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Abstract

For multivariate regressors, the Nadaraya–Watson regression estimator suffers from the well–
known curse of dimensionality. To overcome this drawback, additive regression models have been
introduced. All the procedures developed, up to now, to estimate the components under an ad-
ditive model, assume that we observe all the data. However, in many applied statistical analysis
missing data occur. In this paper, we study the effect of missing responses on the estimation
of the regression function, under an additive regression model. The estimators are based on
marginal integration adapted to the missing situation. The proposed estimators turn out to be
consistent under mild assumptions. A simulation study allows to compare the behaviour of the
our procedures, under different scenarios.
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1 Introduction

Most commonly used models in statistics are parametric and the assumption is that the obser-
vations in the sample belong to a known parametric family. In these cases, the problem consists
in estimating or making inference on the unknown parameters. However, in many situations, this
assumption may be relatively strong since the assumed parametric model may not be the correct
one if there is some. On the other hand, as is well known, statistical methods developed for a
particular parametric model can lead to wrong conclusions when they are applied to a slightly
disturbed model. Due to these problems, nonparametric and semiparametric methods have been
developed for data analysis. In particular, nonparametric regression models have gain importance
when studying natural phenomenons with non linear complexity behaviour. Let us assume that we
have independent observations (yi,x

t

i), 1 ≤ i ≤ n such that yi ∈ R, xi ∈ R
d and

yi = m(xi) + σ(xi)ǫi 1 ≤ i ≤ n. (1)

where the errors ǫi are independent and independent of xi with E(ǫi) = 0 and Var(ǫi) < ∞.
The estimation of m under model (1) needs multivariate smoothing techniques. Hence, it suffers
from the well known curse of the dimensionality which is associated to the fact that as dimension
increases, neighbourhoods of a point x become more sparse. This phenomenon is inherited by the
convergence rate of the regression estimators that is not

√
n as in the parametric case. Instead,

when considering kernel estimators, the rate of convergence is (nhdn)
1
2 where hn stands for the

bandwidth or smoothing parameter used in the computation of the estimator. In order to solve this
problem, several authors have considered the problem of reducing the dimension of the covariates
in nonparametric models. Hastie y Tibshirani (1990) introduced additive models which solve the
curse of the dimensionality and provide the easy interpretation of univariate smoothers since each
component estimate can be plotted separately. In this sense, additive models combine the flexibility
of the nonparametric models with the easy interpretation of the standard linear model. To be more
precise, additive models assume that m(x) = µ+

∑d
j=1 gj(xj) where the parameter µ ∈ R and the

smooth functions gj : R → R are the quantities to be estimated. Estimators for additive models
were studied by several authors and we refer to Hastie and Tibshirani (1990) or more recently, to
Härdle et al. (2004).

Estimators for additive models are designed for complete data sets and problems arise when
missing observations are present. In several situations, there might be a part of the design points
on which the responses are missing. A fundamental issue of interest is to study the impact of the
missing observations on the performance of the estimators that have been used. Even if there are
many situations in which both the response and the explanatory variables are missing, we will focus
our attention on those cases where missing data occur only in the responses. This situation arises
in many biological experiments where the explanatory variables can be controlled. This pattern is
common, for example, in the scheme of double sampling proposed by Neyman (1938), where first a
complete sample is obtained and then some additional covariate values are computed since perhaps
this is less expensive than to obtain more response values. Throughout this paper, we will assume
that missing occurs only on the response variables.

The linear regression analysis of missing data was developed by Yates (1933) who proposed to
impute the missing observations using least-square estimates. Along with the idea of imputing miss-
ing values through least-square predictions, Cochran (1968) used it to reduce bias in observational
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studies, while Afifi and Elashoff (1969) gave asymptotic results of the proposals based on add-on
process. In many situations, the incomplete observations are imputed via a preliminary estimator
and then, one carries out the estimation of the conditional or unconditional mean of the response
variable with the complete sample. The methods considered include kernel smoothing (Cheng,
1994; Chu and Cheng, 1995) nearest neighbour imputation (Chen and Shao, 2000), semiparametric
estimation (Wang et al., 2004), nonparametric multiple imputation (Aerts et al., 2002), empirical
likelihood over the imputed values (Wang and Rao, 2002), among others. For a nonparametric
regression model, González–Manteiga and Pérez–Gonzalez (2004) considered an approach based on
local polynomials to estimate the regression function when the response variable y is missing but
the covariate x is totally observed. Wang et al. (2004) considered inference on the mean of y under
regression imputation of missing responses based on a semiparametric regression model. In this
paper, we will assume that the data are missing at random (mar). Assuming mar requires the
existence of a random mechanism, such that the occurrence of a missing response is independent
of the response given the covariates. On the other hand, the assumption of missing completely at
random (mcar) is more restrictive since it requires the missing happen stance is independent of
both the response and the covariates. In practice, the assumption of mar might be justified by
the nature of the experiment when it is legitimate to assume that the missingness of the responses
mainly depends on the covariates.

The aim of this paper is to describe methods of estimation under an additive model when
responses are missing. The paper is organized as follows. The estimators to be considered are
described in Section 2. Consistency for these estimators will be derived in Section 3 while the
results of a simulation study are summarized in Section 4. Proofs are relegated to the Appendix.

2 The estimators

We will consider inference with an incomplete data set (yi,x
t

i , δi), 1 ≤ i ≤ n where δi = 1 if yi is
observed and δi = 0 if yi is missing and (yi,x

t

i) satisfy model (1) where the errors ǫi are such that
E(ǫi) = 0 and m : Rd → R is a regression function additive on each component of x, i.e.,

m(x) = µ+

d∑

α=1

gα(xα) , (2)

where gα : R → R are unidimensional smooth functions such that Egα(xα) = 0. The condition
Egα(xα) = 0 is set to identify the components in which case µ = E(yi).

Let (Y,Xt, δ) be a random vector with the same distribution as (yi,x
t

i , δi), withX = (X1, . . . , Xd)
t.

Our aim is to estimate, with the data set at hand, the regression components gα. An ignorable
missing mechanism will be imposed by assuming that Y is missing at random (mar), that is, δ and
Y are conditionally independent given X, i.e.,

P (δ = 1|(Y,X)) = P (δ = 1|X)) = p (X) . (3)

Our estimators will be based on the complete sample, i.e., discarding every incomplete pair of the
original sample. For that reason, they will be denoted as simplified estimators.
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Let K be a multivariate kernel function such that K : R
d → R, K ≥ 0,

∫
K(u) du = 1,∫

uK(u) du = 0,
∫
uutK(u) du = µ2(K)Id. On the other hand, we will denote by Kh(u) =

h−dK(u/h).

Using the set of complete data {(yi,xt

i)}{i:δi=1} we can introduce two estimators of m. The

first one denoted m̃
(1)
s uses kernel weights modified multiplying by the indicator of the missing

variables in order to adapt to the complete sample and avoid bias. On the other hand, the second

one denoted m̃
(2)
s is related to the internally normalized estimators considered in Hengartner and

Sperlich (2005). To be more precise, m̃
(1)
s and m̃

(2)
s are defined as

m̃
(1)
s (x) =

n∑

i=1

Kh(x− xi)δiyi

n∑

j=1

Kh(x− xj)δj

m̃
(2)
s (x) =

n∑

i=1

Kh (x− xi) δiyi

f̂(xi)
n∑

k=1

Kh (x− xk) δk

f̂(xk)

. (4)

where f̂(x) = (1/n)
∑n

j=1Kh (x− xj) is the kernel density estimator and h = hn is the bandwidth
parameter.

Let µ̂ be an estimator of µ = E(Y ). Chen (1994) applied kernel regression imputation to
estimate µ, see also Chu and Cheng (1995). Another possibility is to consider one of the following
estimators

µ̂(1) =
1

n

n∑

i=1

m̂(xi) µ̂(2) =
1

n

n∑

i=1

δiyi
p̂(xi)

,

where m̂(xi) is an estimator of the regression function m(x) such as m̃
(1)
s or m̃

(1)
s . The estimator

µ̂(2) is the propensity score estimator and it assumes that the missingness probability p is estimated

by p̂ when it is unknown. When m̃
(1)
s is used as estimator of the regression function, the marginal

estimator µ̂(1) was previously considered by Cheng and Wei (1986) and Cheng (1990), while Chen

(1994) obtained that the estimator µ̂ = (1/n)
(∑n

i=1 δiyi + (1− δi)m̃
(1)
s (xi)

)
has the same asymp-

totic distribution as µ̂(1). The main disadvantage of µ̂(1) is that in practice, it inherits the curse of
dimensionality problem of the kernel estimator even if its convergence rate will still be root−n. On
the other hand µ̂(2) needs a preliminary estimator of the missing probability. Usually, a parametric
model is assumed for the missing probability so, only few parameters need to be estimated. Hirano
et al. (2000) considered the estimator µ̂(2) when a kernel estimator is used to estimate p(x). See
Wang et al. (2004) for a discussion on different estimators of the response mean.

For the sake of simplicity, from now on, the notation m(xα,xαi) indicates the value of the
function m calculated at the vector x with component α equal to xα and the other ones equal to
those of xi.

Using the estimators defined in (4), four estimators of the marginal functions using marginal
integration can be defined. Two of them are based on the Nadaraya–Watson estimator (Nadaraya,
1964, Watson, 1964) while the other ones are based on the internally normalized method introduced
in Hengartner and Sperlich (2005). More precisely, the first procedure average over the observations
which can be computationally expensive for large data sets while the second one proposes to
marginally integrate the estimators defined through (4). Even if, in most situations, the integrals
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cannot be computed analytically and numerical integration is needed, for large data sets, numerical
integration over a grid of points may be less expensive than the former procedure which averages
over all the data. The estimators are then defined as

ĝ
(1)
α,s(xα) =

1

n

n∑

i=1

m̃
(1)
s (xα,xαi)− µ̂ (5)

ĝ
(2)
α,s(xα) =

1

n

n∑

i=1

m̃
(2)
s (xα,xαi)− µ̂. (6)

where xα stands for the (d − 1)−dimensional vector such that xα = (x1, . . . , xα−1, xα+1, . . . , xd)
t

and for any y, we allow the general notation m̃
(j)
s (y) = m̃

(1)
s (yα,yα), j = 1, 2 to point out with

respect to which components we are adding or integrating.

To introduce the second class of estimators, consider a product measure Q on R
d with Qα(xα) =

Q(R,xα)dxα and set qdx = dQ, qαdxα = dQα. Then, the estimators are defined as

̂̂g(1)α,s(xα) =

∫
m̃

(1)
s (xα,uα)qα(uα) duα − µ̂ (7)

̂̂g(2)α,s(xα) =

∫
m̃

(2)
s (xα,uα)qα(uα) duα − µ̂. (8)

Hence, simplified estimators of the regression function that make use of the additive model

assumption may be defined as m̂
(1)
s (x) =

∑d
α=1 ĝ

(1)
α,s(xα) + µ̂, m̂

(2)
s (x) =

∑d
α=1 ĝ

(2)
α,s(xα) + µ̂ or

̂̂m(1)

s (x) =
∑d

α=1
̂̂g(1)α,s(xα)+ µ̂ and ̂̂m(2)

s (x) =
∑d

α=1
̂̂g(2)α,s(xα)+ µ̂, respectively, depending if one uses

the estimators that average or integrate the preliminary ones.

3 Consistency

3.1 Assumptions and notation

Let (yi,x
t

i , δi)
n
i=1 be a sequence of independent and identically distributed vectors in R

d+2 and
(Y,Xt, δ) a vector with the same distribution as (yi,x

t

i , δ). Denote m(x) = E[Y |X = x] and by
µ the probability measure of X. We remind some definitions that can be found, for instance, in
Devroye (1978).

Definition 1. The observations (yi)
n
i=1 are uniformly bounded if |Y − m(x)| ≤ c a.s. for some

c < ∞.

Definition 2. The random variables (yi)
n
i=1 are uniformly generalized Gaussian if for some σ ≥ 0

and c ≥ 0

sup
x

E

[
eλ(Y−m(x))|X = x

]
≤ e

σ2λ2

2(1−|λ|c) , for all |λ| ≤ 1

c
.

Remark 3.1. It is clear that when the observations are uniformly bounded, they are uni-
formly generalized Gaussian. Besides, if (yi,xi)

n
i=1 are such that Y |X = x ∼ N(m(x), σ2(x))

and supx∈Rd σ2(x) < ∞, then (yi)
n
i=1 are uniformly generalized Gaussian.
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In order to derive consistency of m̂
(1)
s (x) and m̂

(2)
s (x), we will need the following set of assump-

tions

D1. Y = m(X) + σ(X)ǫ with E(ǫ) = 0 and Var(ǫ) = 1.

D2. The joint density of the covariates fX is compactly supported, Lipschitz continuous and
strictly bounded away from zero and infinity on the interior of its compact support denoted
C.

D3. P (δ = 1|X, Y ) = P (δ = 1|X) = p(X), with p : Rd → R continuous in C and such that
i(p) = infx∈C p(x) > 0.

D4. m : Rd → R and σ : Rd → R
+ are continuous in C.

D5. The errors ǫ are independent of (X, δ). Furthermore, the sequence (ǫi)
n
i=1 is uniformly gener-

alized Gaussian.

D6. The sequence (ǫ2i )
n
i=1 is uniformly generalized Gaussian.

D7. The product measure Q has a continuous density q(x) (with respect to Lebesgue measure)
bounded away from zero and infinity. Further, the support of Q is contained in the support
of f(x).

For the sake of simplicity, from now on, u and uj stand for uj = σ(xj)ǫj and u = σ(X)ǫ, so
Y = m(X) + u.

Besides, we will need the following assumptions on the kernel K and the smoothing parameter
hn.

K1. K : Rd → R is nonnegative, bounded and
∫
K(u) du = 1.

K2. K(x) = K(‖x‖) for some nonincreasing function K : R+ → R
+ such that

i) udK(u) → 0 as u → ∞,

ii) K(u∗) > 0 for some u∗ > 0.

H1. hn → 0 and nhdn/ logn → ∞.

The following assumptions will be used to derive the consistency of the marginal effects estima-
tors under the additive model (2). It is worth noticing that, under D2, the density function of the
component Xα, denoted by fα, has a compact support denoted Cα = sopfα.

A1. m(x) = µ+
∑d

α=1 gα(xα).

A2. a) Egα(Xα) = 0 for all 1 ≤ α ≤ d.
b)

∫
gα(xα)qα(xα) dxα = 0 where qα(x)dx = dQα(x) and Qα is the α−th marginal of the

measure Q.

A3. gα is a continuous function in Cα for all 1 ≤ α ≤ d.
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Remark 3.2. Separable regression models, as the one we are studying, are useful tools in analysing
high-dimensional data sets because these models are not subject to the course of dimensionality,
see, for instance, Stone (1986). Separable models are also of interest in econometric theory. Weak
separable functions form a flexible class of functions which provides good approximations to con-
tinuous functions of several variables. Thus, even if the true underlying regression function is not
separable, it may be well approximated by a separable one.

Remark 3.3. The assumptions mentioned above were considered by Buja et al. (1989), Hastie
and Tibshirani (1990), Newey (1994), Tjostheim and Auestad (1994), Linton and Nielsen (1995),
Hengartner and Sperlich (2005), Härdle et al. (2004) among others. These are rather typical
assumptions for ordinary kernel smoothing.

A1 sets that the model under consideration is an additive one, while A2 ensures that the
additive components gj are identifiable. Assumptions D2 and D4 state regularity conditions on
the marginal density of X and on the conditional distribution function. Note that D3 implies
that some response variables are observed for all x ∈ C. This assumption ensures the uniform
convergence all over the compact set C. Condition D5 is needed to obtain the almost surely uniform

consistency of both preliminary estimators m̃
(1)
s and m̃

(2)
s . To obtain asymptotic properties of the

estimators based on the internally normalized method D6 is also required. Condition D7 allows us
to interchange means with integrals to obtain the consistency of the estimators ̂̂g and ̂̂m. Condition
K1 is a typical assumption for ordinary kernel smoothing. K2 restricts the class of kernel functions
to be chosen and establishes conditions on the rate of convergence of the smoothing paramaters,
which are standard in nonparametric regression. Some relation between the bandwidth parameter
hn and the sample size n is always necessary. To obtain the consistency of the proposals H1 is
assumed.

Given a function g : R
d → R, i(g) and ‖g‖0,∞ stand for i(g) = infx∈C g(x) and ‖g‖0,∞ =

supx∈C |g(x)|, respectively. Besides, for any function g : R → R, we will denote by iα(g) =
infx∈Cα g(x) and by ‖g‖α,∞ = supx∈Cα |g(x)|.

Finally, we will denote by m̂Z(x) the Nadaraya–Watson estimator of the regression function,
E(Z|X), based on the observations (zi,x

t

i) computed using with the kernel K and the bandwidth
hn, that is,

m̂Z(x) =

∑n
i=1Khn

(x− xi) zi∑n
i=1Khn

(x− xi)
. (9)

3.2 Strong uniform convergence of the simplified estimators

We begin by proving strong consistency of the preliminary estimators m̃
(1)
s and m̃

(2)
s defined in (4)

respectively.

Theorem 3.2.1. Under D1 to D5, K1, K2 and H1, we have that

a) sup
x∈C

|m̃(1)
s (x)−m(x)| a.s.−→ 0.

b) sup
x∈C

|m̃(2)
s (x)−m(x)| a.s.−→ 0 if in addition, D6 holds.
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As mentioned in Section 2, the estimators µ̂(1) and µ̂(2) have been previously considered in
the literature, where, for instance, asymptotic normality was derived for different choices of the
estimators m̂(x) and p̂(x). Proposition 3.2.1 below give a general consistency result, that will be
useful in the sequel. Its proof is immediate so, it is omitted.

Proposition 3.2.1. Let m̃ be an estimator of the regression function such that supx∈C |m̃(x)−m(x)| a.s.−→
0 and assume that D1 and D2 hold. Then, µ̂

a.s.−→ µ where µ̂ =
∑n

i=1 m̃(xi)/n.

A consequence of Theorem 3.2.1 and Proposition 3.2.1 is the strong consistency of the estimator∑n
i=1 m̃

(1)
s (xi)/n considered by Cheng and Wei (1986) and Cheng (1990). In particular, under A1,

A2, A3, D1 to D5, K1, K2 and H1, we have that µ̂(1) = (1/n)
∑n

i=1 m̃
(1)
s (xi)

a.s.−→ µ.

We now state a strong consistency result for the estimators considered by Hirano et al. (2000).

Theorem 3.2.2. Assume that D1 to D4 hold and let p̂ be an estimator of the missing probability
such that supx∈C |p̂(x)− p(x)| a.s.−→ 0, then µ̂(2) = (1/n)

∑n
i=1(δiyi)/p̂(xi)

a.s.−→ µ.

Theorem 3.2.3. Assume that D2, A1, A2a) and A3 hold. Let µ̂ a consistent estimator of µ
and m̃(x) an estimator of the regression function such that sup

x∈C
|m̃(x)−m(x)| a.s.−→ 0. Define

ĝα(xα) =
1

n

n∑

i=1

m̃(xα,xαi)− µ̂ .

Then, we have that

a) sup
x∈Cα

|ĝα(xα)− gα(xα)| a.s.−→ 0

b) sup
x∈C

|m̂(x)−m(x)| a.s.−→ 0, where m̂(x) =
∑d

α=1 ĝα(xα) + µ̂.

Theorems 3.2.1 and 3.2.3 entail the consistency of the simplified estimators of the additive
components which is stated in the following Corollary.

Corollary 3.2.1. Assume D1 to D5, A1, A2a) and A3. Let K a multivariate kernel satisfying
K1 and K2 and H = hnId where hn satisfies H1. Then, we have that

a) for 1 ≤ α ≤ d, supx∈Cα |ĝ(1)α,s(x)− gα(x)| a.s.−→ 0 and supx∈C |m̂(1)
s (x)−m(x)| a.s.−→ 0.

b) for 1 ≤ α ≤ d, supx∈Cα |ĝ(2)α,s(x)−gα(x)| a.s.−→ 0 and supx∈C |m̂(2)
s (x)−m(x)| a.s.−→ 0, if in addition

D6 holds.

Theorem 3.2.4. Assume that D2, D6, D7, A1, A2b) and A3 hold. Let µ̂ a consistent estimator
of µ and m̃(x) a regression function estimator such that sup

x∈C
|m̃(x)−m(x)| a.s.−→ 0. Define

̂̂gα,s(xα) =
∫
m̃s(xα,uα)qα(uα) duα − µ̂ .

Then, we have that
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a) sup
x∈Cα

|̂̂gα(xα)− gα(xα)| a.s.−→ 0

b) sup
x∈C

| ̂̂m(x)−m(x)| a.s.−→ 0, where ̂̂m(x) =
∑d

α=1
̂̂gα(xα) + µ̂.

From Theorems 3.2.1 and 3.2.4, we obtain the consistency of the estimators ̂̂g(1)α,s and
̂̂g(2)α,s defined

through (7) and (8), which is stated below.

Corollary 3.2.2. Assume D1 to D5, D7, A1, A2b) and A3. Let K a multivariate kernel
satisfying K1 and K2 and H = hnId where hn satisfies H1. Then, we have that

a) for 1 ≤ α ≤ d, supx∈Cα |̂̂g(1)α,s(x)− gα(x)| a.s.−→ 0 and supx∈C | ̂̂m
(1)

s (x)−m(x)| a.s.−→ 0.

b) for 1 ≤ α ≤ d, supx∈Cα |̂̂g(2)α,s(x)−gα(x)| a.s.−→ 0 and supx∈C | ̂̂m
(2)

s (x)−m(x)| a.s.−→ 0, if in addition
D6 holds.

4 Monte Carlo Study

4.1 General Description

This Section contains the results of a simulation study conducted with the aim of comparing the

performance of the estimators m̃
(1)
s , m̂

(1)
s , m̂

(2)
s , defined in Section 2. We performed NR = 500

replications generating independent samples {(yi,xt

i , δi)}ni=1 of size n = 500. To this end, we first
generate observations (zi,x

t

i) such that

zi = m(xi) + ui, 1 ≤ i ≤ n ,

where xi = (xi1, xi2) ∼ U([0, 1] × [0, 1]), u = σǫ with ǫ ∼ N(0, 1) and σ = 0.5, m : R2 → R an
additive function of the form

m(x1, x2) = 4 + 24

(
x1 −

1

2

)2

+ 2π sin(πx2) . (10)

Missing responses are defined using different missing schemes as yi = zi if δi = 1 and missing
otherwise, where {δi}ni=1 are generated under a mar model with missing probability p equal to one
of the following functions

• p1(x) ≡ 1 which corresponds to the situation of complete samples.

• p2(x) ≡ 0.8 which corresponds to missing completely at random responses.

• p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2 .

Besides, xi1, xi2, δi and ui are generated independently to each other.

To identify the marginal components and according to A2a), their expectation is set equal
to 0. Then, for model (10), we have that µ = 10 and the additive components are g1(x1) =
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24 (x1 − 0.5)2− 2 and g2(x2) = 2π sin(πx2)− 4. For the smoothing procedure, we use the Epanech-
nikov multiplicative kernel K(x) = K(x1)K(x2) where K(u) = (3/4)(1− u2)I[−1,1](u).

The behaviour of an estimator m̂ of m is measured using an approximation of the integrated
squared error calculated at each replication as

ise(m̂) =
1

ℓ2

ℓ∑

s=1

ℓ∑

j=1

(m (ujs)− m̂ (ujs))
2 ,

where ujs = (j/ℓ, s/ℓ), 1 ≤ j, s ≤ ℓ, ℓ = 50. An approximation of the mise is obtained averaging
the ise over replications.

On the other hand, to avoid the high influence on the ise of the estimation on the boundary, a
weighted measure is introduced as

wise(m̂) =
1

ℓ2

ℓ∑

s=1

ℓ∑

j=1

(m (ujs)− m̂ (ujs))
2W(ujs) ,

where ujs = (j/ℓ, s/ℓ), 1 ≤ j, s ≤ ℓ, ℓ = 50, W(x) = W (x1)W (x2) with W (t) = I(τ,1−τ)(t) with τ
a parameter that may be taken as the bandwidth used in the computation of the estimator. The
value wmise refers to the average of wise over replications.

Similar measures were used for the estimators of the additive components gα. We first report
the results obtained for the estimators of the location parameter µ.

4.2 Selecting the estimator of the expectation of Y

Recall that Egα(Xα) = 0 and hence, E(Y ) = µ = 10 under the additive model (10). In Section 2,
we have introduced two estimators of µ defined as

µ̂(1) =
1

n

n∑

i=1

m̃
(1)
s (xi) µ̂(2) =

1

n

n∑

i=1

δiyi
p(xi)

.

In order to choose one of them, we perform a preliminary study based on 1000 replications and
samples of size n = 500 to compare these two estimators, as well as the performance of the estimators

of the additive components, ĝ
(ℓ)
α,s, ℓ = 1, 2, α = 1, 2, related to each one. Table 1 a) reports the

mean, standard deviations (sd) and mean square errors (mse) of the two estimators of µ, while
Table 1b) gives the mise for the two resulting estimators of gα given in (5) and (6) when the missing
probability equals p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2.

As observed in Table 1, by oversmoothing the kernel estimator, m̃
(1)
s , that is, selecting a band-

width equal to hn = 0.2, the behaviour of µ̂(1) in terms of mse is much better than the behaviour of
µ̂(2). Note that the standard deviation of µ̂(2) is three times larger that the deviation correspond-
ing to µ̂(1) and this is caused by the missing mechanism chosen which induces a missing average of
observations close to 40%. It is worth noticing that when no missing responses arise, that is, when
p ≡ 1, the estimator µ̂(2) equals y. In this case, the mean square error of µ̂(1) is 0.0143, i.e., missing
the observations only increase 27% times the mse of the estimator. Similarly, the estimators of the
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(a) (b)

µ̂(1) µ̂(2)

Mean 10.00002 9.99558
sd 0.13520 0.41963
mse 0.01828 0.17611

ℓ =1 ℓ =2

Estimator of µ µ̂(1) µ̂(2) µ̂(1) µ̂(2)

r =1 0.3046 2.1030 0.8131 2.8487
r =2 0.2891 0.3989 0.7800 1.1270

Table 1: (a) Summary measures for the estimators of the expectation of Y and (b) mise of the estimators

ĝ
(ℓ)
r,s , r, ℓ = 1, 2, according to the estimator of µ used under the missing mechanism p3.

additive components have a better performance when using µ̂(1), the advantage being larger for the

first additive component estimator ĝ
(ℓ)
1,s, for any of the two preliminary regression estimators m̃

(1)
s

or m̃
(2)
s . For these reasons, we have selected µ̂1 as estimator of the marginal mean in the rest of our

study. It is worth noticing that, when selecting the bandwidth through a cross–validation method
to estimate the additive components, the bandwidth for the estimator µ̂(1) of the expectation of Y
was kept fixed and equal to hn = 0.2.

4.3 Results with fixed bandwidths

Before using a cross–validation method to select an automatic bandwidth for each sample, we have
performed a simulation study to analyse the performance of the estimators over a fixed grid of
bandwidths: h = 0.15, 0.2, 0.25 and 0.3. The density estimator was computed using a bandwidth
equal to h = 0.20. Tables 2 and 3 report the obtained results. From these Tables, we observe that
the best results are obtained for h = 0.15, in all cases. Besides taking into account the additive
structure reduces the values of the mise. Finally, the estimators based on the preliminary regression
estimators internally normalized have a better performance. In particular, the advantage of the
correction suggested by in Hengartner and Sperlich (2005) is observed when avoiding the border
effects, that is, when considering the wmise.

p = p1 p = p2 p = p3
h 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30

m̃
(1)
s 0.253 0.484 0.832 1.295 0.270 0.502 0.853 1.319 0.308 0.552 0.923 1.411

m̂
(1)
s 0.217 0.456 0.811 1.279 0.227 0.471 0.831 1.305 0.252 0.511 0.893 1.391

m̃
(2)
s 0.183 0.363 0.654 1.066 0.197 0.376 0.668 1.083 0.224 0.401 0.702 1.134

m̂
(2)
s 0.157 0.343 0.637 1.051 0.165 0.351 0.648 1.067 0.179 0.369 0.676 1.111

ĝ
(1)
1,s 0.119 0.237 0.406 0.624 0.124 0.244 0.416 0.637 0.143 0.270 0.453 0.685

ĝ
(1)
2,s 0.107 0.225 0.407 0.654 0.112 0.231 0.414 0.662 0.128 0.254 0.446 0.705

ĝ
(2)
1,s 0.091 0.184 0.327 0.522 0.095 0.189 0.333 0.531 0.107 0.203 0.352 0.556

ĝ
(2)
2,s 0.063 0.171 0.320 0.538 0.084 0.175 0.325 0.543 0.096 0.188 0.342 0.566

Table 2: mise of the simplified estimators of m, g1 y g2 under different missingness probabilities p1(x) ≡ 1,
p2(x) ≡ 0.8 and p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2.
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p = p1 p = p2 p = p3
h 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30 0.15 0.20 0.25 0.30

ĝ
(1)
1,s 0.083 0.138 0.203 0.237 0.087 0.151 0.208 0.242 0.100 0.157 0.226 0.260

ĝ
(1)
2,s 0.026 0.053 0.104 0.161 0.027 0.054 0.104 0.161 0.019 0.040 0.085 0.134

ĝ
(2)
1,s 0.063 0.107 0.164 0.198 0.066 0.110 0.166 0.201 0.075 0.118 0.176 0.212

ĝ
(2)
2,s 0.017 0.030 0.061 0.099 0.018 0.030 0.061 0.098 0.013 0.020 0.045 0.081

Table 3: wmise of the simplified estimators for the marginal functions under different missingness proba-
bilities p1(x) ≡ 1, p2(x) ≡ 0.8 and p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2.

4.4 Data-driven bandwidths

An important issue in any smoothing procedure is the choice of the smoothing parameter. Under a
nonparametric regression model, two commonly used approaches are cross–validation and plug–in.
As is well known, plug-in methodologies require us to obtain theoretical expressions of the bias and
the variance of regression estimators, which are not always available in practice. Among others,
for additive models with no missing data, Opsomer (200) developed a plug-in bandwidth estimator
for backfitting estimators, in the case of independence between the covariates while Mammen and
Park (2005) introduced bandwidth selectors for smooth backfitting based on penalized sums of
squared residuals. Finally, Nielsen and Sperlich (2005) developed a cross-validation method for the
smooth backfitting estimator. Recently, a data-driven local bandwidth selector based on a Wild
Bootstrap approximation of the mean squared error of the estimators was developed by Mart́ınez–
Miranda et al. and extended to the situation with missing responses by Mart́ınez–Miranda and
Raya–Miranda (2011). In our simulation study, we have selected as criterion the cross–validation
method, performed over the observed observations, that is,

ĥ = arg min
h=(h1,h2)∈R2

+

n∑

i=1

(yi − m̂−i,s(xi,h))
2δi . (11)

where m̂−i,s(·,h) represents the leave-one-out estimator corresponding to m̂s(·,h). As in cross–
validation with complete data sets, the i−th observation (yi,xi) is not used to predict yi. In
this way, we ensure that the observations used to calculate m̂−i,s (·,h) are independent of xi, the
observation at which we evaluate m̂−i,s (·,h) to predict the i−response, when it is not missing.

4.4.1 Optimal Bandwidths

In order to have an asymptotic counterpart for the cross–validation bandwidth, an optimal de-
terministic smoothing parameter was selected for each of these estimators and for each missing
probability using as goodness of fit criterion the mean integrated square error, MISE,

MISE (h) = E

∫
(m (x)− m̂ (x,h))2 dx,

where m̂(·,h) denotes the estimator to be considered using as bandwidth the value h. We per-
formed 500 replications generating independent samples {(yi,xt

i , δi)}ni=1 of size n = 500 following
the model described in Section 4.1. For each value of the smoothing parameter, the value of

12



the MISE was approximated by Monte Carlo as
∑500

k=1M(h, k)/500, where for each replication

k, M(h, k) =
∑ℓ

j=1

∑ℓ
s=1 (m (ujs,h)− m̂ (ujs,h))

2 /ℓ2, with ujs = (j/ℓ, s/ℓ), 1 ≤ j, s ≤ ℓ and
ℓ = 50 as in the computation of the ise. For each of the three missing probabilities, the opti-
mal smoothing parameter h was selected on a diagonal grid of points in R

2, that is, we assumed
h1 = h2 = h, so that h = (h, h) with h ∈ G where G = {0.03, 0.04} ∪ G0 with G0 a grid of 14
equidistant points between 0.045 and 0.08. When the minimization process leads to a value on
the boundary, the search was carried on over the limits of the interval. To be more precise, if in
the first step the bandwidth selected equals 0.03, the minimization was carried on over the grid
G1 = {0.015, 0.02, 0.025, 0.03, 0.035}. On the other hand, if the bandwidth selected was equal to 0.8,
the minimization was done over the grid G2 = {0.0775, 0.08, 0.085, 0.09, 0.1}. Table 4 reports the
values obtained in each situation. We denote hopt = (hopt, hopt) the optimal bandwidth obtained.

p = p1 p = p2 p = p3
m̂(1) 0.0550 0.0600 0.0675

m̂(2) 0.0600 0.0650 0.0700

Table 4: Optimal smoothing parameters hopt for each scenario and for each nonparametric estimator.

4.4.2 Cross-validation bandwidth

A data–driven selector was discussed in Section 4.4. We have computed the data–driven bandwidths
for each of the missing probabilities. As above, the data–driven smoothing parameter h was selected
on a diagonal grid of points in R

2, that is, h = (h, h) with h ∈ G and G as in Section 4.4.1. Besides,
when the minimization process leads to a value on the boundary, the search was carried on over
the limits of the interval.

We denote hcv = (hcv, hcv) the optimal bandwidth obtained. Due to the expensive computing
time, we have performed NR = 500 replications. Once the optimal bandwidth (the asymptotic
or the cross–validation one) is selected, the estimators are computed as described in Section 2.
Tables 6 and 7 summarize the results obtained using the same measures defined in Section 4.1.
Besides, to evaluate the performance of the cross-validation bandwidths with respect to the opti-
mal one, Table 5 reports as summary measures, the minimum, the first quantile, the median, the
third quantile and the maximum denoted respectively, Q0, Q0.25, Q0.50, Q0.75 and Q1 as well as
the mean of log (hcv/hopt). On the other hand, Figures 1 and 2 show the histograms and box-
plots of log (hcv/hopt) obtained for the estimators m̂(1) and m̂(2), under different missing schemes,
respectively.

When no missing responses arise, or under a completely at random missingness model, the
cross–validation bandwidth for m̂(1) performs better than that obtained when using m̂(2). Even
though, as shown in Tables 6 and 7, the performance of the marginal and final estimators derived
from the internally normalized regression estimator m̃(2) is better than that obtained from the
Nadaraya-Watson estimator.
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Q0 Q0.25 Q0.50 Mean Q0.75 Q1

m̂(1)

p = p1 -0.31850 -0.09531 0.00000 -0.01530 0.04445 0.24120
p = p2 -0.28770 -0.08701 0.00000 -0.01170 0.04082 0.28770
p = p3 -0.35140 -0.11780 -0.03774 -0.04342 0.03637 0.23050

m̂(2)

p = p1 -0.40550 -0.13350 -0.04256 -0.03937 0.04082 0.28770
p = p2 -0.36770 -0.12260 -0.03922 -0.03087 0.07411 0.32540
p = p3 -0.44180 -0.07411 0.00000 -0.01569 0.06899 0.35670

Table 5: Summary measures of log (hcv/hopt) under the missing schemes p1(x) ≡ 1, p2(x) ≡ 0.8 and
p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2.

p = p1 p = p2 p = p3

m̃
(1)
s 0.1574 0.1834 0.2253

m̂
(1)
s 0.0361 0.0488 0.0773

m̃
(2)
s 0.1443 0.1692 0.2106

m̂
(2)
s 0.0340 0.0458 0.0710

ĝ
(1)
1,s 0.0258 0.0325 0.0518

ĝ
(1)
2,s 0.0255 0.0298 0.0474

ĝ
(2)
1,s 0.0248 0.0311 0.0490

ĝ
(2)
2,s 0.0248 0.0287 0.0450

Table 6: mise of the simplified estimators of m, g1 y g2 under different missing schemes, p1(x) ≡ 1,
p2(x) ≡ 0.8 and p3(x) = 0.4+0.5(cos(2x1x2+0.4))2, when the bandwidth is selected using a cross–validation
procedure.

p = p1 p = p2 p = p3

ĝ
(1)
1,s 0.0230 0.0285 0.0448

ĝ
(1)
2,s 0.0174 0.0185 0.0242

ĝ
(2)
1,s 0.0220 0.0270 0.0420

ĝ
(2)
2,s 0.0161 0.0175 0.0227

Table 7: wmise of the simplified estimators for the marginal functions under under different missing schemes,
p1(x) ≡ 1, p2(x) ≡ 0.8 and p3(x) = 0.4 + 0.5(cos(2x1x2 + 0.4))2, when the bandwidth is selected using a
cross–validation procedure.
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p = p1 p = p2 p = p3
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Figura 1: Histogram of log (hcv/hopt) under different missing schemes p1(x) ≡ 1, p2(x) ≡ 0.8 and p3(x) =

0.4 + 0.5(cos(2x1x2 + 0.4))2. The upper and lower plots correspond to the optimal and data driven selectors when

using as estimates m̂(1) and m̂(2), respectively.
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5 Appendix

In order to prove the consistency of the estimators, the following result due to Devroye (1978) will
used. We state it for completeness.

Proposition 5.1. Let (yi,x
t

i)
n
i=1 a sequence of independent and identically distributed variables

and such that (yi)
n
i=1 is a uniformly generalized Gaussian sequence. Denote m̂n(x) = m̂Y (x) the

Nadaraya–Watson estimator defined in (9). Assume K1, K2, H1, m is bounded and continuous
in the support of µ and that there exist a, b > 0 such that infx∈A µ(S(x, r)) ≥ ard, all r ∈ [0, b],
where S(x, r) is the closed sphere with center x and radius r. Then, for any compact set A, we
have that supx∈A |m̂n(x)−m(x)| a.s.−→ 0.

We first state some Lemmas that will be used in the sequel.

Lemma 5.1. Let m̂δY and m̂δ be defined as in (9). Under D1 to D5, K1, K2 and H1, we have

a) supx∈C |m̂δY (x)− p(x)m(x)| a.s.−→ 0

b) supx∈C |m̂δ(x)− p(x)| a.s.−→ 0.

Proof. We begin by proving a). Note that, as δY = δm(x) + δu, where u = σ(x)ǫ, E(δY |X =
x) = p(x)m(x), so

sup
x∈C

|m̂δY − p(x)m(x)| = sup
x∈C

|m̂δm(x) + m̂δu(x)− p(x)m(x)|

≤ sup
x∈C

|m̂δm(x)− p(x)m(x)|+ sup
x∈C

|m̂δu(x)|.

Hence, it will be enough to show that

sup
x∈C

|m̂δm(x)− p(x)m(x)| a.s.−→ 0 (12)

sup
x∈C

|m̂δu(x)| a.s.−→ 0 (13)

From D4, m is bounded in C, then, the sequence of variables (δim(xi))
n
i=1 is a sequence of inde-

pendent, identically distributed and uniformly bounded variables such that E[δm(X)|X = x] =
m(x)E[δ|X = x] = m(x)p(x). Thus, using Remark 3.1, we obtain that (δim(xi))

n
i=1 is a uniformly

generalized Gaussian sequence, hence (12) follows from Proposition 5.1.

Let now see that the sequence of independent and identically distributed variables (δiui)
n
i=1 is

also a uniformly generalized Gaussian sequence. Using that the errors ǫ are independent of (δ,x)
and that E(ǫ) = 0, we get E(δu|X = x) = p(x)σ(x)E(ǫ) = 0. For any λ ∈ R, we have that

E

[
eλδu|X = x

]
= E

[
eλδσ(x)ǫ|X = x

]
= E

[
E

[
eλδσ(x)ǫ|X = x, Y

]
|X = x

]
=

= E

[
(1− p(x)) + p(x) eλσ(x)ǫ|X = x

]
= 1− p(x) + p(x)E

[
eλσ(x)ǫ

]

As (ǫi)
n
i=1 is a sequence of independent, identically distributed and uniformly generalized Gaussian

variables, there are τ ≥ 0 and c ≥ 0 such that if |φ| < 1/c, thus

E

(
eφǫ

)
≤ exp

{
τ2φ2

2(1− |φ|c)

}
.
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D4 entails that σ is bounded in C, so taking d = c‖σ‖20,∞ and τ̃ = τ‖σ‖0,∞ we obtain that, for all
|λ| ≤ 1/d, |φ| = |λ|σ(x) ≤ 1/c, hence

sup
x∈C

E (exp {λσ(x)ǫ}) ≤ sup
x∈C

exp

{
τ2λ2σ2(x)

(1− |λ|σ(x)c)

}

≤ sup
x∈C

exp

{
τ2λ2‖σ‖20,∞

(1− |λ|c‖σ‖20,∞)

}
= exp

{
τ̃2λ2

(1− |λ|d)

}
.

So if |λ| ≤ 1/d, 1 ≤ eτ̃
2λ2/(1−|λ|d), we have that

sup
x∈C

E

[
eλδu|x = x

]
≤ (1− p(x)) + p(x) exp

{
τ̃2λ2

(1− |λ|d)

}

≤ (1− p(x)) exp

{
τ̃2λ2

(1− |λ|d)

}
+ p(x) exp

{
τ̃2λ2

(1− |λ|d)

}
= exp

{
τ̃2λ2

(1− |λ|d)

}
,

which entails that (δjuj)
n
j=1 is a uniformly generalized Gaussian sequence. As it is also an inde-

pendent and identically distributed sequence of variables, from Proposition 5.1, we obtain (13).

Finally, b) can be obtained from (12) taking Y ≡ 1 or using Proposition 5.1 and the fact that
the sequence of independent and identically distributed variables (δi)

n
i=1 is a uniformly bounded

sequence and so a uniformly generalized Gaussian sequence.

Lemma 5.2. Let A be a compact set, b(x) and f(x) two continuous functions in A. Let f̂(x) =
f̂n(x) be such that supx∈A |f̂(x)− f(x)| a.s.−→ 0. Then we have that

a) supx∈C |â(x)− b(x)f(x)| a.s.−→ 0, for any â(x) = ân such that supx∈A

∣∣∣â(x)/f̂(x)− b(x)
∣∣∣ a.s.−→ 0.

b) supx∈A

∣∣∣â(x)/f̂(x)− b(x)
∣∣∣ a.s.−→ 0, if inf

x∈A
f(x) > 0 and supx∈C |â(x)− b(x)f(x)| a.s.−→ 0.

Proof. a) Note that

sup
x∈A

|â(x)− b(x)f(x)| ≤ sup
x∈A

|â(x)− b(x)f̂(x)|+ sup
x∈A

|b(x)| sup
x∈C

|f̂(x)− f(x)|

≤ sup
x∈A

∣∣∣∣∣
â(x)

f̂(x)
− b(x)

∣∣∣∣∣ supx∈A
|f̂(x)|+ sup

x∈A
|b(x)| sup

x∈A
|f̂(x)− f(x)|

≤ sup
x∈A

∣∣∣∣∣
â(x)

f̂(x)
− b(x)

∣∣∣∣∣

[
sup
x∈A

|f(x)|+ sup
x∈A

|f̂(x)− f(x)|
]

+ sup
x∈A

|b(x)| sup
x∈A

|f̂(x)− f(x)|

Now a) follows from the fact that b(x) and f(x) are continuous functions and so, bounded over the
compact set A.

b) We have that

sup
x∈A

∣∣∣∣∣
â(x)

f̂(x)
− b(x)

∣∣∣∣∣ =
supx∈A |â(x)− b(x)f̂(x)|

infx∈A |f̂(x)|
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≤ supx∈A |â(x)− b(x)f(x)|+ supx∈A |b(x)| supx∈A |f̂(x)− f(x)|
infx∈A |f̂(x)|

≤ supx∈A |â(x)− b(x)f(x)|+ supx∈A |b(x)| supx∈A |f̂(x)− f(x)|
infx∈A |f(x)| − supx∈A |f̂(x)− f(x)|

Now the result follows from the fact that b(x) is bounded on A, infx∈A f(x) > 0 and the uniform
strong consistency of â(x) and f̂(x).

Proof of Theorem 3.2.1. a) The result follows easily from the Lemma 5.1 since m̃
(1)
s (x) =

m̂δY (x)/m̂δ(x). Effectively, let N the set of probability 0 such that supx∈C |m̂δY (x)− p(x)m(x)| 6→
0 or supx∈C |m̂δ(x)− p(x)| 6→ 0 and fix ω /∈ N .

Using that i(p) > 0, we have that, for n ≥ n0, supx∈C |m̂δ(x)− p(x)| ≤ i(p)/2 so, |m̂δ(x)| ≥
i(p)/2 for any x ∈ C. Hence, using that m is bounded in C and m̃

(1)
s (x) = m̂δY (x)/m̂δ(x), we get

that

sup
x∈C

∣∣∣m̃(1)
s −m(x)

∣∣∣ ≤ supx∈C |m̂δY (x)−m(x)m̂δ(x)|
infx∈C |m̂δ(x)|

≤ supx∈C |m̂δY (x)−m(x)p(x)|+ supx∈C |m(x)| supx∈C |m̂δ(x)− p(x)|
infx∈C |m̂δ(x)|

≤ 2

i(p)

{
sup
x∈C

|m̂δY (x)−m(x)p(x)|+ ‖m‖0,∞ sup
x∈C

|m̂δ(x)− p(x)|
}

,

concluding the proof of a).

b) For the sake of simplicity denote f̂(x) = f̂n(x) for all x ∈ C. As yi = m(xi) + ui, we have

m̃
(2)
s (x) = (B1(x) +B2(x))/B0(x) where

B0(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δi

f̂(xi)

B1(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δim(xi)

f̂(xi)

B2(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δiu(xi)

f̂(xi)

Hence, using that i(p) > 0 and Lemma 5.2, it will be enough to show that

i) supx∈C |B1(x)− p(x)m(x)| a.s.−→ 0

ii) supx∈C |B2(x)| a.s.−→ 0

iii) supx∈C |B0(x)− p(x)| a.s.−→ 0

i) B1(x) can be written as B1(x) = B11(x) +B12(x) where

B11(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δim(xi)

f(xi)
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B12(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δim(xi)

[
1

f̂(xi)
− 1

f(xi)

]
.

Thus, the proof of i) will be completed if we show that

sup
x∈C

|B11(x)− p(x)m(x)| a.s.−→ 0 (14)

sup
x∈C

|B12(x)| a.s.−→ 0 (15)

The fact that m y f are bounded in C entails that the sequence of i.i.d. variables (δim(xi)/f(xi))
n
i=1

are uniformly bounded, so uniformly generalized Gaussian. Using that E(δm(X)/f(X)|X = x) =
m(x)p(x)/f(x) and Proposition 5.1 we get that

sup
x∈C

∣∣∣∣∣
1

f̂(x)
B11(x)−

p(x)m(x)

f(x)

∣∣∣∣∣
a.s.−→ 0 .

On the other hand, D2, K1, K2 and H1 imply that (see Prakasa Rao, 1983)

sup
x∈C

∣∣∣f̂(x)− f(x)
∣∣∣ a.s.−→ 0 , (16)

Thus, (14) follows from Lemma 5.2.

Using that X has compact support, m is bounded on the support of X and K ≥ 0, we obtain
that

|B12(u)| =
1

nhdn

∣∣∣∣∣

n∑

i=1

K
(
u− xi

hn

)
δim(xi)

[
1

f̂(xi)
− 1

f(xi)

]∣∣∣∣∣

≤ ‖m‖0,∞
1

nhdn

n∑

j=1

K
(
u− xj

hn

)
supx∈C |f̂(x)− f(x)|

infx∈C f̂(x) infx∈C |f(x)|

≤ ‖m‖0,∞f̂(u)
supx∈C |f̂(x)− f(x)|

infx∈C f̂(x) infx∈C |f(x)|

so, (15) follows easily from (16) and the fact that i(f) > 0.

ii) The proof follows similar steps to those used in i) since B2(x) = B21(x) +B22(x) with

B21(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δiui
f(xi)

B22(x) =
1

nhdn

n∑

i=1

K
(
x− xi

hn

)
δiui

[
1

f̂(xi)
− 1

f(xi)

]

Recall that we have already shown that the sequence of variables (δiui)
n
i=1 is an independent,

identically distributed and uniformly generalized Gaussian sequence then, as i(f) > 0, we obtain
that the sequence of variables (δiui/f(xi))

n
i=1 is also an independent, identically distributed and

uniformly generalized Gaussian sequence such that E [δu/f(X)|X] = p(X)σ(X)/f(X)E(ǫ) = 0.
Hence, using Proposition 5.1 and Lemma 5.2, we get that supx∈C |B21(x)| a.s.−→ 0.
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Using analogous arguments to those considered in the proof of (15) and using that the sequence
(δi|ui|)ni=1 in an independent, identically distributed and uniformly generalized Gaussian sequence,

we easily get that supx∈C |B22(x)| a.s.−→ 0, concluding the proof of ii).

iii) Note that B0(x) corresponds to B1(x) when m ≡ 1. Therefore, iii) follows from i).

Proof of Theorem 3.2.2. Note that µ̂(2) = µ̃+Rn where

µ̃ =
1

n

n∑

i=1

δiyi
p(xi)

Rn =
1

n

n∑

i=1

δiyi
p(xi)p̂(xi)

(p̂(xi)− p(xi)) .

Using that Bn = supx∈C |p̂(x)−p(x)| a.s.−→ 0 and that i(p) > 0 we have that on a set with probability
1, for n large enough the following bound for Rn holds

Rn ≤ 2Bn

i(p)2
1

n

n∑

i=1

|yi|

and so, Rn
a.s.−→ 0 since E|Y | < ∞. It only remains to show that µ̃

a.s.−→ µ. For that purpose, define
zi = δiyi/p(xi), {zi}ni=1 is a sequence of independent and identically distributed variables such that
|z1| ≤ |y1|/i(p), hence E(|zi|) < ∞. On the other hand, D3 and A2 entail that

E

(
E

[
δY

p(x)
|x
])

= E

(
p(x)

p(x)
E[Y |x = x]

)
= E(Y ) = µ .

Then, using strong law of large numbers, we get the result.

Proof of Theorem Theorem 3.2.3. We begin by proving a). Let 1 ≤ α ≤ d. We have that

sup
xα∈Cα

|ĝα(xα)− gα(xα)| ≤ sup
xα∈Cα

∣∣∣∣∣
1

n

n∑

i=1

m̃(xα,xαi)−m(xα,xαi)

∣∣∣∣∣+ |µ̂− µ|

+ sup
xα∈Cα

∣∣∣∣∣
1

n

n∑

i=1

m(xα,xαi)− µ− gα(xα)

∣∣∣∣∣ = B1 +B2 +B3.

The uniform strongly convergence of m̃ and the fact that B1 ≤ supx∈C |m̃(x)−m(x)|, imply that

B1
a.s.−→ 0. On the other hand, B2

a.s.−→ 0 since µ̂ is a consistent estimator of µ. Then, in order to
prove a) it will be enough to show that B3

a.s.−→ 0. Using that m satisfies the additive model given
in A1, we get

B3 = sup
xα∈Cα

∣∣∣∣∣∣
1

n

n∑

i=1





d∑

τ=1,τ 6=α

gτ (xτi) + gα(xα)− gα(xα)





∣∣∣∣∣∣
= sup

xα∈Cα

∣∣∣∣∣∣
1

n

n∑

i=1

d∑

τ=1,τ 6=α

gτ (xτi)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

d∑

τ=1,τ 6=α

1

n

n∑

i=1

gτ (xτi)

∣∣∣∣∣∣
.
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Since E|gτ (Xτ )| < ∞ and A2a) holds, the result follows now from the strong law of large numbers.

b)The proof follows easily from a) and the consistency of µ̂ using the bound supx∈C |m̂(x)−m(x)| ≤
|µ̂− µ|+∑d

α=1 supxα∈Cα
|ĝα(xα)− gα(xα)|.

Proof of Theorem 3.2.4. The proof follows using analogous arguments to those considered in
the proof of Theorem 3.2.3 changing the averages to integrals and using A2b).
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