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Abstract When dealing with multivariate data, like classical PCAbust PCA
searches for directions with maximal dispersion of the gatgected on it. Instead
of using the variance as a measure of dispersion, a robustestamatois, may be
used in the maximization problem. In this paper, we reviemsof the proposed
approaches to robust functional PCA including one whiclpésihe projection pur-
suit approach to the functional data setting.

1 Introduction

Functional data analysis provides modern analytical tiwlslata that are recoded
as images or as a continuous phenomenon over a period of Bievause of the
intrinsic nature of these data, they can be viewed as réalimof random func-
tions often assumed to be if(.#), with .# a real interval or a finite dimensional
Euclidean set.

Principal Components Analysis (PCA) is a standard techeictged in the context
of multivariate analysis as a dimension—reduction tealmid he goal is to search
for directions with maximal dispersion of the data projeaba it. The classical es-
timators are obtained taking as dispersion the samplen@gikeading to estimators
which are sensitive to atypical observations. To overcdrisgaroblem, Li and Chen
(1985) proposed a procedure based on the principles ofgtimjepursuit to define
the estimator of the first direction as

A T T
a= argmay, a|—15n(a X1, -,a Xn)
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wherexy, ..., X, are i.i.d.x; € RP ands, is a robust scale estimator. The subse-
quent eigenvectors are then obtained by imposing orthdiggianditions. When
dealing with high dimensional data, the projection purapjroach is preferable to
the plug—in approach that estimates the principal compsresithe eigenvectors
of a robust estimator of the covariance matrix. Effectiyaly pointed out by Tyler
(2010), when the dimension is larger than the sample sieayily affine equivariant
multivariate location statistic is the sample mean vectat any affine equivariant
scatter matrix must be proportional to the sample covaeanatrix, with the pro-
portionality constant not being dependent on the data. elénthat case, any affine
equivariant scatter estimator looses its robustness,asatbst commonly used ro-
bust scatter estimators should be avoided for high dimeasibata and projection
methods become useful. Croux and Ruiz-Gazen (2005) dettieeithfluence func-
tions of the projection—pursuit principal components, leltieir asymptotic distri-
bution was studied in Cuwgt al.(2003). A maximization algorithm for obtainirey
was proposed in Croux and Ruiz-Gazen (1996) and adapteddbrdimensional
data in Crouxet al.(2007).

When dealing with functional data, an approach to functigmancipal com-
ponent analysis (FPCA) is to consider the eigenvalues agehtinctions of the
sample covariance operator. In a very general setting, Baex al. (1982) studied
their asymptotic properties. However, this approach maypce rough principal
components and in some situations, smooth ones may be giskfe©ne argument
in favour of smoothed principal components is that smoathminght reveal more
interpretable and interesting features of the modes otian for functional data.
To provide smooth estimators, Boente and Fraiman (200%jidered a kernel ap-
proach by regularizing the trajectories. A different agmo was proposed by Rice
and Silverman (1991) and studied by Pezzulli and Silverri@83). It consists on
imposing an additive roughness penalty to the sample wegiadn the other hand,
Silverman (1996) considered estimators based on pengliag norm rather than
the sample variance. More recent work on estimation of thecimal components
and the covariance function includes Hall and HosseiniaNg2006), Hallet al.
(2006) and Yao and Lee (2006).

Not much work has been done in the area of robust functiortal azalysis. Of
course, wheriX € L?(.#), it is always possible to reduce the functional problem to
a multivariate one by evaluating the observations on a comoudput grid or by
using the coefficients of a basis expansion, as in Locarmbat (1999). However,
as mentioned by Gervini (2008) discretizing the problemde&ral disadvantages
which include the choice of the robust scatter estimatorsnithe size of the grid
is larger than the number of trajectories, as discussedealtbe selection of the
grid and the reconstruction of the functional estimatoosifrthe values over the
grid. Besides, the theoretical properties of these proeedare not studied yet and
they may produce an avoidable smoothing bias see, for iostathang and Chen
(2007). For this reason a fully functional approach to thebpem is preferable. To
avoid unnecessary smoothing steps, Gervini (2008) coresicefunctional version
of the estimators defined in Locantoge al. (1999) and derived their consistency
and influence function. Also, Gervini (2009) developed itfunctional principal
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component estimators for sparsely and irregularly obsEfitvectional data and used

it for outlier detection. Recently, Sawaet al.(2011) consider a robust approach of
principal components based on a robust eigen—analysig aiéfficients of the ob-
served data on some known basis. On the other hand, Hyndndadlkd (2007)
give an application of a robust projection-pursuit apphyapplied to smoothed
trajectories. Recently, Bakt al. (2011) considered robust estimators of the func-
tional principal directions using a projection—pursuipegach that may include a
penalization in the scale or in the norm and derived theistancy and qualitative
robustness.

In this paper, we review some notions related with robusinedion for func-
tional data. The paper is organized as follows, Section 2stsome preliminary
concepts and notation that will be helpful along the papectiSn 3 states the prin-
cipal component problem, Section 4 review the robust pralsgseviously studied
while a real data example is given in Section 5.

2 Preliminaries and notation

Let us consider independent identically distributed ranétements{s, ..., Xy in a
separable Hilbert spac# (oftenL?(.#)) with inner product-,-) and normj|u|| =
(u,u)1/2 and assume thdt|X1||? < c. Denote byu € . the mean ofX ~ Xy,

u =E(X) and byl'x : 5# — 5 the covariance operator &f. Let ® stand for the
tensor product o, e.g., foru,v € J#, the operatou®v: 77 — 7 is defined as
(u® v)w = (v,w)u. With this notation, the covariance operafgrcan be written as
'x =E{(X—pu)® (X — )}, which is just the functional version of the variance—
covariance matrix in the classical multivariate analy$ise operatofx is linear,
self-adjoint and continuous. Moreover, it is a Hilbert—8itht operator having a
countable number of eigenvalues, all of them being real.

Let .# denote the Hilbert space of Hilbert—Schmidt operators wwitier prod-
uct defined by(H1,H) # = tracdH1H2) = S7_; (Hiug, Houy) and norm||H||z =
(H, H)(lg/»2 = {371 |Hu||?}*/2, where{u, : ¢ > 1} is any orthonormal basis o,
while H1, Hy andH are Hilbert-Schmidt operators, i.e., such thidt| » < . Choos-
ing an orthonormal basigy : ¢ > 1} of eigenfunctions of x related to the eigen-
values{A : ¢ > 1} such that\, > A,.1, we get|[[x||3 = S5 1A%

The Karhunen-Loeve expansion for the process leadstou + z;;l/\[l/z frq,
where the random variabldd, : ¢ > 1} are the standardized coordinatesof u
onthe basig@ : ¢ > 1}, thatisAx/ % fm = (X — 1, @n). Note thatE( fr,) = 0, while
E(f2) = 1if Am# 0, E(fm fs) = 0 form# s, sincecov ({(u,X — u), (v,X — u)) =
(u,I'xVv). This expansion shows the importance of an accurate eimaftthe prin-
cipal components as a way to predict the observations andiegdheir atypicity.
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3 The problem

As in multivariate analysis, there are two major approa¢betevelop robust es-
timators of the functional principal components. The fiighsat developing ro-
bust estimates of the covariance operator, which will thenegate robust FPCA
procedures. The second approach aims directly at robustages of the principal
direction bypassing a robust estimate of the covarianceatpre They are based,
respectively, on the following properties of the principamponents

e Property 1. The principal component correspond to the eigenfunctidnyofe-
lated to the largest eigenvalues.

e Property 2. The first principal component maximizes véaa, X)) over . =
{a:||a|| = 1}. The subsequent are obtained imposing orthogonality caints
to the first ones.

Let X1,---,Xn, 1 <i < n, be independent observations frotne 27, X ~ P
with meanu and covariance operatdrk. An natural way to estimate the co-
variance operatorEx is to consider the empirical covariance operator given by
Mx = Y11 (Xj—X) @ (X; —X) /n, whereX = 3"_, X;/n. Dauxoiset al. (1982)
proved that,/n (Fx — Fx) converges in distribution to a zero mean gaussian ran-

dom element of .%. Besides, they derived the asymptotic behaviour of theneige
functions of the empirical covariance operator, leading tmomplete study on the
behaviour of the classical unsmoothed estimators of thecjp@l components. As
mentioned in the Introduction, smooth estimators of theacewnce operators were
studied in Boente and Fraiman (2000) where also the asyioftehaviour of its
eigenfunctions was obtained. This approach to principatpanents follows the
lines established biproperty 1.

As is well known, FPCA is a data analytical tool to describe thajor modes
of variation of the process as a way to understand it and alpeetdict each curve.
Once we have estimatogg for the (-th principal component, & ¢ < m, one can
predict each observation throug?h: X+3m, & @ whereéj, are the scores of
X; in the basis of principal components, i.&,= (X; —Yfm. In this sense, FPCA
offers an effective way for dimension reduction.

However, FPCA based on the sample covariance operator islmggt. Hence, if
one suspects that outliers may be present in the samplestrestimators should be
preferred. We recall that robust statistics seeks forldiprocedures when a small
amount of atypical observations arise in the sample. In mases, the estimators
are functionals over the set of probability measures etatliat the empirical prob-
ability measure and in this case, robustness is relatedniincity of the functional
with respect to the Prohorov distance.

In a functional setting influential observations may ocaurseveral different
ways. As mentioned by Locantoeg al. (1999) they may correspond to atypical
trajectories entirely outlying, that is, with extreme wasufor theL.?> norm, also to
isolated points within otherwise typical trajectoriesrfesponding to a single ex-
treme measurement) or they can be related to an extreme a@amipal compo-
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nents, being the latter the more difficult to detect. In thectional case, these type
of observations may have a significantly impact on the emgligovariance oper-
ator even if they may not be outlying in the sense of beingwWayaof their center.
Detection of such observations is not easy and has beertlseiteestigated by Sun
and Genton (2011).

As an example for each type of influential observations, fEdu showsn =
100 trajectories generated using a finite Karhunen—LogparesionX; = Zj ¢ +
Zix @ + Ziz@s where @ (X) = sin(4nx), @ (x) = coq7mx) and @3(x) = cog15mx).
The uncontaminated trajectories correspond;fo~ N(O, sz) with oy =4,0,=2
andoz =1,7;j independentforall £ i <nand 1< j < 3. The atypical observations
are plotted in thick lines and they correspond in each case to

a) add randomly to 10% the trajectories a factor of 12,
b) replaceXa(t) by Xz(t) + 25 when—0.4 <t < —0.36
c) generate the random variab®g aszj; ~ N(O, 012),

(22) ~(1—&)N ((8) ,diag(o§,0§)> +eN ((j) ,diag(0.0l,0.0l))

wheree = 0.1, leading in this case to 10 atypical observations, labdle7, 17,
32, 33, 40, 47, 69, 88 and 95.

It is clear that the influential observations can be clearsfimguished from the
plots in cases a) and b) while they are more difficult to idgnti c). The boxplot
of the scores j = (Xi — i, @), for 1 < j < 3 are provided in d), where the outliers
in the boxplot correspond to the atypical observationss Worth noting that the
interdistance procedure described in Gervini (2010) oelgcts observation 33 as
outlier and identify four of the uncontaminated trajectsrilabelled 64, 71, 84 and
39, as atypical. However, in practice the practitioner cdiwonstruct the scoress;
and only scores from estimators of the principal directioas be used. For that
reason, it is important to provide reliable estimators ef phincipal directions less
sensitive to influential observations.

4 Robust proposalsfor FPCA

RecallingProperty 1 of the principal components, an approach to robust funation
principal components is to consider the spectral value m@osition of a robust co-
variance or scatter operator. The spherical principal aorepts, which were pro-
posed by Locantoret al. (1999) and further developed by Gervini (2008), apply
this approach using the spatial covariance operator defis¥éd=E (Y @ Y), where

Y = (X—=n)/|[X = n| with n being the spatial median, defined in Gervini (2008),
that isn = argmin, ,-E (|| X — a]| — || X]|). The estimators of the principal direc-
tions are then the eigenfunctions of the sample versiow, dhat is,V = SLiYi®
Yi/n, where¥; = (X — 1)/[1% — Al andf = argmin,. ,» 571 (X — al| — [X]) /n.
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Fig. 1 Different influential trajectories with a) large values dret.2 norm b) a extreme value
over a small interval and c) extreme score on a principal amapt. Boxplot of the scores of the
generated data c) ovex, 1 < j <3.

Gervini (2008) studied the properties of the eigenfuncstiom\7 for functional
data concentrated on an unknown finite—dimensional spageebsy to see, that
if X =pu+ Z?:l)‘zl/z f, @ and f, have a symmetric distribution which ensures that
n = u, then, the functional spherical principal componentsweste the true direc-
tions sinceV has the same eigenfuntions gsindeed,V = ¥ ;~1 A, @ ® @ where
A =AE ( f;(zszl)\sfsz)_l).

From a different point of view, taking into accoupitoperty 2, Bali et al.(2011)
considered a projection—pursuit approach combined wittalization to obtain ro-
bust estimators of the principal directions which providbust alternatives to the
estimators defined by Rice and Silverman (1991) and Silver(h@96).

To define these estimators, denotePas] for the distribution of(ar, X) when
X ~ P. Givenogr(F) a robust univariate scale functional, defme .72 — R as the
mapo(a) = or(P[a]). Let 2 : »# — R be the empirical version af?, that is,
s(a) = o (Py[a]), whereor(Pn[a])) stands for the functionatz computed at the
empirical distribution of a, X3), ..., {(a,Xn).

Moreover, let us considef#s, the subset of “smooth elements’gf” andD :
5 — 2 alinear operator, referred as the “differentiator”. Usinghey define the
symmetric positive semidefinite bilinear fofm -1 : 775 x 75 — R, where[a, 3] =
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(Da,Dp). The “penalization operator” is then defined@¥s s — R, W(a) =
[a,a], and the penalized inner product @s 8); = (a,B) + 1[a,B]. Therefore,
|a]|2 = ||al|?+ tW(a). Besides, le{d }i>1 be a basis of# and denote, the
linear space spanned By, ..., dp, and.p, = {a € J7, : ||a|| = 1}.

The robust projection pursuit estimators are then defined as

[ = qe st lali—1{Sa(a) — p¥(a)} )
@ = argmax,_; {f(a)—pW(a)} 2<m,
where@m ={a e, ||a|.= 1,(0{,@,-)1 =0,Vv1<j<m-1}.Inthe above
definition, we understand that the produgtg(a) or T¥(a) are defined as 0 when
p =0 ort =0 respectively, even whem ¢ 75 for which case¥(a) = 0 and when
Pn = o, ‘%n =

With this definition and by taking, = «, the robust raw estimators are obtained
whenp = 1 = 0, while the robust estimators penalizing the norm and scaie
respond top = 0 andt = 0, respectively. On the other hand, the basis expansion
approach correspond a finite choice fgrandt = p = 0.

Bali et al.(2011) derived the qualitative robustness of these estirmaind show
that they turn out to be consistent to the functional priatg@mponent directions
defined as

{ @r1(P) = argmay,_;0(a)
Grm(P) = argmaXy _ ge5,0(a), 2<m,

whereZm={a € 7 :{(a,¢ j(P)) =0, 1< j <m-1}. To provide an explanation
of what the directiongk m(P) represent, assume that there exists here exists a con-
stantc > 0 and a self—adjoint, positive semidefinite and compactaiperf, such
that for anya € 7, 0?(a) = c(a,Toa). Moreover, denote by > A, > ... are the
eigenvalues of g and by¢; the eigenfunction of g associated td;. Assume that
forsomeq > 2, and forall 1< j <, A1 > A2 > ... > Aq > Agy1, thengk j(P) = ¢.
Conditions that guarantee that(a) = c(a,loa) when a robust scale is used are
discussed in Balet al.(2011) where also the results of an extensive simulatiadystu
showing the advantages of using robust procedures areteepor

As an example, we compute the robust projection—pursubasirs for the gen-
erated data in Figure 1 c). The robust estimators correspmad M —scale with

score function the Tukey’s functiog(y) = min (3 (y/c)? —3(y/c)* + (y/c)®, 1)

with tuning constant = 1.56 and breakdown point/2. We have also computed the
classical estimators which correspond to setgctas the standard deviatios).
Figure 2 report the results corresponding to the raw estireaif each principal
component. The solid line correspond to the true directibileathe line with tri-
angles to the estimators. From these plots we observe tgigigy of the classical
procedure to the influential observations introduced. R

As detection rule, Figure 3 gives parallel boxplots of theress j = (X — 1, @)
whenquj are the classical and robust estimators. For the classiiela&orsi = X,
while for the robust onegi = argmiry. ,, 311 (||[Xi — 6| — [|X]|) /n. Due to a
masking effect, the boxplots of the scores over the clalsgiségmators do not
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Fig. 2 Estimators of the principal directions for the generatetd d® The solid line correspond to
the true direction while the line with triangles to the esttors.
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Fig. 3 Boxplots of the estimated scoréx, (Apj> for the generated data c).

reveal any outlier. On the other hand, when using the robrgjegtion—pursuit
estimators the largest values §k correspond the atypical observations gener-
ated. It is worth noting that the same conclusions are oéthih the plots of
%l =X — 1 — Z?=l§7j @;|| are considered (see Figure 4). The residual plot corre-
sponding to théVl—scale show clearly that the residual norm of the atypicaéobs
vations are out of bound. On the other hand, when considénmgigenfunctions

of the sample covariance operator, the observations wihattgest residuals cor-
respond to those labelled 19, 39, 40, 71 and 94, that is, amdyad the atypical
observations appears with a large residual, so leadingegavtiong conclusions.
Hence, robust procedures should be preferred.
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Fig. 4 Residual plots for the generated data c).

5 Lip data example

The following example was considered in Gervini (2008) towlthe effect of out-
liers on the functional principal components. A subject waked to say the word
bob 32 times and the position of lower lip was recorded at eacle imint. Lip
movement data was originally analyzed by Malfait and Ran{2@93). In Figure
5, the plotted curves correspond to the 32 trajectoriesefdver lip versus time.
Three of these curves (plotted with thick lines on Figure)bgaem to be out of line,
with delayed second peaks. To determine whether or not theses are within the
normal range of variability, it is necessary to estimateuaately the principal com-
ponents.

Fig. 5 Lip-movement data. Smoothed lower-lip trajectories ofrradiviidual pronouncingob 32
times. (a) The trajectories 24,25 and 27 are indicated \ittkiines (b) The trajectories 14, 24,25
and 27 are indicated with thick lines.

As in Gervini (2008), we have estimated 5 principal direcsiaising the robust
projection—pursuit estimators defined in (1) related to Mhescale with Tukey’s
score function. The robust and classical principal comptsare given in Figure 6
where the classical and robust raw estimators are plottddansolid line and with
a broken line, respectively. We refer to Gervini (2008) taerstand the type of
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variability explained by these components. Besides, asritbes! therein a positive
component score will be associated with curves that showge lérst peak and a
delayed second peak, as those observed in the three atypivak. R

Figure 7 presents the parallel boxplots of the sca&g¢s= (Xi — I, @) when
(Apj are the robust estimators together with the plot of the nofrthe residuals
IRV = % — i — 37,8 j@il| wherefi = argminy. , 37 (% — 6] — [[%[]) /n.
We only present the plots for the robust fit since we have dirsaown that when
considering the classical one a masking effect may appear.

The residual plot corresponding to thé—scale shows clearly that the resid-
ual norm of the atypical observations are out of bound. FEdguglso present the
boxplots of||fi||. Due to the skewness of the distribution of the norm, we hawve ¢
sidered the adjusted boxplots (see Hubert and Vanderyi2B£8) instead of the

usual ones. The two outliers appearing in the boxplot of tieist residualﬁffl)n

and ||Fi(5)|| correspond to the observations 24 and 25. It is worth naitiat the
trajectory labelled 14 also corresponds to the large negatitlier appearing in the
scoress 4 while the observations 24, 25 and 27 appear as outliers atgelnega-
tive scoress ». Trajectory 14 is almost completely explained by the firstrfprin-

cipal component, since the minimum and maximun; 70F equal—1.084x 1018

and 9758x 10 1°, respectively. Figure 7 (d) gives the residual curf/fe%whlch
do not suggest that a finite four—dimensional Karhunenvkaepresentation suf-
fices to explain the behaviour of the data while observatibmay be explained by
q;l, ., @ with the largest absolute scores on the first and fourth estichcompo-
nent. Figure 5(b) indicates with thick lines the observagit©4, 24, 25 and 27. From
this plot, the curve related to observation 14 has a largepfeak, a very smooth sec-
ond peak while its fourth peak is clearly smaller and ocagrtiefore the majority
of the data.
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