

Those two results essentially allow us to replace 7,,,—1a by m,—1a in (A.27). Therefore,

A > 2 (Tm10rm) +0us(1) = sup  {s2(a) — [, @]} + 0...(1)
aeSNTm—1

> sp(Prm) + 0us (1) = 0% (¢rm) + 00 (1) + 04 (1) = 0% (dr,m) + 0ax(1)
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where we have used S1. Using that

A > 52(0m) = T[dms dm] > 02 (drm) + 0ae (1)

and the fact that A, = s%(gm) 2% 0%(¢prm) imply that T[(Em, gb\m] 2% 0, concluding the proof of

c).

d) We have already proved that when m =1 the result holds. We will proceed by induction, we

will assume that <¢37¢RJ>2 2% 1for1 < j < m—1 and we will show that <¢m,q§R m)? =5 o5 1.

By definition <¢m,¢]) = 0, for 7 # m and (;Sm € S thus, using the fact that c) entails that
(qu) 2% 6%(¢rm) and Lemma 3.1 b), the proof follows. [

PROOF OF THEOREM 3.4. For the sake of simplicity, we will avoid the subscript st and we will
denote gbj gbsu and )\ = )\SIJ
a) The proof follows using similar arguments as those considered in the proof of Proposition 3.1.
Using S1 we get that
An1 = s2(¢1) — 02 (d1) 50, (A.28)

Let %1 oo = TH,, Or1/l|T2,, ¢r1ll, then, ngLpn € Spn and d)lm" — <Z5R1 Hence, S2 entails that
(¢17pn) — 0 (¢1) while using S1, we get that s ((]51 pn) — O (¢1 Pn) 25 0. Thus, bn 1=35 (d)l pn) —
o?(¢1) L3 0. Note that

o (pr1) = (¢1,pn) b nl < 8 (¢1) — by 1=0 (¢1) +an,1 — by, 1 <0 (pr1) + na _Bn,l ,
that is, 02(¢R,1) — n1 +/b\n71 < 02(51) < 02(¢R,1) and so,
o*(d1) =5 0 (1) | (A.29)

which together with (A.28) implies that A;-=% o2 (¢r1).
b) We have that

A =0 (Prm)l = |si(dm) — 0 ($rm)| = | max s} () — max o*(a)|
OLGBn,m OéEBm
< max [sp(a) — o*(a)| +| max o*(a) — max o*(a)
a€Bn,m a€Bn,m a€Bm
< max [si(a) — o*(a)| +| max o*(a) — max o*(a)]| . (A.30)
OéESpn OcEB\n,m CVGBm

Using S1, we get that the first term on the right hand side of (A.30) converges to 0 almost surely.

Thus, it will be enough to show that max .z o?(a) X5 02(¢r.m), since max,ep,, 02(q) =

0?(¢pr.m). Using that quﬁs &5 Pr,s, for 1 < s <m —1, we get that

Hﬂfm_l - Wﬁmfl || 2} O 9 (A31)
which implies that B
HW ¢m Wﬁm_1¢mH E) 0 s (A.32)

where ¢~$m = 7, $r,m - On the other hand, using that p, — oo, we get that QNSm — Or,m, thus
7z, o\ (m — ¢R m)H — 0 which together with (A 32) and the fact that g 1¢rm = 0, entails
that 5 ¢m 2% 0 and By = dm — Ly QSm 2% ¢rm. Denoting by a, = ||BmH am —5 1,

we obtaln that a,, = ﬂm [am, RasiN Or,m- Moreover, Oy, € Bmm since gbm € Hp, and qu € Hp,,
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1 <j<m-—1, implying that max_ gz 0%(a) > 0%(Qp). Using the weak continuity of o, we get

that o(Qm) =5 o (drm), i-e.,

max o2(a) > 02(Qm) = 02 (Prom) + 0ar. (1) .
a€Bn,m

On the other hand,

max o%(a) < max [o%(a) - s2(a)| + 52(Bm)

OcEBn,m OteBn,m

< 2 max |o%(a) = ()] + 0% (Gm) = 0ue (1) + 0% (dm)
a€Bn,m

Using (A.31) and the fact that ¢, € B\n,m, [éml = 1, we get that ¢m = ¢m — 7T2m_1$m =
b + 04 (1), Where by, = Gm — 7z, Gm. Thus |[by|| <25 1. Denote By = by /b, then By € Bm
which implies that O'(Bm) < 0(¢r,m). Besides, the weak continuity of o and the weak compactness

of the unit ball entail, as in Lemma 3.1, that U(B\m) - a(ngﬁm) 2% 0, since qAﬁm - Bm = 0,..(1).
Summarizing,

02 (Prm) + 00 (1) = 02(@m) < max 02(a) < 0u0(1) + 02 (Pm) = 0a (1) + 02(Bn)

aEBn,m
< 04 (1) + 0% (dr,m)

concluding that max, g o?(a) % 0%(¢rm) and thus the proof that A L5 02(¢rm). More-

over, it is easy to see that S1 and the fact that Ay, =5 0?(¢r,m) entail that 02($m) 2% 02(pr.m),
since

|02(€/b\m) - U2(¢R,m)| < |‘7 (¢m) -5 (¢m)’ + |5 (@bm) -0 (¢R m)|
’U (¢m) - 3 ¢m)’ + ’)‘ (ﬁbR,m)‘
sup |o%(a) — s2(a)| + [Am — 0% (¢r.m)| -

aESp,

IA

c) We begin by provmg that ¢1 23 PR 1- Usmg o (¢1) 5o %(¢r,1) and Lemma 3.1a), the result
follows easily since qbl € S. Let us show that if qb] 25 o jforl <j <m—1then (gbm, gZ)R m) = %1,
which will lead to c) Since ¢j 2% ¢r; for 1 < j < m — 1, we have that o 2(fm) L5 o 2(Pr.m)-
Besides, using that (qﬁm, <Z>J> =0, j #m and ¢m € S, Lemma 3.1b) concludes the proof. O
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Scale estimator m j=1 j=2 j=3
SD 50 | 0.0080 0.0117 0.0100
MAD 50 | 0.0744 0.1288 0.0879

M-scale 50 | 0.0243 0.0424 0.0295
SD 100 | 0.0078 0.0113 0.0079
MAD 100 | 0.0700 0.1212 0.0827

M-scale 100 | 0.0237 0.0416 0.0271
SD 150 | 0.0077 0.0112  0.0075
MAD 150 | 0.0703 0.1216  0.0824

M-scale 150 | 0.0234 0.0414 0.0268
SD 200 | 0.0077  0.0112 0.0073
MAD 200 | 0.0705 0.1223  0.0825

M-scale 200 | 0.0233 0.0416 0.0269
SD 250 | 0.0077 0.0112 0.0073
MAD 250 | 0.0701 0.1212 0.0815

M-scale 250 | 0.0233 0.0414 0.0267

Table 3: Mean values of quASJ — ¢;]|* under Co, for the raw estimators, for different sizes m of the grid.
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Method Scale estimator m a =0.15 a=0.5 a=1

=1 =2 =38 ] j=1 Jj=2 =31 j=1  j=2 ;=3
‘fPS,j SD 50 0.0078 0.0106 0.0090 0.0077 0.0090 0.0074 0.0077 0.0081 0.0064
(ﬁPS,j MAD 50 0.0737 0.1187 0.0780 0.0720 0.1061 0.0663 0.0702 0.0929 0.0531
d)PS J M-scale 50 0.0240 0.0377 0.0249 0.0239 0.0317 0.0187 0.0232 0.0270 0.0136
?Ps,j SD 100 0.0076 0.0095 0.0061 0.0075 0.0079 0.0043 0.0073 0.0069 0.0032
(’EPSJ MAD 100 0.0698 0.1092 0.0697 0.0687 0.0927 0.0529 0.0668 0.0782 0.0380
d)PS j M-scale 100 0.0234 0.0345 0.0198 0.0226 0.0269 0.0121 0.0221 0.0231 0.0078
(EPSJ SD 150 0.0076 0.0094 0.0057 0.0075 0.0077 0.0038 0.0072 0.0068 0.0027
‘EPS,]’ MAD 150 0.0695 0.1088 0.0692 0.0678 0.0883 0.0483 0.0663 0.0758 0.0346
¢Ps,j M-scale 150 0.0231 0.0340 0.0190 0.0224 0.0262 0.0111 0.0218 0.0223 0.0068
fPS,j SD 200 0.0075 0.0093 0.0054 0.0074 0.0076 0.0036 0.0071 0.0067 0.0025
fPS,j MAD 200 0.0699 0.1080 0.0678 0.0680 0.0880 0.0475 0.0663 0.0751 0.0337
d)PS J M-scale 200 0.0230 0.0336 0.0186 0.0223 0.0259 0.0106 0.0217 0.0221 0.0065
‘fPS,j SD 250 0.0075 0.0093 0.0054 0.0074 0.0075 0.0035 0.0071 0.0066 0.0024
?Ps,j MAD 250 0.0695 0.1080 0.0679 0.0679 0.0881 0.0474 0.0661 0.0750 0.0333
Pps J M-scale 250 0.0228 0.0333 0.0184 0.0223 0.0258 0.0105 0.0216 0.0219 0.0063
fPN,j SD 50 0.0075 0.0075 0.0161 0.0087 0.0095 0.0490 0.0093 0.0113 0.1197
fPN,j MAD 50 0.0619 0.0731 0.1465 0.0552 0.0650 0.2687 0.0511 0.0658 0.4073
PPN 4 M-scale 50 0.0203 0.0216 0.0310 0.0193 0.0213 0.0715 0.0192 0.0233 0.1470
fPN,j SD 100 0.0075 0.0086 0.0078 0.0073 0.0073 0.0099 0.0075 0.0074 0.0151
(EPN,_]’ MAD 100 0.0675 0.1012 0.0988 0.0617 0.0799 0.1226 0.0603 0.0706 0.1499
PPN J M-scale 100 0.0220 0.0293 0.0250 0.0205 0.0227 0.0257 0.0198 0.0206 0.0297
?PN‘j SD 150 0.0075 0.0100 0.0073 0.0074 0.0087 0.0073 0.0073 0.0079 0.0077
(EPN,]' MAD 150 0.0694 0.1153 0.0864 0.0676 0.1072 0.0994 0.0652 0.0914 0.0997
PPN J M-scale 150 0.0229 0.0371 0.0263 0.0221 0.0306 0.0246 0.0213 0.0264 0.0245
(’EPNJ SD 200 0.0076 0.0107 0.0072 0.0075 0.0099 0.0072 0.0075 0.0091 0.0072
fPN,j MAD 200 0.0699 0.1183 0.0821 0.0689 0.1138 0.0865 0.0677 0.1119 0.0953
PPN P M-scale 200 0.0232 0.0396 0.0262 0.0226 0.0360 0.0253 0.0222 0.0327 0.0250
fPN,j SD 250 0.0076 0.0109 0.0072 0.0075 0.0105 0.0072 0.0075 0.0101 0.0071
(EPNJ' MAD 250 0.0700 0.1208 0.0829 0.0695 0.1176 0.0831 0.0690 0.1153 0.0859
PPN J M-scale 250 0.0231 0.0404 0.0263 0.0229 0.0387 0.0259 0.0228 0.0368 0.0255

Table 4: Mean values of ||¢;/||6;]| — ¢;]|? under Co when p = an™> and 7 = an> for different sizes m of the grid.
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Method Scale estimator m a =0.15 a=0.5 a=1

=1 =2 =38 ] j=1 Jj=2 =31 j=1  j=2 ;=3
‘fPS,j SD 50 0.0080 0.0117 0.0100 0.0080 0.0116 0.0100 0.0080 0.0116 0.0100
(ﬁPS,j MAD 50 0.0744 0.1288 0.0879 0.0743 0.1281 0.0872 0.0743 0.1278 0.0869
d)PS J M-scale 50 0.0243 0.0423 0.0294 0.0243 0.0422 0.0294 0.0243 0.0420 0.0291
?Ps,j SD 100 0.0078 0.0113 0.0079 0.0078 0.0113 0.0079 0.0077 0.0112 0.0078
(EPSYJ' MAD 100 0.0700 0.1211 0.0825 0.0700 0.1211 0.0825 0.0703 0.1212 0.0821
d)PS j M-scale 100 0.0237 0.0415 0.0271 0.0237 0.0413 0.0268 0.0237 0.0412 0.0267
(EPSJ SD 150 0.0077 0.0112 0.0075 0.0077 0.0111 0.0074 0.0077 0.0111 0.0073
cﬁPSJ‘ MAD 150 0.0703 0.1214 0.0822 0.0704 0.1213 0.0821 0.0703 0.1210 0.0819
¢Ps,j M-scale 150 0.0234 0.0413 0.0267 0.0234 0.0411 0.0265 0.0234 0.0408 0.0261
fPS,j SD 200 0.0077 0.0112 0.0073 0.0077 0.0111 0.0073 0.0076 0.0110 0.0072
fPS,j MAD 200 0.0705 0.1221 0.0823 0.0705 0.1221 0.0823 0.0705 0.1221 0.0823
d)PS J M-scale 200 0.0233 0.0415 0.0268 0.0233 0.0410 0.0263 0.0233 0.0405 0.0258
‘fPS,j SD 250 0.0076 0.0111 0.0072 0.0076 0.0111 0.0072 0.0076 0.0109 0.0070
?Ps,j MAD 250 0.0701 0.1210 0.0812 0.0701 0.1205 0.0807 0.0701 0.1204 0.0807
Pps J M-scale 250 0.0233 0.0413 0.0265 0.0233 0.0410 0.0263 0.0232 0.0402 0.0255
fPN,j SD 50 0.0079 0.0113 0.0100 0.0078 0.0106 0.0098 0.0078 0.0098 0.0096
fPN,j MAD 50 0.0737 0.1262 0.0885 0.0732 0.1234 0.0927 0.0720 0.1176 0.0965
PPN 4 M-scale 50 0.0240 0.0407 0.0291 0.0239 0.0384 0.0288 0.0233 0.0350 0.0281
fPN,j SD 100 0.0077 0.0113 0.0079 0.0077 0.0111 0.0079 0.0077 0.0109 0.0078
(EPN,_]’ MAD 100 0.0702 0.1215 0.0829 0.0701 0.1212 0.0839 0.0699 0.1195 0.0838
PPN J M-scale 100 0.0237 0.0414 0.0271 0.0236 0.0409 0.0271 0.0235 0.0402 0.0270
?PN‘j SD 150 0.0077 0.0112 0.0075 0.0077 0.0111 0.0075 0.0077 0.0111 0.0075
(EPN,]' MAD 150 0.0704 0.1213 0.0822 0.0704 0.1213 0.0825 0.0703 0.1214 0.0827
d)PN j M-scale 150 0.0234 0.0414 0.0268 0.0234 0.0413 0.0268 0.0234 0.0412 0.0268
(’EPNJ SD 200 0.0077 0.0112 0.0073 0.0077 0.0111 0.0073 0.0077 0.0111 0.0073
fPN,j MAD 200 0.0705 0.1223 0.0826 0.0705 0.1224 0.0827 0.0705 0.1226 0.0830
PPN P M-scale 200 0.0233 0.0416 0.0269 0.0233 0.0416 0.0269 0.0233 0.0415 0.0269
fPN,j SD 250 0.0077 0.0112 0.0073 0.0076 0.0111 0.0073 0.0076 0.0111 0.0073
(EPN,]' MAD 250 0.0701 0.1212 0.0814 0.0701 0.1212 0.0815 0.0701 0.1211 0.0815
PPN J M-scale 250 0.0233 0.0414 0.0267 0.0233 0.0414 0.0267 0.0233 0.0414 0.0267

Table 5: Mean values of ||¢;/||¢;]| — ¢;]|> under Co when p = an™* and 7 = an™*, for different sizes m of the grid.
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Scale estimator | Model | j=1 j=2 j=3 Model j=1 j=2 j=3
SD 0.0080 0.0117  0.0100 0.0254 1.6314 1.6554

MAD Ch 0.0744 0.1288  0.0879 Csp 0.1183  0.6177  0.5971

M —scale 0.0243 0.0424 0.0295 0.0730 0.6274  0.6346
SD 1.2308 1.2307  0.0040 1.7825 0.3857 1.7563

MAD Ch 0.3730 0.4016  0.0638 Cas 0.2590 0.4221 0.2847

M —scale 0.4231 0.4271 0.0173 0.2879  0.4655 0.3053
SD 1.7977 1.8885 1.9139 0.3071  0.4659 0.2331

MAD C3,q 0.2729  0.8004 0.7922 || Ccauchy | 0.0854 0.1592  0.1100

M —scale 0.3014  0.9660  0.9849 0.0502  0.0850  0.0542

Table 6: Mean values of ||g/i>\J — ¢;||? for the raw estimators.
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Method | Scale estimator a a=3 a=14

j=1 j=2 ji=3 ji=1 j=2 j=3

ol SD 0.0080 0.0117 0.0100 | 0.0080 0.0117 0.0100
$] MAD 0.0744 0.1288 0.0879 | 0.0744 0.1288 0.0879
aj M —scale 0.0243 0.0424 0.0295 | 0.0243 0.0424 0.0295
(?ipsd SD 0.05 | 0.0079 0.0113 0.0097 | 0.0080 0.0117 0.0100
?psd MAD 0.05 | 0.0739 0.1259 0.0848 | 0.0744 0.1288  0.0879
¢PS, M —scale 0.05 | 0.0242 0.0405 0.0277 | 0.0243 0.0424 0.0295
(EPSJ SD 0.10 | 0.0079 0.0109 0.0093 | 0.0080 0.0117 0.0100
gﬁpsd MAD 0.10 | 0.0739 0.1233 0.0823 | 0.0744 0.1288  0.0879
PPS. M —scale 0.10 | 0.0241 0.0390 0.0262 | 0.0243 0.0423 0.0295
?\psd SD 0.15 | 0.0078 0.0106 0.0090 | 0.0080 0.0117 0.0100
(EPSJ MAD 0.15 | 0.0737 0.1187 0.0780 | 0.0744 0.1288  0.0879
PPS,j M —scale 0.15 | 0.0240 0.0377 0.0249 | 0.0243 0.0423 0.0294
QASPSJ SD 0.25 | 0.0078 0.0099 0.0082 | 0.0080 0.0117 0.0100
(?\PSJ MAD 0.25 | 0.0730 0.1145 0.0744 | 0.0744 0.1288  0.0879
$PS, M —scale 0.25 | 0.0239 0.0353 0.0224 | 0.0243 0.0423 0.0294
(ﬁpsd SD 0.5 0.0077  0.0090 0.0074 | 0.0080 0.0116 0.0100
?pSJ MAD 0.5 0.0720 0.1061 0.0663 | 0.0743 0.1281 0.0872
PPS,; M —scale 0.5 0.0239 0.0317 0.0187 | 0.0243 0.0422 0.0294
?\psd SD 0.75 | 0.0077 0.0084 0.0067 | 0.0080 0.0116 0.0100
?PSJ MAD 0.75 | 0.0710 0.0982 0.0588 | 0.0743 0.1280 0.0871
$PS,j M —scale 0.75 | 0.0234 0.0287 0.0155 | 0.0243 0.0422 0.0293
QASPSJ SD 1 0.0077 0.0081 0.0064 | 0.0080 0.0116 0.0100
qAﬁpSJ MAD 1 0.0702 0.0929 0.0531 | 0.0743 0.1278 0.0869
PPS,j M —scale 1 0.0232 0.0270 0.0136 | 0.0243 0.0420 0.0291
(?ipsd SD 1.5 0.0075 0.0075 0.0058 | 0.0080 0.0116 0.0099
?psd MAD 1.5 0.0689 0.0845 0.0449 | 0.0742 0.1275 0.0866
¢PS, M —scale 1.5 0.0228 0.0246 0.0112 | 0.0243 0.0416  0.0287
gﬁpsd SD 2 0.0074 0.0071 0.0053 | 0.0080 0.0115 0.0099
gﬁpsd MAD 2 0.0688 0.0797 0.0391 | 0.0742 0.1272 0.0863
PPS. M —scale 2 0.0222 0.0229 0.0094 | 0.0243 0.0413 0.0284
(?\pNJ SD 0.05 | 0.0076 0.0080 0.0103 | 0.0079 0.0116 0.0100
(/ﬁipN’7 MAD 0.05 | 0.0660 0.0911 0.1130 | 0.0741 0.1273 0.0875
PPN, M —scale 0.05 | 0.0214 0.0254 0.0265 | 0.0242 0.0417 0.0293
qﬁpNJ SD 0.10 | 0.0074 0.0074 0.0128 | 0.0079 0.0115 0.0100
?pN j MAD 0.10 | 0.0644 0.0801 0.1321 | 0.0739 0.1267 0.0880
$PN,j M —scale 0.10 | 0.0209 0.0228 0.0285 | 0.0242 0.0412 0.0291
(EpN’J SD 0.15 | 0.0075 0.0075 0.0161 | 0.0079 0.0113 0.0100
QASPNJ MAD 0.15 | 0.0619 0.0731 0.1465 | 0.0737 0.1262 0.0885
$PN,; M —scale 0.15 | 0.0203 0.0216 0.0310 | 0.0240 0.0407 0.0291
?\pNJ SD 0.25 | 0.0080 0.0081 0.0239 | 0.0078 0.0111 0.0100
(EPNJ MAD 0.25 | 0.0583 0.0678 0.1848 | 0.0735 0.1249 0.0892
$PN,; M —scale 0.25 | 0.0198 0.0210 0.0410 | 0.0240 0.0401 0.0290
QASPNJ SD 0.5 0.0087 0.0095 0.0490 | 0.0078 0.0106 0.0098
?pNJ MAD 0.5 0.0552 0.0650 0.2687 | 0.0732 0.1234 0.0927
PPN, M —scale 0.5 0.0193 0.0213 0.0715 | 0.0239 0.0384 0.0288
?pNJ SD 0.75 | 0.0089 0.0103 0.0834 | 0.0078 0.0101 0.0096
QASPNJ MAD 0.75 | 0.0526 0.0651 0.3458 | 0.0728 0.1200 0.0939
$PN_; M —scale 0.75 | 0.0190 0.0220 0.1081 | 0.0235 0.0366 0.0284
(/ﬁipNJ SD 1 0.0093 0.0113 0.1197 | 0.0078 0.0098 0.0096
?pNJ MAD 1 0.0511 0.0658 0.4073 | 0.0720 0.1176  0.0965
$PN,; M —scale 1 0.0192 0.0233 0.1470 | 0.0233 0.0350 0.0281
(/épNJ SD 1.5 0.0100 0.0134 0.1905 | 0.0078 0.0094 0.0097
(/ﬁipN’7 MAD 1.5 0.0462 0.0648 0.4897 | 0.0714 0.1107 0.0960
PPN, M —scale 1.5 0.0190 0.0255 0.2241 | 0.0230 0.0327 0.0275
qﬁpNJ SD 2 0.0109 0.0160 0.2608 | 0.0076 0.0089 0.0096
?pN j MAD 2 0.0440 0.0677 0.5736 | 0.0704 0.1053 0.0971
PPN, M —scale 2 0.0184 0.0271 0.2990 | 0.0228 0.0312 0.0273

Table 7: Mean values of ||¢;/||6;]| — ¢;|?, under Co when 7 = an™®.
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Method | Scale estimator a a=3 a=14

j=1 j=2 ji=3 ji=1 j=2 j=3

ol SD 1.2308 1.2307 0.0040 | 1.2308 1.2307 0.0040
$j MAD 0.3730 0.4016 0.0638 | 0.3730 0.4016 0.0638
aj M —scale 0.4231 0.4271 0.0173 | 0.4231 0.4271 0.0173
(?ipsd SD 0.05 | 1.2301 1.2300 0.0039 | 1.2308 1.2307 0.0040
(EPSJ MAD 0.05 | 0.3730 0.3998 0.0619 | 0.3730 0.4016 0.0638
¢PS, M —scale 0.05 | 0.4229 0.4266 0.0169 | 0.4231 0.4271 0.0173
(EPSJ SD 0.10 | 1.2296 1.2295 0.0039 | 1.2308 1.2307 0.0040
gﬁpsd MAD 0.10 | 0.3725 0.3992 0.0616 | 0.3730 0.4016 0.0638
PPS. M —scale 0.10 | 0.4228 0.4264 0.0168 | 0.4231 0.4271 0.0173
(Z.)\PSJ SD 0.15 | 1.2289 1.2288 0.0039 | 1.2308 1.2307 0.0040
(EPSJ MAD 0.15 | 0.3722 0.3981 0.0608 | 0.3730 0.4016 0.0638
$PS, M —scale 0.15 | 0.4219 0.4254 0.0166 | 0.4231 0.4271 0.0173
qASpSJ SD 0.25 | 1.2271 1.2271 0.0039 | 1.2308 1.2307 0.0040
(?\PSJ MAD 0.25 | 0.3720 0.3963 0.0589 | 0.3730 0.4016 0.0638
$PS, M —scale 0.25 | 0.4219 0.4249 0.0162 | 0.4231 0.4271 0.0173
(ﬁpsd SD 0.5 1.2228 1.2227 0.0038 | 1.2308 1.2307 0.0040
?pSJ MAD 0.5 0.3706 0.3906 0.0541 | 0.3730 0.4016 0.0638
PPS,; M —scale 0.5 0.4212 0.4233 0.0151 | 0.4231 0.4270 0.0173
?\psd SD 0.75 | 1.2177 1.2175 0.0037 | 1.2306 1.2305 0.0040
?PSJ MAD 0.75 | 0.3687 0.3867 0.0507 | 0.3730 0.4015 0.0638
$PS,j M —scale 0.75 | 0.4201 0.4219 0.0143 | 0.4231 0.4270 0.0173
QASPSJ SD 1 1.2122 1.2120 0.0037 | 1.2303 1.2303  0.0040
?ipsd MAD 1 0.3684 0.3852 0.0490 | 0.3730 0.4014 0.0637
$PS, M —scale 1 0.4190 0.4204 0.0137 | 0.4231 0.4270 0.0173
z?ipsd SD 1.5 1.2017 1.2015 0.0036 | 1.2302 1.2301 0.0039
?psd MAD 1.5 0.3662 0.3804 0.0445 | 0.3730 0.4013 0.0636
¢PS, M —scale 1.5 0.4154 0.4161 0.0125 | 0.4231 0.4270 0.0173
gﬁpsd SD 2 1.1921  1.1919 0.0036 | 1.2302 1.2301 0.0039
gﬁpsd MAD 2 0.3631 0.3739 0.0403 | 0.3730 0.4013 0.0636
PPS. M —scale 2 0.4131 0.4136 0.0117 | 0.4230 0.4269 0.0172
(?\pNJ SD 0.05 | 1.2177 1.2198 0.0056 | 1.2303 1.2303  0.0040
(/ﬁipN’7 MAD 0.05 | 0.3666 0.3820 0.0837 | 0.3730 0.4000 0.0629
PPN, M —scale 0.05 | 0.4170 0.4206 0.0226 | 0.4229 0.4269 0.0174
qﬁpNJ SD 0.10 | 1.2078 1.2123 0.0074 | 1.2303 1.2303 0.0040
?pN j MAD 0.10 | 0.3637 0.3789 0.1088 | 0.3726 0.3990 0.0629
$PN,j M —scale 0.10 | 0.4128 0.4184 0.0293 | 0.4228 0.4265 0.0173
(EpN’J SD 0.15 | 1.1934 1.2002 0.0095 | 1.2303 1.2303 0.0040
QASPNJ MAD 0.15 | 0.3605 0.3752 0.1297 | 0.3723 0.3983 0.0632
$PN,; M —scale 0.15 | 0.4092 0.4173 0.0368 | 0.4226 0.4262 0.0174
?\pNJ SD 0.25 | 1.1736 1.1850 0.0148 | 1.2301 1.2302 0.0040
(EPNJ MAD 0.25 | 0.3560 0.3736 0.1657 | 0.3720 0.3966 0.0625
PPN, M —scale 0.25 | 0.4042 0.4174 0.0513 | 0.4226 0.4260 0.0175
?PN’J SD 0.5 1.1092 1.1319 0.0307 | 1.2288 1.2289  0.0041
?pNJ MAD 0.5 0.3379 0.3654 0.2499 | 0.3719 0.3959 0.0637
PPN, M —scale 0.5 0.3865 0.4121 0.0979 | 0.4220 0.4248 0.0174
?pNJ SD 0.75 | 1.0430 1.0767 0.0470 | 1.2277 1.2279 0.0041
QASPNJ MAD 0.75 | 0.3254 0.3633 0.3172 | 0.3724 0.3947 0.0645
$PN_; M —scale 0.75 | 0.3707 0.4073 0.1436 | 0.4220 0.4249 0.0181
(/ﬁipNJ SD 1 0.9727 1.0174 0.0653 | 1.2279 1.2282 0.0042
?pNJ MAD 1 0.3111 0.3586 0.3807 | 0.3726 0.3950 0.0674
$PN,; M —scale 1 0.3531 0.3996 0.1832 | 0.4218 0.4246 0.0185
(/épNJ SD 1.5 0.8598 0.9248 0.1084 | 1.2263 1.2269 0.0044
(/ﬁipN’7 MAD 1.5 0.2876  0.3521 0.4924 | 0.3723 0.3925 0.0690
PPN, M —scale 1.5 0.3253 0.3895 0.2613 | 0.4227 0.4254 0.0186
qﬁpNJ SD 2 0.7401 0.8205 0.1525 | 1.2264 1.2271  0.0045
?pN j MAD 2 0.2664 0.3454  0.5727 | 0.3703 0.3922 0.0736
PPN, M —scale 2 0.2987 0.3780 0.3363 | 0.4205 0.4234 0.0192

Table 8: Mean values of ||¢;/||6;]| — ¢;]|?, under Cs when 7 = an™®.
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Method | Scale estimator a a=3 a=14

j=1 j=2 j=3]|j=1 j=2 ;=3

ol SD 1.7977 1.8885 1.9139 | 1.7977 1.8885 1.9139
$j MAD 0.2729 0.8004 0.7922 | 0.2729 0.8004 0.7922
aj M —scale 0.3014 0.9660 0.9849 | 0.3014 0.9660 0.9849
(?ips’j SD 0.05 | 1.7976 1.8886 1.9136 | 1.7977 1.8885 1.9139
(EPSJ' MAD 0.05 | 0.2714 0.7840 0.7761 | 0.2729 0.8004 0.7922
Ps,j M —scale 0.05 | 0.3000 0.9555 0.9746 | 0.3014 0.9659 0.9849
?ZPS»J' SD 0.10 | 1.7967 1.8888 1.9135 | 1.7977 1.8885 1.9139
gﬁps’j MAD 0.10 | 0.2707 0.7763 0.7697 | 0.2729 0.8004 0.7922
$PS,j M —scale 0.10 | 0.2990 0.9444 0.9656 | 0.3014 0.9657 0.9847
(EPSJ- SD 0.15 | 1.7956 1.8890 1.9136 | 1.7977 1.8885 1.9139
?ZPS»J' MAD 0.15 | 0.2689 0.7668 0.7609 | 0.2729 0.8004 0.7922
$PS,j M —scale 0.15 | 0.2982 0.9384 0.9598 | 0.3014 0.9653 0.9844
?PSJ SD 0.25 | 1.7930 1.8889 1.9128 | 1.7977 1.8885 1.9139
?psd- MAD 0.25 | 0.2660 0.7449 0.7400 | 0.2729 0.8004 0.7922
$PSs,j M —scale 0.25 | 0.2964 0.9235 0.9461 | 0.3014 0.9653 0.9844
?ZPSJ' SD 0.5 1.7872 1.8896  1.9117 | 1.7977 1.8885 1.9139
?ps’j MAD 0.5 0.2622 0.7069 0.7063 | 0.2729 0.7999 0.7913
$PS,j M —scale 0.5 0.2912 0.8651 0.8933 | 0.3014 0.9652  0.9843
?psd- SD 0.75 | 1.7823 1.8900 1.9112 | 1.7977 1.8885 1.9139
(Eps’j MAD 0.75 | 0.2577 0.6645 0.6678 | 0.2721 0.7962 0.7884
$PS,j M —scale 0.75 | 0.2851 0.8120 0.8457 | 0.3014 0.9652 0.9843
‘ZASPS,J' SD 1 1.7752 1.8904 1.9096 | 1.7977 1.8885 1.9139
qﬁPSJ MAD 1 0.2555 0.6402 0.6456 | 0.2721 0.7941 0.7867
$PS,j M —scale 1 0.2806 0.7728 0.8132 | 0.3011 0.9632  0.9823
(?ips’j SD 1.5 1.7612 1.8906 1.9071 | 1.7977 1.8886 1.9139
(EPSJ' MAD 1.5 0.2469 0.5819 0.5936 | 0.2721 0.7928 0.7854
#Ps,j M —scale 1.5 0.2701 0.6999 0.7479 | 0.3009 0.9613 0.9806
Qﬁpsd- SD 2 1.7394 1.8903 1.9067 | 1.7977 1.8885 1.9139
gﬁps’j MAD 2 0.2365 0.5259 0.5408 | 0.2721 0.7925 0.7848
$PS,j M —scale 2 0.2570 0.6314 0.6856 | 0.3005 0.9587 0.9778
(?\pNJ- SD 0.05 | 1.1991 1.8687 1.9247 | 1.7961 1.8884 1.9144
‘EPN,J' MAD 0.05 | 0.1654 0.6677 0.9259 | 0.2712 0.7955 0.7911
$PN,j M —scale 0.05 | 0.1720 0.8166 1.0945 | 0.2997 0.9664 0.9886
qﬁpNJ SD 0.10 | 0.3089 1.7563 1.9172 | 1.7929 1.8881 1.9146
(Z)\de MAD 0.10 | 0.1164 0.5668 0.9717 | 0.2691 0.7926  0.7920
PPN,j M —scale 0.10 | 0.0986 0.5954 1.0570 | 0.2988 0.9702 0.9959
(EpN’j SD 0.15 | 0.0959 1.6179 1.9006 | 1.7917 1.8882 1.9151
?PN,j MAD 0.15 | 0.0884 0.4555 0.9694 | 0.2677 0.7908 0.7944
$PN,j M —scale 0.15 | 0.0619 0.4484 1.0327 | 0.2974 0.9675 0.9972
?\pNJ SD 0.25 | 0.0740 1.3619 1.8378 | 1.7863 1.8886 1.9148
(EPNJ- MAD 0.25 | 0.0648 0.3332 0.9896 | 0.2645 0.7836  0.7952
$PN,j M —scale 0.25 | 0.0364 0.2517 0.9864 | 0.2946 0.9643 1.0008
?PN,j SD 0.5 0.0812 1.0008 1.6349 | 1.7720 1.8890 1.9165
gépNJ- MAD 0.5 0.0526  0.2080 0.9771 | 0.2593 0.7855 0.8131
$PN,j M —scale 0.5 0.0276  0.1046  0.9265 | 0.2873 0.9660 1.0190
?ZPNJ SD 0.75 | 0.0882 0.9942 1.6186 | 1.7586 1.8885 1.9184
QASPNJ- MAD 0.75 | 0.0468 0.1606 0.9668 | 0.2533 0.7831 0.8254
$PN,j M —scale 0.75 | 0.0271 0.0631 0.8130 | 0.2783 0.9566 1.0271
?PNJ SD 1 0.0921 1.0504 1.6565 | 1.7354 1.8887  1.9200
?ZPNJ- MAD 1 0.0457 0.1375 0.9365 | 0.2467 0.7826 0.8418
$PN,j M —scale 1 0.0267 0.0527 0.7608 | 0.2721 0.9635 1.0493
(?\pNJ- SD 1.5 0.0980 1.1618 1.7271 | 1.6922 1.8870 1.9218
‘EPN,J' MAD 1.5 0.0456 0.1120 0.9501 | 0.2338 0.7712 0.8603
$PN,j M —scale 1.5 0.0266  0.0507 0.7417 | 0.2553 0.9394 1.0591
qﬁpNJ SD 2 0.1031 1.2519 1.7678 | 1.6482 1.8871 1.9239
(Z)\de MAD 2 0.0446 0.1152 0.9982 | 0.2216 0.7533  0.8699
$PN,j M —scale 2 0.0266 0.0552 0.7756 | 0.2401 0.9237 1.0732

Table 9: Mean values of ||¢;/||¢;]| — ¢;|?, under Cs o when 7 = an~®.
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Method | Scale estimator a a=3 a=14

j=1 j=2 j=31|4j=1 j=2 j=3

@ SD 0.0254 1.6314 1.6554 | 0.0254 1.6314 1.6554
$]- MAD 0.1183 0.6177 0.5971 | 0.1183 0.6177 0.5971
$j M —scale 0.0730 0.6274 0.6346 | 0.0730 0.6274 0.6346
(?ips’j SD 0.05 | 0.0251 1.6117 1.6360 | 0.0254 1.6314 1.6553
(EPSJ' MAD 0.05 | 0.1180 0.6116 0.5903 | 0.1183 0.6177 0.5971
?PS,j M —scale 0.05 | 0.0717 0.6097 0.6167 | 0.0730 0.6274 0.6346
?ip&j SD 0.10 | 0.0247 1.5937 1.6182 | 0.0254 1.6313 1.6553
?ips’j MAD 0.10 | 0.1177 0.6022 0.5808 | 0.1183 0.6177 0.5971
$PS,j M —scale 0.10 | 0.0703 0.5947 0.6019 | 0.0730 0.6270 0.6342
(z)\psd- SD 0.15 | 0.0244 1.5743 1.5990 | 0.0254 1.6312 1.6551
(EPSJ MAD 0.15 | 0.1171 0.5936 0.5724 | 0.1183 0.6177 0.5971
$PS,j M —scale 0.15 | 0.0685 0.5785 0.5867 | 0.0730 0.6268 0.6340
?ips’j SD 0.25 | 0.0235 1.5300 1.5559 | 0.0254 1.6305 1.6545
(?\psd- MAD 0.25 | 0.1156 0.5622 0.5418 | 0.1183 0.6177 0.5971
$PSs,j M —scale 0.25 | 0.0667 0.5488 0.5580 | 0.0730 0.6266 0.6338
?ZPSJ' SD 0.5 0.0222 1.3781  1.4045 | 0.0254 1.6296 1.6537
(?ips’j MAD 0.5 0.1109 0.5045 0.4840 | 0.1183 0.6177 0.5971
$PS,j M —scale 0.5 0.0603 0.4819 0.4909 | 0.0730 0.6257 0.6330
?\psd- SD 0.75 | 0.0209 1.1843 1.2106 | 0.0254 1.6288  1.6529
(?ips’j MAD 0.75 | 0.1083 0.4522 0.4347 | 0.1183 0.6174 0.5969
$PS,j M —scale 0.75 | 0.0570 0.4196 0.4296 | 0.0729 0.6248 0.6320
‘liPS,j SD 1 0.0198 0.9222 0.9475 | 0.0254 1.6276 1.6516
?ipsd- MAD 1 0.1033  0.4005 0.3844 | 0.1183 0.6168 0.5962
$PS,j M —scale 1 0.0532 0.3641 0.3742 | 0.0729 0.6244 0.6316
(?ips’j SD 1.5 0.0183 0.4274 0.4473 | 0.0253 1.6253 1.6493
(EPSJ' MAD 1.5 0.0950 0.3119 0.2947 | 0.1183 0.6150 0.5945
?PS.j M —scale 1.5 0.0452 0.2371 0.2462 | 0.0729 0.6233 0.6304
?ZPSJ SD 2 0.0173  0.1491 0.1640 | 0.0252 1.6231 1.6472
?ips’j MAD 2 0.0891 0.2514 0.2368 | 0.1183 0.6150 0.5945
$PS,j M —scale 2 0.0413 0.1650 0.1714 | 0.0729 0.6231 0.6302
(?\pNJ- SD 0.05 | 0.0141 0.3471 0.5910 | 0.0250 1.6211 1.6480
QépNJ MAD 0.05 | 0.0750 0.3075 0.5051 | 0.1180 0.6150 0.5974
$PN,j M —scale 0.05 | 0.0318 0.2159 0.4374 | 0.0717 0.6201 0.6321
qﬁpNJ SD 0.10 | 0.0131 0.0397 0.1720 | 0.0246 1.6136 1.6429
?\pN.’j MAD 0.10 | 0.0644 0.1890 0.4423 | 0.1177 0.6148 0.6011
PPN,j M —scale 0.10 | 0.0264 0.0926 0.3101 | 0.0709 0.6125 0.6291
(EpN’j SD 0.15 | 0.0135 0.0206 0.1199 | 0.0244 1.6049 1.6370
QASPNJ MAD 0.15 | 0.0617 0.1394 0.4084 | 0.1169 0.6121 0.6025
$PN,j M —scale 0.15 | 0.0254 0.0516 0.2415 | 0.0686 0.6048 0.6273
?\pNJ SD 0.25 | 0.0150 0.0177 0.1176 | 0.0232 1.5875 1.6256
(EPNJ- MAD 0.25 | 0.0576 0.0988 0.3934 | 0.1146 0.5981 0.5954
$PN,j M —scale 0.25 | 0.0254 0.0350 0.2000 | 0.0667 0.5938 0.6255
QASPNJ SD 0.5 0.0170  0.0207 0.1981 | 0.0220 1.5442 1.5978
?PN,j MAD 0.5 0.0542 0.0748 0.4397 | 0.1101 0.5758 0.5913
$PN,j M —scale 0.5 0.0254 0.0304 0.1958 | 0.0610 0.5627 0.6147
?ZPNJ SD 0.75 | 0.0191 0.0246 0.2803 | 0.0206 1.4916 1.5622
QASPNJ- MAD 0.75 | 0.0532 0.0707 0.4945 | 0.1078 0.5644  0.5967
$PN,j M —scale 0.75 | 0.0247 0.0302 0.2358 | 0.0571 0.5427 0.6149
?pNJ- SD 1 0.0205 0.0284 0.3638 | 0.0197 1.4343 1.5216
?PNJ MAD 1 0.0520 0.0737 0.5518 | 0.1030 0.5395 0.5857
$PN,j M —scale 1 0.0242 0.0308 0.2833 | 0.0534 0.5158 0.6054
(?\pNJ- SD 1.5 0.0229 0.0399 0.5143 | 0.0180 1.3033  1.4270
QépNJ MAD 1.5 0.0493 0.0745 0.6525 | 0.0954 0.4867 0.5626
$PN,j M —scale 1.5 0.0241 0.0339 0.3798 | 0.0471 0.4621 0.5835
qﬁpNJv SD 2 0.0240 0.0486 0.6355 | 0.0172 1.1662 1.3250
?\pN.’j MAD 2 0.0473 0.0822 0.7511 | 0.0892 0.4435 0.5449
PPN,j M —scale 2 0.0235 0.0369 0.4719 | 0.0428 0.4154 0.5639

Table 10: Mean values of ||¢;/||6;]| — ¢;]|?, under Cs, when 7 = an™®.
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Method | Scale estimator a a=3 a=14

j=1 j=2 j=3]|j=1 j=2 ;=3

?j SD 1.7825 0.3857 1.7563 | 1.7825 0.3857 1.7563
@ MAD 0.2590 0.4221 0.2847 | 0.2590 0.4221 0.2847
aj M —scale 0.2879 0.4655 0.3053 | 0.2879 0.4655 0.3053
(?ips’j SD 0.05 | 1.7824 0.3887 1.7550 | 1.7825 0.3857 1.7563
(EPSJ' MAD 0.05 | 0.2587 0.4195 0.2823 | 0.2590 0.4220 0.2845
Ps,j M —scale 0.05 | 0.2875 0.4628 0.3029 | 0.2879 0.4655 0.3052
?ZPS»J' SD 0.10 | 1.7804 0.3911 1.7529 | 1.7825 0.3857 1.7563
gﬁps’j MAD 0.10 | 0.2577 0.4131 0.2770 | 0.2590 0.4220 0.2845
$PS,j M —scale 0.10 | 0.2872 0.4592 0.2998 | 0.2879 0.4655 0.3052
(EPSJ- SD 0.15 | 1.7791 0.3953 1.7518 | 1.7824 0.3874 1.7564
?ZPS»J' MAD 0.15 | 0.2563 0.4092 0.2735 | 0.2591 0.4223 0.2844
$PS,j M —scale 0.15 | 0.2860 0.4555 0.2966 | 0.2879 0.4655 0.3052
?PSJ SD 0.25 | 1.7779 0.4008 1.7490 | 1.7824 0.3874 1.7563
?psd- MAD 0.25 | 0.2553 0.4037 0.2694 | 0.2591 0.4223 0.2844
$PSs,j M —scale 0.25 | 0.2843 0.4485 0.2905 | 0.2879 0.4655 0.3052
?ZPSJ' SD 0.5 1.7723  0.4196 1.7363 | 1.7824 0.3875 1.7563
(?ips’j MAD 0.5 0.2530 0.3872 0.2546 | 0.2591 0.4223 0.2844
$PS,j M —scale 0.5 0.2823 0.4378 0.2813 | 0.2879 0.4649 0.3047
?psd- SD 0.75 | 1.7663 0.4342 1.7215 | 1.7825 0.3877 1.7563
(Eps’j MAD 0.75 | 0.2517 0.3775 0.2454 | 0.2591 0.4223 0.2844
$PS,j M —scale 0.75 | 0.2797 0.4242 0.2694 | 0.2879 0.4648 0.3046
‘ZASPS,J' SD 1 1.7632 0.4571 1.7112 | 1.7825 0.3878 1.7562
qﬁPSJ MAD 1 0.2496 0.3649 0.2342 | 0.2591 0.4222 0.2843
$PS,j M —scale 1 0.2771 0.4138 0.2611 | 0.2879 0.4646 0.3044
(?ips’j SD 1.5 1.7526  0.4907 1.6835 | 1.7825 0.3878 1.7562
(EPSJ' MAD 1.5 0.2435 0.3419 0.2137 | 0.2591 0.4222 0.2843
#Ps,j M —scale 1.5 0.2728 0.3959 0.2455 | 0.2879 0.4644 0.3042
Qﬁpsd- SD 2 1.7408 0.5360 1.6523 | 1.7823 0.3881 1.7559
gﬁps’j MAD 2 0.2394 0.3232 0.1963 | 0.2591 0.4216 0.2837
$PS,j M —scale 2 0.2669 0.3777 0.2299 | 0.2878 0.4641 0.3039
(?\pNJ- SD 0.05 | 1.5841 1.0675 1.3787 | 1.7794 0.3924 1.7554
‘EPN,J' MAD 0.05 | 0.2120 0.3628 0.4227 | 0.2583 0.4222 0.2872
$PN,j M —scale 0.05 | 0.2361 0.4120 0.4700 | 0.2875 0.4657 0.3085
qﬁpNJ SD 0.10 | 1.4791 1.3522 0.8009 | 1.7785 0.3951 1.7542
(?\pN.’j MAD 0.10 | 0.1927 0.3281 0.5028 | 0.2579 0.4224  0.2892
PPN,j M —scale 0.10 | 0.2114 0.3694 0.5512 | 0.2864 0.4653 0.3111
(EpN’j SD 0.15 | 1.4571 1.4101 0.4440 | 1.7745 0.4018 1.7516
?PN,j MAD 0.15 | 0.1813 0.3015 0.5521 | 0.2572  0.4227 0.2928
$PN,j M —scale 0.15 | 0.1932 0.3242 0.5842 | 0.2861 0.4645 0.3126
?\pNJ SD 0.25 | 1.4344 14216 0.3038 | 1.7701 0.4189 1.7453
(EPNJ- MAD 0.25 | 0.1642 0.2648 0.6089 | 0.2550 0.4167  0.2926
$PN,j M —scale 0.25 | 0.1713 0.2642 0.6139 | 0.2839 0.4628 0.3172
?PN,j SD 0.5 1.3906 1.3926 0.4061 | 1.7568 0.4502 1.7320
gépNJ- MAD 0.5 0.1523 0.2298 0.6664 | 0.2518 0.4160 0.3055
$PN,j M —scale 0.5 0.1540 0.2113 0.6139 | 0.2816 0.4595 0.3275
?ZPNJ SD 0.75 | 1.3716 1.3846 0.5333 | 1.7446 0.4832 1.7208
QASPNJ- MAD 0.75 | 0.1429 0.2126 0.7109 | 0.2496 0.4077 0.3094
$PN,j M —scale 0.75 | 0.1463 0.1951 0.5917 | 0.2773 0.4576  0.3400
?PNJ SD 1 1.3303  1.3475 0.6386 | 1.7347 0.5234 1.7066
?ZPNJ- MAD 1 0.1354 0.2025 0.7465 | 0.2462 0.4032 0.3156
$PN,j M —scale 1 0.1387 0.1837 0.5833 | 0.2751 0.4572 0.3516
(?\pNJ- SD 1.5 1.2728 1.3010 0.8004 | 1.7113 0.5988  1.6797
‘EPN,J' MAD 1.5 0.1261  0.1933 0.7833 | 0.2396 0.3920 0.3269
$PN,j M —scale 1.5 0.1299 0.1827 0.6111 | 0.2691 0.4540 0.3747
qﬁpNJ SD 2 1.2048 1.2419 0.9162 | 1.6962 0.6816 1.6488
(Z)\de MAD 2 0.1194 0.1938 0.8525 | 0.2365 0.3959 0.3493
$PN,j M —scale 2 0.1233  0.1845 0.6364 | 0.2620 0.4498 0.3917

able 11: Mean values of ||¢;/||¢;|| — ¢; , under Co3 when 7 = an™“.
Table 11: M 1 f1l¢;/l0;1l — ¢;511?, under Cas wh
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Method | Scale estimator a a=3 a=14

j=1 j=2 j=31|4j=1 j=2 j=3

ol SD 0.3071 0.4659 0.2331 | 0.3071 0.4659 0.2331
$]- MAD 0.0854 0.1592 0.1100 | 0.0854 0.1592 0.1100
$j M —scale 0.0502 0.0850 0.0542 | 0.0502 0.0850 0.0542
(?ips’j SD 0.05 | 0.3071 0.4658 0.2329 | 0.3071 0.4659 0.2331
(EPSJ' MAD 0.05 | 0.0855 0.1590 0.1092 | 0.0854 0.1590 0.1098
?PS,j M —scale 0.05 | 0.0501 0.0837 0.0529 | 0.0502 0.0849 0.0540
?ip&j SD 0.10 | 0.3071 0.4656 0.2328 | 0.3071 0.4659 0.2331
?ips’j MAD 0.10 | 0.0850 0.1577 0.1082 | 0.0854 0.1590 0.1098
$PS,j M —scale 0.10 | 0.0500 0.0818 0.0512 | 0.0502 0.0849 0.0540
(z)\psd- SD 0.15 | 0.3071 0.4654 0.2326 | 0.3071 0.4659 0.2331
(EPSJ MAD 0.15 | 0.0850 0.1561 0.1067 | 0.0854 0.1590 0.1098
$PS,j M —scale 0.15 | 0.0497 0.0806 0.0502 | 0.0502 0.0849 0.0540
?ips’j SD 0.25 | 0.3071 0.4655 0.2323 | 0.3071 0.4659 0.2331
(?\psd- MAD 0.25 | 0.0849 0.1542 0.1049 | 0.0854 0.1590 0.1098
$PSs,j M —scale 0.25 | 0.0497 0.0795 0.0490 | 0.0502 0.0849 0.0540
?ZPSJ' SD 0.5 0.3069 0.4645 0.2314 | 0.3071 0.4659 0.2330
(?ips’j MAD 0.5 0.0846 0.1469 0.0976 | 0.0854 0.1590 0.1098
$PS,j M —scale 0.5 0.0491 0.0749 0.0444 | 0.0502 0.0848 0.0540
?\psd- SD 0.75 | 0.3069 0.4637 0.2306 | 0.3071 0.4659 0.2330
(?ips’j MAD 0.75 | 0.0837 0.1391 0.0900 | 0.0854 0.1590 0.1098
$PS,j M —scale 0.75 | 0.0489 0.0724 0.0415 | 0.0502 0.0848 0.0539
‘liPS,j SD 1 0.3069 0.4629 0.2298 | 0.3071 0.4659 0.2330
?ipsd- MAD 1 0.0829 0.1332 0.0841 | 0.0854 0.1592 0.1097
$PS,j M —scale 1 0.0487 0.0694 0.0384 | 0.0501 0.0846 0.0538
(?ips’j SD 1.5 0.3069 0.4610 0.2280 | 0.3071 0.4659 0.2330
?p&j MAD 1.5 0.0824 0.1216 0.0728 | 0.0854 0.1590 0.1096
?PS.j M —scale 1.5 0.0481 0.0639 0.0333 | 0.0501 0.0845 0.0537
?ZPSJ SD 2 0.3069 0.4593 0.2262 | 0.3071 0.4659 0.2330
?ips’j MAD 2 0.0815 0.1134 0.0655 | 0.0855 0.1591 0.1093
$PS,j M —scale 2 0.0474 0.0606 0.0300 | 0.0501 0.0841 0.0533
(?\pNJ- SD 0.05 | 0.2750 0.3631 0.2238 | 0.3066 0.4644 0.2331
QépNJ MAD 0.05 | 0.0723 0.1034 0.1273 | 0.0857 0.1589 0.1103
$PN,j M —scale 0.05 | 0.0436 0.0550 0.0553 | 0.0499 0.0833 0.0532
qﬁpNJ SD 0.10 | 0.2670 0.3332 0.2298 | 0.3052 0.4631 0.2339
?\pN.’j MAD 0.10 | 0.0701 0.0891 0.1474 | 0.0849 0.1574 0.1106
PPN,j M —scale 0.10 | 0.0420 0.0488 0.0627 | 0.0497 0.0828 0.0535
(EpN’j SD 0.15 | 0.2649 0.3258 0.2418 | 0.3047 0.4592 0.2321
QASPNJ MAD 0.15 | 0.0684 0.0837 0.1693 | 0.0848 0.1569 0.1111
$PN,j M —scale 0.15 | 0.0415 0.0468 0.0711 | 0.0493 0.0814 0.0530
?\pNJ SD 0.25 | 0.2544 0.3096 0.2708 | 0.3042 0.4575 0.2323
(EPNJ- MAD 0.25 | 0.0677 0.0808 0.2166 | 0.0844 0.1549 0.1118
$PN,j M —scale 0.25 | 0.0408 0.0453 0.0841 | 0.0491 0.0804 0.0529
QASPNJ SD 0.5 0.2387 0.2927 0.3304 | 0.3020 0.4486 0.2310
?PN,j MAD 0.5 0.0665 0.0798 0.3079 | 0.0830 0.1503 0.1127
$PN,j M —scale 0.5 0.0390 0.0445 0.1245 | 0.0488 0.0779 0.0535
?ZPNJ SD 0.75 | 0.2317 0.2941 0.3921 | 0.2986 0.4404 0.2306
QASPNJ- MAD 0.75 | 0.0643 0.0791 0.3714 | 0.0830 0.1468 0.1140
$PN,j M —scale 0.75 | 0.0356 0.0426 0.1745 | 0.0482 0.0755 0.0535
?pNJ- SD 1 0.2266  0.2903  0.4480 | 0.2962 0.4374 0.2337
?ZPNJ MAD 1 0.0623 0.0801 0.4391 | 0.0826 0.1401 0.1125
$PN,j M —scale 1 0.0338 0.0421 0.2202 | 0.0475 0.0729 0.0533
(?\pNJ- SD 1.5 0.2147 0.2980 0.5370 | 0.2919 0.4197 0.2259
QépNJ MAD 1.5 0.0574 0.0810 0.5517 | 0.0802 0.1306 0.1116
$PN,j M —scale 1.5 0.0313  0.0430 0.3212 | 0.0468 0.0692 0.0536
qﬁpNJv SD 2 0.1992 0.2883 0.6208 | 0.2880 0.4057 0.2242
?\pN.’j MAD 2 0.0526 0.0826 0.6515 | 0.0789 0.1263 0.1156
PPN,j M —scale 2 0.0298 0.0449 0.4050 | 0.0462 0.0660 0.0533

Table 12: Mean values of ||¢;/||6;]| — ¢;|?, under C. when 7 = an™°.
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Method | Scale estimator | pn j=1 j=2 7=3 | pn j=1 j=2 j=3
Fourier Basis B—splines Basis
(ESLJ' SD 10 0 2 2 10 | 0.0380 1.9325 1.9744
fSI,j MAD 10 0 2 2 10 | 0.0385 1.9335 1.9747
$S1,5 M —scale 10 0 2 2 10 | 0.0380 1.9326 1.9744
‘ESLJ' SD 20 | 0.0046 0.0046 2 20 | 0.0076 0.0117 1.9744
?\SIJ MAD 20 | 0.0594 0.0594 2 20 | 0.0588 0.0658 1.9744
$S1,5 M —scale 20 | 0.0178 0.0178 2 20 | 0.0176 0.0246 1.9744
‘ESLJ' SD 30 | 0.0053 0.0097 0.0059 | 50 | 0.0076 0.0111 0.0071
?SI,J' MAD 30 | 0.0703 0.1237 0.0836 | 50 | 0.0703 0.1237 0.0836
#S1.5 M —scale 30 | 0.0230 0.0410 0.0262 | 50 | 0.0230 0.0410 0.0262
Table 13: Mean values of ||¢; s1 — ¢; ||, under Co.
Method | Scale estimator | pn j=1 j=2 j=3 Dn j=1 j=2 j=3
Fourier Basis B—splines Basis
‘ESI,J SD 10 0 2 2 10 | 0.0380 1.9325 1.9744
?SLJ MAD 10 0 2 2 10 | 0.0404 1.9330 1.9745
#SLj M —scale 10 0 2 2 10 | 0.0381 1.9326 1.9744
(ESLJ SD 20 | 1.1477  1.1477 2 20 | 1.1472 1.1336 1.9744
?SI,] MAD 20 | 0.3536 0.3536 2 20 | 0.3497 0.3556 1.9744
$s1,; M —scale 20 | 0.4076  0.4076 2 20 | 0.4053 0.4109 1.9744
(ESLJ SD 30 | 1.1477 1.1479 0.0013 | 50 | 1.1472 1.1469 0.0022
?\SI,] MAD 30 | 0.3611 0.3890 0.0583 | 50 | 0.3611 0.3890 0.0583
#sL; M —scale 30 | 0.4081 0.4125 0.0150 | 50 | 0.4081 0.4125 0.0150
Table 14: Mean values of ||<;A3j751 — ¢;||?, under Cb.
Method | Scale estimator | pn j=1 j=2 7=3 | pn j=1 j=2 j=3
Fourier Basis B—splines Basis
(ESI«J SD 10 0 2 2 10 | 0.0380 1.9803 1.9925
(Z)\SI,J MAD 10 0 2 2 10 | 0.0391 1.9519 1.9817
#sL; M —scale 10 0 2 2 10 | 0.0380 1.9435 1.9786
?SI,] SD 20 | 0.0044 0.0044 2 20 | 1.7884 0.0117 1.9744
?\SIJ MAD 20 | 0.0588 0.0588 2 20 | 0.0589 0.0691 1.9744
$sLj M —scale 20 | 0.0204 0.0204 2 20 | 0.0202 0.0272 1.9744
?iSI‘] SD 30 | 1.8028 1.8942 1.9412 | 50 | 1.7884 1.8932 1.9142
‘ESLJ MAD 30 | 0.2716 0.8199 0.8083 | 50 | 0.2716 0.8199 0.8083
#S1,5 M —scale 30 | 0.2977 0.9922 1.0013 | 50 | 0.2977 0.9922 1.0013

Table 15: Mean values of [|¢;s1 — ¢;]|%, under Cs 4.

39



Method | Scale estimator | pn j=1 j=2 i=3 | pn j=1 j=2 ji=3
Fourier Basis B—splines Basis
?SI,]‘ SD 10 0 2 2 10 | 0.0380 1.9327 1.9744
?\SIJ MAD 10 0 2 2 10 | 0.0386 1.9382 1.9765
#sLj M —scale 10 0 2 2 10 | 0.0380 1.9332 1.9746
?\SIJ SD 20 | 0.0044 0.0044 2 20 | 0.0235 0.0116 1.9744
?SIy] MAD 20 | 0.0588 0.0588 2 20 | 0.0597 0.0673 1.9744
#sS1,; M —scale 20 | 0.0204 0.0204 2 20 | 0.0202 0.0272 1.9744
?\SLJ SD 30 | 0.0171 1.6657 1.6668 | 50 | 0.0235 1.6650 1.6648
fSI,J MAD 30 | 0.1154 0.6330 0.6033 | 50 | 0.1154 0.6330 0.6033
$s1,; M —scale 30 | 0.0679 0.6231 0.6191 | 50 | 0.0679 0.6231 0.6191
Table 16: Mean values of |\$j,51 — ¢;]|?, under Cs .
Method | Scale estimator | pn j=1 ji=2 7=3 | pn j=1 j=2 ji=3
Fourier Basis B—splines Basis
?SIy] SD 10 0 2 2 10 | 0.0380 1.9327 1.9744
?\SLJ MAD 10 0 2 2 10 | 0.0412 1.9411 1.9776
#sLj M —scale 10 0 2 2 10 | 0.0381 1.9371 1.9761
fSI,J SD 20 | 1.4572 1.4572 2 20 | 1.7707 1.4505 1.9744
‘ESLJ MAD 20 | 0.1516  0.1516 2 20 | 0.1500 0.1585 1.9744
#s1,; M —scale 20 | 0.1620 0.1620 2 20 | 0.1622 0.1687 1.9744
?\SLJ SD 30 | 1.7910 0.3910 1.7569 | 50 | 1.7707 0.4060 1.7448
?SI‘] MAD 30 | 0.2440 0.4146 0.2751 | 50 | 0.2440 0.4146 0.2751
$s1,; M —scale 30 | 0.2754 0.4644 0.2923 | 50 | 0.2754 0.4644 0.2923
Table 17: Mean values of ||$]-,SI — ¢;]|?, under Ca;.
Method | Scale estimator | p, | j=1 j=2 7J=3 | pn | =1 j=2 j=3
Fourier Basis B—splines Basis
‘ESLJ SD 10 0 2 2 10 | 0.0404 1.9347 1.9752
(?\SLJ MAD 10 0 2 2 10 | 0.0401 1.9347 1.9752
#sLj M —scale 10 0 2 2 10 | 0.0382 1.9330 1.9745
fSI,J SD 20 | 0.4380 0.4380 2 20 | 0.5770 0.4446 1.9744
‘ESLJ MAD 20 | 0.2538 0.2538 2 20 | 0.1641 0.1711 1.9744
#s1,; M —scale 20 | 0.1964 0.1964 2 20 | 0.1166 0.1233 1.9744
?\SLJ SD 30 | 0.5558 0.7519 0.4991 | 50 | 0.5770 0.7806  0.4942
‘ESI,J MAD 30 | 0.2960 0.5189 0.3549 | 50 | 0.2024 0.3566 0.2401
$s1,; M —scale 30 | 0.2339 0.4166 0.2766 | 50 | 0.1401 0.2549 0.1715

Table 18: Mean values of |\¢71,51 — ¢;|1?, under Ce..
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