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Abstract When dealing with multivariate data, like classical PCA, robust PCA
searches for directions with maximal dispersion of the dataprojected on it. Instead
of using the variance as a measure of dispersion, a robust scale estimatorsn may be
used in the maximization problem. In this paper, we review some of the proposed
approaches to robust functional PCA including one which adapts the projection pur-
suit approach to the functional data setting.

1 Introduction

Functional data analysis provides modern analytical toolsfor data that are recoded
as images or as a continuous phenomenon over a period of time.Because of the
intrinsic nature of these data, they can be viewed as realizations of random func-
tions often assumed to be inL2(I ), with I a real interval or a finite dimensional
Euclidean set.

Principal Components Analysis (PCA) is a standard technique used in the context
of multivariate analysis as a dimension–reduction technique. The goal is to search
for directions with maximal dispersion of the data projected on it. The classical es-
timators are obtained taking as dispersion the sample variance leading to estimators
which are sensitive to atypical observations. To overcome this problem, Li and Chen
(1985) proposed a procedure based on the principles of projection-pursuit to define
the estimator of the first direction as

â = argmaxa:‖a‖=1sn(aTx1, · · · ,aTxn)
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wherex1, . . . ,xn are i.i.d.xi ∈ R
p and sn is a robust scale estimator. The subse-

quent eigenvectors are then obtained by imposing orthogonality conditions. When
dealing with high dimensional data, the projection pursuitapproach is preferable to
the plug–in approach that estimates the principal components as the eigenvectors
of a robust estimator of the covariance matrix. Effectively, as pointed out by Tyler
(2010), when the dimension is larger than the sample size, the only affine equivariant
multivariate location statistic is the sample mean vector and any affine equivariant
scatter matrix must be proportional to the sample covariance matrix, with the pro-
portionality constant not being dependent on the data. Hence, in that case, any affine
equivariant scatter estimator looses its robustness, so that most commonly used ro-
bust scatter estimators should be avoided for high dimensional data and projection
methods become useful. Croux and Ruiz-Gazen (2005) derivedthe influence func-
tions of the projection–pursuit principal components, while their asymptotic distri-
bution was studied in Cuiet al. (2003). A maximization algorithm for obtaininĝa
was proposed in Croux and Ruiz-Gazen (1996) and adapted for high dimensional
data in Crouxet al.(2007).

When dealing with functional data, an approach to functional principal com-
ponent analysis (FPCA) is to consider the eigenvalues and eigenfunctions of the
sample covariance operator. In a very general setting, Dauxoiset al.(1982) studied
their asymptotic properties. However, this approach may produce rough principal
components and in some situations, smooth ones may be preferable. One argument
in favour of smoothed principal components is that smoothing might reveal more
interpretable and interesting features of the modes of variation for functional data.
To provide smooth estimators, Boente and Fraiman (2000) considered a kernel ap-
proach by regularizing the trajectories. A different approach was proposed by Rice
and Silverman (1991) and studied by Pezzulli and Silverman (1993). It consists on
imposing an additive roughness penalty to the sample variance. On the other hand,
Silverman (1996) considered estimators based on penalizing the norm rather than
the sample variance. More recent work on estimation of the principal components
and the covariance function includes Hall and Hosseini–Nasab (2006), Hallet al.
(2006) and Yao and Lee (2006).

Not much work has been done in the area of robust functional data analysis. Of
course, whenX ∈ L2(I ), it is always possible to reduce the functional problem to
a multivariate one by evaluating the observations on a common output grid or by
using the coefficients of a basis expansion, as in Locantoreet al.(1999). However,
as mentioned by Gervini (2008) discretizing the problem hasseveral disadvantages
which include the choice of the robust scatter estimators when the size of the grid
is larger than the number of trajectories, as discussed above, the selection of the
grid and the reconstruction of the functional estimators from the values over the
grid. Besides, the theoretical properties of these procedures are not studied yet and
they may produce an avoidable smoothing bias see, for instance, Zhang and Chen
(2007). For this reason a fully functional approach to the problem is preferable. To
avoid unnecessary smoothing steps, Gervini (2008) considered a functional version
of the estimators defined in Locantoreet al. (1999) and derived their consistency
and influence function. Also, Gervini (2009) developed robust functional principal
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component estimators for sparsely and irregularly observed functional data and used
it for outlier detection. Recently, Sawantet al.(2011) consider a robust approach of
principal components based on a robust eigen–analysis of the coefficients of the ob-
served data on some known basis. On the other hand, Hyndman and Ullah (2007)
give an application of a robust projection-pursuit approach, applied to smoothed
trajectories. Recently, Baliet al. (2011) considered robust estimators of the func-
tional principal directions using a projection–pursuit approach that may include a
penalization in the scale or in the norm and derived their consistency and qualitative
robustness.

In this paper, we review some notions related with robust estimation for func-
tional data. The paper is organized as follows, Section 2 states some preliminary
concepts and notation that will be helpful along the paper. Section 3 states the prin-
cipal component problem, Section 4 review the robust proposals previously studied
while a real data example is given in Section 5.

2 Preliminaries and notation

Let us consider independent identically distributed random elementsX1, . . . ,Xn in a
separable Hilbert spaceH (oftenL2(I )) with inner product〈·, ·〉 and norm‖u‖=
〈u,u〉1/2 and assume thatE‖X1‖2 < ∞. Denote byµ ∈ H the mean ofX ∼ X1,
µ = E(X) and byΓX : H → H the covariance operator ofX . Let⊗ stand for the
tensor product onH , e.g., foru,v ∈ H , the operatoru⊗ v : H → H is defined as
(u⊗ v)w = 〈v,w〉u. With this notation, the covariance operatorΓX can be written as
ΓX = E{(X − µ)⊗ (X − µ)}, which is just the functional version of the variance–
covariance matrix in the classical multivariate analysis.The operatorΓX is linear,
self-adjoint and continuous. Moreover, it is a Hilbert–Schmidt operator having a
countable number of eigenvalues, all of them being real.

Let F denote the Hilbert space of Hilbert–Schmidt operators withinner prod-
uct defined by〈H1,H2〉F = trace(H1H2) = ∑∞

`=1〈H1u`,H2u`〉 and norm‖H‖F =

〈H,H〉1/2
F

= {∑∞
`=1‖Hu`‖2}1/2, where{u` : ` ≥ 1} is any orthonormal basis ofH ,

whileH1,H2 andH are Hilbert-Schmidt operators, i.e., such that‖H‖F <∞. Choos-
ing an orthonormal basis{φ` : ` ≥ 1} of eigenfunctions ofΓX related to the eigen-
values{λ` : ` ≥ 1} such thatλ` ≥ λ`+1, we get‖ΓX‖2

F
= ∑∞

`=1λ 2
` .

The Karhunen-Loève expansion for the process leads toX = µ+ ∑∞
`=1λ 1/2

` f` φ`,
where the random variables{ f` : ` ≥ 1} are the standardized coordinates ofX − µ
on the basis{φ` : ` ≥ 1}, that is,λ 1/2

m fm = 〈X −µ ,φm〉. Note thatE( fm) = 0, while
E( f 2

m) = 1 if λm 6= 0, E( fm fs) = 0 for m 6= s, sinceCOV(〈u,X − µ〉,〈v,X − µ〉) =
〈u,ΓX v〉. This expansion shows the importance of an accurate estimation of the prin-
cipal components as a way to predict the observations and examine their atypicity.
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3 The problem

As in multivariate analysis, there are two major approachesto develop robust es-
timators of the functional principal components. The first aims at developing ro-
bust estimates of the covariance operator, which will then generate robust FPCA
procedures. The second approach aims directly at robust estimates of the principal
direction bypassing a robust estimate of the covariance operator. They are based,
respectively, on the following properties of the principalcomponents

• Property 1. The principal component correspond to the eigenfunction ofΓX re-
lated to the largest eigenvalues.

• Property 2. The first principal component maximizes var(〈α,X〉) over S =
{α : ‖α‖= 1}. The subsequent are obtained imposing orthogonality constraints
to the first ones.

Let X1, · · · ,Xn, 1 ≤ i ≤ n, be independent observations fromX ∈ H , X ∼ P
with mean µ and covariance operatorΓX . An natural way to estimate the co-
variance operatorsΓX is to consider the empirical covariance operator given by
Γ̂X = ∑n

j=1

(
X j −X

)
⊗
(
X j −X

)
/n, whereX = ∑n

j=1X j/n. Dauxoiset al. (1982)

proved that
√

n
(
Γ̂X −ΓX

)
converges in distribution to a zero mean gaussian ran-

dom elementU of F . Besides, they derived the asymptotic behaviour of the eigen-
functions of the empirical covariance operator, leading toa complete study on the
behaviour of the classical unsmoothed estimators of the principal components. As
mentioned in the Introduction, smooth estimators of the covariance operators were
studied in Boente and Fraiman (2000) where also the asymptotic behaviour of its
eigenfunctions was obtained. This approach to principal components follows the
lines established byProperty 1.

As is well known, FPCA is a data analytical tool to describe the major modes
of variation of the process as a way to understand it and also to predict each curve.
Once we have estimatorŝφ` for the `-th principal component, 1≤ ` ≤ m, one can
predict each observation througĥXi = X +∑m

`=1 ξ̂i` φ̂`, whereξ̂i` are the scores of

Xi in the basis of principal components, i.e.,ξ̂i` = 〈Xi −X , φ̂`〉. In this sense, FPCA
offers an effective way for dimension reduction.

However, FPCA based on the sample covariance operator is notrobust. Hence, if
one suspects that outliers may be present in the sample, robust estimators should be
preferred. We recall that robust statistics seeks for reliable procedures when a small
amount of atypical observations arise in the sample. In mostcases, the estimators
are functionals over the set of probability measures evaluated at the empirical prob-
ability measure and in this case, robustness is related to continuity of the functional
with respect to the Prohorov distance.

In a functional setting influential observations may occur in several different
ways. As mentioned by Locantoreet al. (1999) they may correspond to atypical
trajectories entirely outlying, that is, with extreme values for theL2 norm, also to
isolated points within otherwise typical trajectories (corresponding to a single ex-
treme measurement) or they can be related to an extreme on some principal compo-
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nents, being the latter the more difficult to detect. In the functional case, these type
of observations may have a significantly impact on the empirical covariance oper-
ator even if they may not be outlying in the sense of being faraway of their center.
Detection of such observations is not easy and has been recently investigated by Sun
and Genton (2011).

As an example for each type of influential observations, Figure 1 showsn =
100 trajectories generated using a finite Karhunen–Loève expansion,Xi = Zi1φ1+
Zi2φ2 +Zi3φ3 whereφ1(x) = sin(4πx), φ2(x) = cos(7πx) andφ3(x) = cos(15πx).
The uncontaminated trajectories correspond toZi j ∼ N(0,σ2

j ) with σ1 = 4, σ2 = 2
andσ3 =1,Zi j independent for all 1≤ i≤ n and 1≤ j ≤ 3. The atypical observations
are plotted in thick lines and they correspond in each case to

a) add randomly to 10% the trajectories a factor of 12,
b) replaceX2(t) by X2(t)+25 when−0.4< t <−0.36
c) generate the random variablesZi, j asZi1 ∼ N(0,σ2

1 ),

(
Zi2

Zi3

)
∼ (1− ε) N

((
0
0

)
,diag

(
σ2

2 ,σ
2
3

))
+ ε N

((
4
4

)
,diag(0.01,0.01)

)

whereε = 0.1, leading in this case to 10 atypical observations, labelled 5, 7, 17,
32, 33, 40, 47, 69, 88 and 95.

It is clear that the influential observations can be clearly distinguished from the
plots in cases a) and b) while they are more difficult to identify in c). The boxplot
of the scoressi, j = 〈Xi − µ ,φ j〉, for 1≤ j ≤ 3 are provided in d), where the outliers
in the boxplot correspond to the atypical observations. It is worth noting that the
interdistance procedure described in Gervini (2010) only detects observation 33 as
outlier and identify four of the uncontaminated trajectories, labelled 64, 71, 84 and
39, as atypical. However, in practice the practitioner cannot construct the scoressi, j

and only scores from estimators of the principal directionscan be used. For that
reason, it is important to provide reliable estimators of the principal directions less
sensitive to influential observations.

4 Robust proposals for FPCA

RecallingProperty 1 of the principal components, an approach to robust functional
principal components is to consider the spectral value decomposition of a robust co-
variance or scatter operator. The spherical principal components, which were pro-
posed by Locantoreet al. (1999) and further developed by Gervini (2008), apply
this approach using the spatial covariance operator definedasV= E(Y ⊗Y ), where
Y = (X −η)/‖X −η‖ with η being the spatial median, defined in Gervini (2008),
that isη = argminα∈H E(‖X −α‖−‖X‖). The estimators of the principal direc-
tions are then the eigenfunctions of the sample version ofV, that is,V̂ = ∑n

i=1Yi ⊗
Yi/n, whereYi =(Xi − η̂)/‖Xi − η̂‖ andη̂ =argminα∈H ∑n

i=1 (‖Xi −α‖−‖Xi‖)/n.
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Fig. 1 Different influential trajectories with a) large values on the L2 norm b) a extreme value
over a small interval and c) extreme score on a principal component. Boxplot of the scores of the
generated data c) overφ j, 1≤ j ≤ 3.

Gervini (2008) studied the properties of the eigenfunctions of V̂ for functional
data concentrated on an unknown finite–dimensional space. It is easy to see, that

if X = µ + ∑∞
`=1λ 1/2

` f` φ` and f` have a symmetric distribution which ensures that
η = µ , then, the functional spherical principal components estimate the true direc-
tions sinceV has the same eigenfuntions asγ. Indeed,V = ∑`≥1 λ̃` φ` ⊗ φ` where

λ̃` = λ`E
(

f 2
` (∑s≥1λs f 2

s )
−1
)
.

From a different point of view, taking into accountProperty 2, Bali et al.(2011)
considered a projection–pursuit approach combined with penalization to obtain ro-
bust estimators of the principal directions which provide robust alternatives to the
estimators defined by Rice and Silverman (1991) and Silverman (1996).

To define these estimators, denote asP[α] for the distribution of〈α,X〉 when
X ∼ P. GivenσR(F) a robust univariate scale functional, defineσ : H → R as the
mapσ(α) = σR(P[α]). Let s2

n : H → R be the empirical version ofσ2, that is,
s2

n(α) = σ2
R (Pn[α]), whereσR(Pn[α]〉) stands for the functionalσR computed at the

empirical distribution of〈α,X1〉, . . . ,〈α,Xn〉.
Moreover, let us considerHS, the subset of “smooth elements”ofH andD :

HS →H a linear operator, referred as the “differentiator”. UsingD, they define the
symmetric positive semidefinite bilinear formd·, ·e : HS×HS→R, wheredα,βe=
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〈Dα,Dβ 〉. The “penalization operator” is then defined asΨ : HS → R, Ψ(α) =
dα,αe, and the penalized inner product as〈α,β 〉τ = 〈α,β 〉+ τdα,βe. Therefore,
‖α‖2

τ = ‖α‖2+ τΨ(α). Besides, let{δi}i≥1 be a basis ofH and denoteHpn the
linear space spanned byδ1, . . . ,δpn andSpn = {α ∈ Hpn : ‖α‖= 1}.

The robust projection pursuit estimators are then defined as
{

φ̂1 = α∈Hpn ,‖α‖τ=1
{

s2
n(α)−ρΨ(α)

}

φ̂m = argmaxα∈B̂m,τ

{
s2

n(α)−ρΨ(α)
}

2≤ m,
(1)

whereB̂m,τ = {α ∈ Hpn : ‖α‖τ = 1,〈α, φ̂ j〉τ = 0 , ∀ 1≤ j ≤ m−1}. In the above
definition, we understand that the productsρΨ(α) or τΨ (α) are defined as 0 when
ρ = 0 orτ = 0 respectively, even whenα /∈HS for which caseΨ(α) =∞ and when
pn = ∞, Hpn = H .

With this definition and by takingpn = ∞, the robust raw estimators are obtained
whenρ = τ = 0, while the robust estimators penalizing the norm and scalecor-
respond toρ = 0 andτ = 0, respectively. On the other hand, the basis expansion
approach correspond a finite choice forpn andτ = ρ = 0.

Bali et al.(2011) derived the qualitative robustness of these estimators and show
that they turn out to be consistent to the functional principal component directions
defined as {

φR,1(P) = argmax‖α‖=1σ(α)

φR,m(P) = argmax‖α‖=1,α∈Bm
σ(α), 2≤ m ,

whereBm = {α ∈H : 〈α,φR, j(P)〉= 0, 1≤ j ≤m−1}. To provide an explanation
of what the directionsφR,m(P) represent, assume that there exists here exists a con-
stantc > 0 and a self–adjoint, positive semidefinite and compact operatorΓ0, such
that for anyα ∈H , σ2(α) = c〈α,Γ0α〉. Moreover, denote byλ1 ≥ λ2 ≥ . . . are the
eigenvalues ofΓ0 and byφ j the eigenfunction ofΓ0 associated toλ j. Assume that
for someq ≥ 2, and for all 1≤ j ≤ q, λ1 > λ2 > .. . > λq > λq+1, thenφR, j(P) = φ j.
Conditions that guarantee thatσ2(α) = c〈α,Γ0α〉 when a robust scale is used are
discussed in Baliet al.(2011) where also the results of an extensive simulation study
showing the advantages of using robust procedures are reported.

As an example, we compute the robust projection–pursuit estimators for the gen-
erated data in Figure 1 c). The robust estimators correspondto anM−scale with

score function the Tukey’s functionχc(y) = min
(

3(y/c)2−3(y/c)4+(y/c)6 ,1
)

with tuning constantc = 1.56 and breakdown point 1/2. We have also computed the
classical estimators which correspond to selectσR as the standard deviation (SD).
Figure 2 report the results corresponding to the raw estimators of each principal
component. The solid line correspond to the true direction while the line with tri-
angles to the estimators. From these plots we observe the sensitivity of the classical
procedure to the influential observations introduced.

As detection rule, Figure 3 gives parallel boxplots of the scoresŝi, j = 〈Xi− µ̂, φ̂ j〉
whenφ̂ j are the classical and robust estimators. For the classical estimators,̂µ = X ,
while for the robust oneŝµ = argminθ∈H ∑n

i=1 (‖Xi −θ‖−‖Xi‖)/n. Due to a
masking effect, the boxplots of the scores over the classical estimators do not
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Fig. 2 Estimators of the principal directions for the generated data c). The solid line correspond to
the true direction while the line with triangles to the estimators.
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Fig. 3 Boxplots of the estimated scores〈Xi, φ̂ j〉 for the generated data c).

reveal any outlier. On the other hand, when using the robust projection–pursuit
estimators the largest values ofŝi,3 correspond the atypical observations gener-
ated. It is worth noting that the same conclusions are obtained if the plots of
‖r̂i‖= ‖Xi− µ̂ −∑3

j=1 ŝi, jφ̂ j‖ are considered (see Figure 4). The residual plot corre-
sponding to theM−scale show clearly that the residual norm of the atypical obser-
vations are out of bound. On the other hand, when consideringthe eigenfunctions
of the sample covariance operator, the observations with the largest residuals cor-
respond to those labelled 19, 39, 40, 71 and 94, that is, only one of the atypical
observations appears with a large residual, so leading to the wrong conclusions.
Hence, robust procedures should be preferred.
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Fig. 4 Residual plots for the generated data c).

5 Lip data example

The following example was considered in Gervini (2008) to show the effect of out-
liers on the functional principal components. A subject wasasked to say the word
bob 32 times and the position of lower lip was recorded at each time point. Lip
movement data was originally analyzed by Malfait and Ramsay(2003). In Figure
5, the plotted curves correspond to the 32 trajectories of the lower lip versus time.
Three of these curves (plotted with thick lines on Figure 5 (a)) seem to be out of line,
with delayed second peaks. To determine whether or not thesecurves are within the
normal range of variability, it is necessary to estimate accurately the principal com-
ponents.

(a) (b)
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Fig. 5 Lip-movement data. Smoothed lower-lip trajectories of an individual pronouncingbob 32
times. (a) The trajectories 24,25 and 27 are indicated with thick lines (b) The trajectories 14, 24,25
and 27 are indicated with thick lines.

As in Gervini (2008), we have estimated 5 principal directions using the robust
projection–pursuit estimators defined in (1) related to theM−scale with Tukey’s
score function. The robust and classical principal components are given in Figure 6
where the classical and robust raw estimators are plotted with a solid line and with
a broken line, respectively. We refer to Gervini (2008) to understand the type of
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variability explained by these components. Besides, as described therein a positive
component score will be associated with curves that show a large first peak and a
delayed second peak, as those observed in the three atypicalcurves.

Figure 7 presents the parallel boxplots of the scoresŝi, j = 〈Xi − µ̂ , φ̂ j〉 when
φ̂ j are the robust estimators together with the plot of the norm of the residuals

‖r̂(q)i ‖ = ‖Xi − µ̂ −∑q
j=1 ŝi, jφ̂ j‖ whereµ̂ = argminθ∈H ∑n

i=1 (‖Xi −θ‖−‖Xi‖)/n.
We only present the plots for the robust fit since we have already shown that when
considering the classical one a masking effect may appear.

The residual plot corresponding to theM−scale shows clearly that the resid-
ual norm of the atypical observations are out of bound. Figure 7 also present the
boxplots of‖r̂i‖. Due to the skewness of the distribution of the norm, we have con-
sidered the adjusted boxplots (see Hubert and Vandervieren, 2008) instead of the

usual ones. The two outliers appearing in the boxplot of the robust residuals‖r̂(1)i ‖
and‖r̂(5)i ‖ correspond to the observations 24 and 25. It is worth noticing that the
trajectory labelled 14 also corresponds to the large negative outlier appearing in the
scoreŝsi,4 while the observations 24, 25 and 27 appear as outliers with large nega-
tive scoreŝsi,2. Trajectory 14 is almost completely explained by the first four prin-

cipal component, since the minimum and maximum ofr̂(4)i equal−1.084×10−18

and 9.758×10−19, respectively. Figure 7 (d) gives the residual curvesr̂(4)i which
do not suggest that a finite four–dimensional Karhunen–Loève representation suf-
fices to explain the behaviour of the data while observation 14 may be explained by
φ̂1, . . . , φ̂4 with the largest absolute scores on the first and fourth estimated compo-
nent. Figure 5(b) indicates with thick lines the observations 14, 24, 25 and 27. From
this plot, the curve related to observation 14 has a large first peak, a very smooth sec-
ond peak while its fourth peak is clearly smaller and occurring before the majority
of the data.
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