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Abstract

In this paper, we introduce two families of robust kernel–based regression estimators
when the regressors are random objects taking values in a Riemannian manifold. The
first proposal is a local M -estimator based on kernel methods, adapted to the geometry
of the manifold. For the second proposal the weights are based on k-nearest neighbor
kernel methods. Strong uniform consistency results as well as the asymptotically nor-
mality of both families are established. Finally, a Monte Carlo study is carried out to
compare the performance of the robust proposed estimators with the classical ones, in
normal and contaminated samples.
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1 Introduction

Nonparametric inference has gained a lot of attention, in recent years, in order to explore
the nature of complex nonlinear phenomena. The idea of nonparametric inference is to
leave the data to show the structure lying beyond them, instead of imposing one. Nadaraya
(1964) and Watson (1964), introduced kernel–based estimators for the regression function
r(x) = E(y|x), when dealing with independent observations {(yi,xi)}ni=1 such that yi ∈ IR,
xi ∈ IRd. Nearest neighbor with kernel methods for the regression function were introduced
by Collomb (1980).

∗This research was partially supported by Grants X-094 from the Universidad de Buenos Aires, pid 5505
from conicet and pav 120 and pict 21407 from anpcyt, Argentina.
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Both of them are a weighted average of the response variables and thus, they are highly
sensitive to large fluctuations of the responses. As mentioned by several authors, the treat-
ment of outliers is an important step in highlighting features of a data set since extreme
points can affect the scale and the shape of any estimate of the regression function based on
local averaging, leading to possible wrong conclusions. This has motivated the interest in
combining the ideas of robustness with those of smoothed regression, to develop procedures
which will be resistant to deviations from the central model in nonparametric regression
models. As it is well known, robust estimators can be obtained via local M−estimates.
The first proposal of robust estimates for nonparametric regression was given by Cleve-
land (1979) who adapted a local polynomial fit by introducing weights to deal with large
residuals. See also, Tsybakov (1982) and Härdle (1984), who studied pointwise asymp-
totic properties of a robust version of the Nadaraya–Watson method. These results were
extended to M−type scale equivariant kernel estimates by Härdle and Tsybakov (1988)
and by Boente and Fraiman (1989) who also considered robust equivariant nonparametric
estimates using nearest neighbor weights. A review of several methods leading to robust
nonparametric regression estimators can be seen in Härdle (1990).

The proposals mentioned above assume that the predictors x belong to a subset of IRd

with non empty interior and therein, the Euclidean structure of IRd is considered. However,
in many applications, the predictors x take values on a Riemannian manifold more than
on IRd and this structure of the explanatory variables needs to be taken into account when
considering neighborhoods around a fixed point x. Several authors such as, Mardia and
Jupp (2000), Hall et al. (1987) and Fischer et al. (1993) discussed methods for spherical
and circular data analysis while generalizations to different types of manifolds have been
studied by Lee and Ruymgaart (1996), Hendriks (1990) and Hendriks et al. (1993). An
approach based on the Riemannian geodesic distance on the manifold was considered by
Pelletier (2005) for the problem of estimating the density of random objects on a compact
Riemannian manifold and also by Pelletier (2006) for that of estimating the regression
function which is the aim of our paper. More precisely, let (M, g) be a closed Riemannian
manifold of dimension d and let (y,x) be a random vector such that y ∈ IR and x ∈M . The
classical nonparametric setting assumes that the response variables have finite expectation
and focuses on the estimation of the regression function r(p) = E(y|x = p). Pelletier’s
(2006) idea was to build an analogue of a kernel on (M, g) by using a positive function of
the geodesic distance on M , which is then normalized by the volume density function of
(M, g) to take into account for curvature. Under standard assumptions on the kernel and
the bandwidth sequence, Pelletier (2006) derives an expression for the asymptotic pointwise
bias and variance as well as an expression for the asymptotic integrated mean square error.

As in the Euclidean setting, the estimators introduced by Pelletier (2006) are a weighted
average of the response variables yi with weights depending on the distance between xi and
p implying that they will suffer from the same lack of robustness that the Nadaraya–Watson
estimators with carriers in the Euclidean space IRd. In this paper we consider two families
of robust estimators for the regression function when the explanatory variables xi take
values on a Riemannian manifold (M, g). The first family combine the ideas of robust
smoothing in Euclidean spaces with the kernel weights introduced in Pelletier (2005). The

2



second one generalizes to our setting the proposal given by Boente and Fraiman (1989),
who considered robust nonparametric estimates using nearest neighbor weights when the
predictors x are on IRd. Therefore, the aim of this paper is to introduce local M−estimators
adapted to regressors lying on a d−dimensional Riemannian manifold and to study their
asymptotic properties. It is worth mentioning that robust estimators for directional data
were considered among others by He (1992), Ko and Guttorp (1988) and also by Agostinelli
(2007) who studied robust methods for circular data analysis.

As in Pelletier (2006), these two families of estimators, kernel or k-nearest neighbor
with kernel, will be consistent with the respective estimators on Euclidean spaces, i.e., they
reduce to local M−estimators based on standard kernel or k-nearest with kernel weights
whenM is IRd. Moreover, they converge at the same rate as the Euclidean kernel estimators.
This result generalizes the conclusions obtained by Pelletier (2006) using the pointwise mean
square error.

This paper is organized as follows. In Section 2, we introduce two versions of robust local
M−estimators of the regression function, adapted to the fact that the explanatory variables
xi take values on a Riemannian manifold. Uniform consistency of the proposed estimators is
derived in Section 3 while in Section 4 the asymptotic distributions are obtained. In Section
5, the behavior of the classical and robust approach are compared through a Monte Carlo
study under normality and contamination, for moderate sample sizes. Proofs are given in
the Appendix.

2 Robust nonparametric estimates based on kernel method

2.1 Preliminaries

Let (M, g) be a d−dimensional oriented Riemannian manifold without boundary. Denote by
dg the distance induced by g and by injgM = inf

p∈M
sup{s ∈ IR > 0 : Bs(p) is a normal ball}

the injectivity radius of (M, g).

Throughout this paper, we will assume that (M, g) is complete, i.e., (M,dg) is a complete
metric space, and that injgM is strictly positive. Some examples of Riemannian manifolds
with positive injectivity radius are IRd with g the canonical metric (injgIRd = ∞) and the d
dimensional sphere Sd with the metric induced by the canonical metric of IRd (injgSd = π).
It is also well known that compact Riemannian manifolds have positive injectivity radius.
Moreover, complete and simply connected Riemannian manifolds with negative or null
sectional curvature, have also this property. Some standard results on differential geometry
can be seen for instance in Berger et. al (1971), Besse (1978), Boothby (1975) and Do
Carmo (1988).

From now on, we will denote by Bs(p) the normal ball in (M, g) centered at p with
radius s. Then, Bs(0p) = exp−1

p (Bs(p)) is an open neighborhood of 0p in TpM , the tangent
space of M at p, and so it has a natural structure of differential manifold. We are going to
consider the Riemannian metrics g ′ and g ′ ′ in Bs(0p), where g ′ = exp∗p(g) is the pullback
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of g by the exponential map and g ′ ′ is the canonical metric induced by gp in Bs(0p).
Let w ∈ Bs(0p), for any chart (Ū , ψ̄) of Bs(0p) such that w ∈ Ū , the volumes of the
parallelepiped spanned by {

(
∂/∂ψ̄1|w

)
, . . . ,

(
∂/∂ψ̄d|w

)
} with respect to the metrics g ′ and

g ′ ′ are given by |det g ′ ((∂/∂ψ̄i|w
)
,
(
∂/∂ψ̄j |w

))
|1/2 and |det g ′ ′ ((∂/∂ψ̄i|w

)
,
(
∂/∂ψ̄j |w

))
|1/2

respectively. The quotient between these two volumes is independent of the selected chart.
So, given q ∈ Bs(p), if w = exp−1

p (q) ∈ Bs(0p) we can define the volume density function,
θp(q), on (M, g) as

θp(q) =
|det g ′ ((∂/∂ψ̄i|w

)
,
(
∂/∂ψ̄j |w

))
|1/2

|det g ′ ′ ((∂/∂ψ̄i|w
)
,
(
∂/∂ψ̄j |w

))
|1/2

for any chart (Ū , ψ̄) of Bs(0p) that contains w = exp−1
p (q). For instance, if we consider the

exponential chart (U,ψ) of (M, g) induced by an orthonormal basis {v1, . . . , vd} of TpM and
U a normal neighborhood of p then

θp(q) =
∣∣∣∣det gq

(
∂

∂ψi

∣∣∣
q
,
∂

∂ψi

∣∣∣
q

)∣∣∣∣
1
2

,

where ∂
∂ψi

|q = Dαi(0)expp(α
′
i (0)) with αi(t) = exp−1

p (q) + tvi for q ∈ U . Note that the
volume density function θp(q) is not defined for all p and q in M , but only for those points
such that dg(p, q) < injgM . It is worth noticing that, when M is IRd with the canonical
metric, then θp(q) = 1 for all p, q ∈ IRd. See also, Besse (1978) and Pelletier (2006) for a
discussion on the volume density function.

2.2 The robust regression estimators

Let (Ω,A, P ) be a probability space and let us consider B the Borel σ−field of M . Let x
be a random object defined on M , i.e., a measurable map x : Ω → M and y be a random
variable on IR. Denote by Ψ : IR → IR a strictly increasing, bounded and continuous
function and by F (y|x = p), the conditional distribution function of y given x = p.

For each p ∈M denote by rΨ(p) the solution with respect to a of η(p, a) = 0 where

η(p, a) = E

(
Ψ
(
y − a

σ(p)

)∣∣∣∣x = p

)
,

with σ(p) is a robust measure of the conditional scale, for instance,

σ(p) = mad c(p) = median(|y −m(p)|), (1)

and m(p) = median(y|x = p) the median of F (y|x = p). Theorem 2.1 of Boente and
Fraiman (1989) states that if the score function Ψ is a strictly increasing bounded con-
tinuous score function, the robust location conditional functional rΨ exists, is unique and
measurable. Moreover, if the conditional distribution function F (y|x = p) is symmetric
around r(p) and Ψ is odd, then rΨ(p) ≡ r(p). This setting includes the nonparametric
regression model

y = r(x) + σ(x)ε (2)
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where the error ε has symmetric distribution F0(·) and is independent of x. As mentioned
in Boente and Fraiman (1989), rΨ(p) is a natural extension of the conditional expectation
E(y|x) to a setting where no moment conditions are required and thus, in a robust setting
it represents the functional to be estimated. When considering Ψ(t) = sgn(t), the target is
then the conditional median, while for general score functions Ψ, the target is the robust
location conditional functional rΨ(p) related to Ψ. It is worth noticing that the symmetry
assumption required to the error’s distribution is needed if we want to guarantee that all
robust location conditional functionals are Fisher–consistent, i.e., rΨ(p) = r(p), and so, to
ensure that the robust estimators introduced will be consistent to the regression function
r(p). For a discussion regarding the choice of the score function leading to the conditional
location functionals, see He et al. (2002).

Let (y1,x1), . . . , (yn,xn) be i.i.d. random vectors valued in IR ×M with the same dis-
tribution as (y,x). As mentioned above, our aim is to estimate robustly the nonparametric
regression function r when model (2) holds. As in the Euclidean case and using that under
(2), r ≡ rΨ, a natural approach is to define the robust estimators of rΨ by considering
estimators of the conditional distribution function F (y|x = p) adapted to fact that the
carriers belong to a Riemannian manifold. Following, Pelletier’s (2006) proposal and the
proposal given by Boente and Fraiman (1989), we will consider two families of estimators
of F (y|x = p).

Estimators based on kernel weight. They are defined as

Fn(y|x = p) =
n∑

i=1

wni(p)I(−∞,y](yi), (3)

with

wni(p) =

1
θxi(p)

K

(
dg(p,xi)
hn

)

n∑

j=1

1
θxj (p)

K

(
dg(p,xj)

hn

) ,

where the bandwidth hn is a sequence of real positive numbers such that limn→∞ hn =
0 and hn < injgM for all n. This last requirement on the bandwidth guarantees that
(3) is defined for all p ∈M (see, Pelletier (2006)).

Estimators based on k-nearest neighbor kernel weights. These estimators are defined
through

F̃n(y|x = p) =
n∑

i=1

w̃ni(p)I(−∞,y](yi),

with

w̃ni(p) =

1
θxi(p)

K

(
dg(p,xi)
Hn(p)

)

n∑

j=1

1
θxj (p)

K

(
dg(p,xj)
Hn(p)

) ,
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where Hn(p) is the distance dg between p and the k-nearest neighbor of p among
x1, . . . ,xn, and k = kn is a sequence of non–random integers such that limn→∞ kn =
∞.

In both cases, K : IR → IR is a non-negative function such that
∫
K(u)du < ∞and θp(q)

denotes the volume density function on (M, g).

The robust nonparametric estimators of the regression function can be defined as follows.
Denote by σn(p) and σ̃n(p) the preliminary local robust scale estimates corresponding to
Fn(y|x = p) and F̃n(y|x = p) respectively. For instance, σn(p) and σ̃n(p) can be taken as
the local median of the absolute deviations from the local median, i.e., the mad, defined
in (1), with respect to the distributions Fn(y|x = p) and F̃n(y|x = p). Then, the robust
regression estimators are the solutions rn(p) and r̃n(p) of

n∑

i=1

win(p)Ψ
(
yi − rn(p)
σn(p)

)
= 0. (4)

and
n∑

i=1

w̃in(p)Ψ
(
yi − r̃n(p)
σ̃n(p)

)
= 0. (5)

respectively.

The estimator defined by Pelletier (2006) corresponds to the choice Ψ(t) = t with the
estimators of the conditional distribution based on kernel weights defined in (3). On the
other hand, local kernel medians corresponds to Ψ(t) = sg(t). It is worth noticing that,
when M equals IRd with the canonical metric, rn and r̃n reduce to the local M−estimators
with standard kernel weights or k-nearest with kernel introduced in Boente and Fraiman
(1989). This fact was pointed out by Pelletier (2006) for the linear kernel estimator, i.e.,
when Ψ(t) = t and when the weights corresponds to the kernel weights win(p).

Being a conditional location estimator, the estimators rn(p) or r̃n(p) can be computed
iteratively using reweighting, as described for the location setting in Chapter 2 of Maronna
et al. (2006). In what follows, we briefly describe the procedure to compute rn(p). Let
r
(0)
n (p) be an initial robust regression estimator, for instance, the local median and σn(p)

a robust dispersion estimator such as the conditional mad. Given r
(`)
n (p), the weights

involved in the reweighting algorithm are computed as win(p) W
((
yi − r

(`)
n (p)

)
/σn(p)

)
,

with W (t) = Ψ(t)/t for t 6= 0 and W (0) = Ψ ′(0). Thus, at step (`+ 1), we define

r(`+1)
n (p) =

n∑

i=1

win(p) W

(
yi − r

(`)
n (p)

σn(p)

)
yi

n∑

i=1

win(p) W

(
yi − r

(`)
n (p)

σn(p)

)

and we iterate until the convergence criterion is achieved. It is worth noticing that a similar
algorithm can be consider for r̃n(p) replacing win(p) by w̃in(p).

6



An important issue in any smoothing procedure is the choice of the smoothing parameter.
Under a nonparametric regression model with carriers in an Euclidean space, i.e., when M
is IRd with the canonical metric, two commonly used approaches are L2 cross–validation
and plug–in methods. However, these procedures may not be robust and their sensitivity to
anomalous data was discussed by several authors, including Wang and Scott (1994), Boente
et al. (1997), Cantoni and Ronchetti (2001) and Leung (2005). Wang and Scott (1994) note
that, in the presence of outliers, the least squares cross–validation function is nearly constant
on its whole domain and thus, essentially worthless for the purpose of choosing a bandwidth.
To solve this problem, they proposed an L1 cross–validation method. On the other hand,
for an homoscedastic nonparametric regression model with unidimensional carriers, Leung
(2005) considered a robust cross–validation procedure by bounding large residuals using
a bounded score function, such as Huber’s function. The robustness issue remains valid
for the estimators considered in this paper. With a small bandwidth, a small number of
outliers with similar values of xi could easily drive the estimate of r to dangerous levels.
Therefore, one may consider to adapt to this setting the robust cross-validation approach
described in Leung (2005). However, the asymptotic properties of data–driven estimators
require further careful investigation and are beyond the scope of this paper.

3 Consistency

Let U be an open set of M , we denote by Ck(U) the set of k times continuously differentiable
functions from U to IR. As in Pelletier (2006), we assume that the image measure of P
by x is absolutely continuous with respect to the Riemannian volume measure νg and we
denote by f its density on M with respect to νg. To derive strong consistency results of the
estimates rn(p) and r̃n(p) defined in (4) and (5) respectively, we will consider the following
set of assumptions.

H1. Ψ : IR → IR is an odd, strictly increasing, bounded and continuously differentiable
function, such that tΨ′(t) ≤ Ψ(t) for t > 0.

H2. F (y|x = p) is symmetric around r(p) and a continuous function of y for each p.

H3. Let M0 be a compact set on M such that:

i) f is a bounded function such that infp∈M0 f(p) = A > 0.

ii) F (y|x = p) is a continuous function of p in a neighborhood of M0.

iii) inf
p∈M0
q∈M0

θp(q) = B > 0.

H4. The following equicontinuity condition holds

∀ε > 0, ∃δ > 0 : |y − y′| < δ ⇒ sup
p∈M0

|F (y|x = p) − F (y′|x = p)| < ε .

H5. For any open set U0 of M such that M0 ⊂ U0,
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i) f ∈ C2(U0) and
ii) F (y|x = p) is uniformly Lipschitz in U0, that is, there exists a constant C > 0

such that |F (y|x = p) − F (y|x = q)| ≤ C dg(p, q) for all p, q ∈ U0 and y ∈ IR.

H6. K : IR→ IR is a bounded nonnegative Lipschitz function of order one, with compact
support [0, 1] satisfying

∫
IRd uK(‖u‖)du = 0 and 0 <

∫
IRd ‖u‖2K(‖u‖)du <∞.

H7. The sequence hn is such that hn → 0, nhdn → ∞, nhdn/log n→ ∞ as n→ ∞.

H8. a) The estimator σn(p) of σ(p) satisfies σn(p)
a.s.−→ σ(p) as n→ ∞ for all p ∈M0.

b) The estimator σ̃n(p) of σ(p) satisfies σ̃n(p)
a.s.−→ σ(p) as n→ ∞ for all p ∈M0.

H9. The kernel K(u) verifies K(uz) ≥ K(z) for all u ∈ (0, 1).

H10. The sequence kn verifies that kn → ∞, kn/n→ 0 and kn/ log n→ ∞ as n→ ∞

Remark 3.1. Assumption H1 is a standard condition in a robustness framework. Bound-
ness of the score function Ψ allows to derive the weak continuity of the robust conditional
functional rΨ as shown in Theorem 2.2 of Boente and Fraiman (1989). Therefore, by
applying this functional to weak consistent estimators of the conditional distribution, we
obtain pointwise consistent and asymptotically strongly robust estimators of the regression
function r. Differentiability of the score function is needed in order to obtain uniform con-
sistency results over compact sets. As mentioned above, assumption H2 and the oddness
of the score function guarantee Fisher–consistency. If the regression model (2) holds, this
assumption can be replaced by E (Ψ (ε/σ)) = 0, for any σ > 0. The fact that θp(p) = 1 for
all p ∈M guarantees that H3 holds for a small compact neighborhood of p. H4 and H5 are
needed in order to derive strong uniform consistency results (see, for instance, Boente and
Fraiman (1991)). Assumption H6 is a standard assumption when dealing kernel estimators.
It is easy to see that Assumption H8 is satisfied, when we consider σn(p) or σ̃n(p) as the
local mad, i.e, the mad, defined in (1), with respect to the distribution Fn(y|x = p) or
F̃n(y|x = p).

Theorem 3.1. Under H3 to H8 a), we have that sup
p∈M0

|Fn(y|x = p)−F (y|x = p)| a.s.−→ 0.

Remark 3.2. An inspection of the proof of Theorem 3.1 allows to conclude that the kernel
density estimation on Riemannian manifolds defined in Pelletier (2005), is strong uniformly
consistent on any compact set. Effectively, Pelletier (2005) defined a kernel density estimator
of the probability density on Riemannian manifolds as

fn(p) =
1
nhdn

n∑

j=1

1
θxj (p)

K

(
dg(p,xj)

hn

)
.

In the proof of Theorem 3.1, it is shown that sup
p∈M0

|fn(p) − E(fn(p))|
a.s.−→ 0. Arguing as in

Theorem 3.2 in Pelletier (2005) and using the compactness of M0 we also have that,

sup
p∈M0

|E(fn(p) − f(p))| ≤ Ch2
∫

‖u‖2K(‖u‖)du
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and so, we can conclude that sup
p∈M0

|fn(p) − f(p)| a.s.−→ 0.

Theorem 3.2. Under H3 to H6 and H8 b) to H10 we have that

sup
p∈M0

|F̃n(y|x = p) − F (y|x = p)| a.s.−→ 0.

Theorem 3.3.

a) Assume that H1 to H8 a) holds. Then, sup
p∈M0

|rn(p) − r(p)| a.s.−→ 0 as n→ ∞.

b) Assume that H1 to H6 and H8 b) to H10 holds. Then, sup
p∈M0

|r̃n(p) − r(p)| a.s.−→ 0 as

n→ ∞.

The proof of Theorem 3.3. follows easily using Theorem 3.1, Theorem 3.2 and similar
arguments to those considered in Theorem 3.3 in Boente and Fraiman (1991). We will give
a sketch of the proof in the Appendix.

4 Asymptotic normality

Denote by V ⊂M an open neighborhood of p and by κ(q) and λ(q) the functions

κ(q) = E

(
Ψ′
(
y − r(p)
σ(p)

) ∣∣∣x = q

)
and λ(q) = E

(
Ψ2
(
y − r(p)
σ(p)

) ∣∣∣x = q

)
.

We will denote by Vs the ball in IRd centered at the origin with radius s and µ(V1) is the
Lebesgue measure of the unit ball in IRd.

In order to derive the asymptotic distribution of the estimator rn(p) defined in (4), we
will consider the following set of assumptions.

A1. The function Ψ is twice continuously differentiable with bounded derivatives. Its
second derivative Ψ′′ verifies that, for some positive constants c,D and ε, |Ψ′′(t)| ≤
c|t|−(2+ε) for |t| > D.

A2. f(p) > 0 and f ∈ C2(V ).

A3. The sequence hn is such that hn → 0, nhdn → ∞ and there exists 0 ≤ β < ∞
n1/(d+4)hn → β as n→ ∞.

A4. There exists a continuous symmetric distribution function F0 such that F (y|x = p) =
F0 ((y − r(p))/σ(p)) with r and σ such that

i) r ∈ C2(V ).
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ii) |σ(q) − σ(p)| < C [dg(p, q)]
1
2 for q ∈ V and some constant C >0.

A5.
∫

Ψ′(z) dF0(z) 6= 0.

A6. κ(q) ∈ C2(V ) and λ(q) is continuous at p.

A7. The sequence kn is such that kn → ∞, kn/n → 0 and there exists 0 ≤ β < 0 such
that k1/d

n n1/(d+4)−1/d → β(f(p)µ(V1))1/d.

A8. The kernel K is twice continously differentiable and verifies:

i) 0 <
∫
|K ′(t)t|dt <∞,

∫
(K ′(t)t)2dt <∞ and |t|2K ′(t) → 0 as |t| → ∞.

ii) |t|4K ′(t) → 0 as |t| → ∞.

Theorem 4.1. Assume A1 to A6 and H6, and that rn(p)
p−→ r(p), σn(p)

p−→ σ(p). Then,
we have that √

nhdn(rn(p) − r(p)) D−→ N(b(p), V (p))

with

b(p) =
β(d+4)/2

2f(p)

∫
V1
K(‖u‖)u2

1 du∫
V1
K(‖u‖)du

L(p)

and

V (p) =
σ2(p)
f(p)

∫
Ψ2(z)dF0(z)

[
∫

Ψ′(z)dF0(z)]2

∫
V1
K2(‖u‖)du

[
∫
V1
K(‖u‖)du]2

where u = (u1, . . . , ud) and L(p) =
d∑

i=1

∂2φ ◦ ψ−1

∂uiui

∣∣∣
u=0

with φ(q) = f(q)(r(q) − r(p)) and

(Bh(p), ψ) some exponential chart induced by an orthonormal basis of TpM .

From the proof of Theorem 4.1, it follows easily that L(p) is well defined.

In order to derive the asymptotic distribution of r̃n(p), we will first study the asymp-
totic behavior of hdn/H

d
n where hdn = kn/(nf(p)µ(V1)). Note that if we consider f̃n(p) =

kn/(nHd
nµ(V1)) a careful inspection of the proof of Theorem 3.2 allows to conclude that f̃n(p)

is a consistent estimator of f(p). Theorem 4.2 state that this estimator is also asymptotically
normally distributed as it is the case when M is IRd.

Theorem 4.2. Assume A2, A7 and H6, and that let hdn = kn
nf(p)µ(V1) . Then, we have that

√
kn

(
hdn
Hd
n

− 1

)
D−→ N(b1(p), 1)

with

b1(p) = (βd+4f(p)µ(V1))
1
2

{
τ

6d+ 12
+

∫
V1
u2

1 du L1(p)
f(p)µ(V1)

}

10



where u = (u1, . . . , ud), τ is the Ricci’s curvature,

L1(p) =
d∑

i=1

(
∂2f ◦ ψ−1

∂uiui

∣∣∣
u=0

+
∂f ◦ ψ−1

∂ui

∣∣∣
u=0

∂θp ◦ ψ−1

∂ui

∣∣∣
u=0

)

and (Bh(p), ψ) is some exponential chart induced by an orthonormal basis of TpM .

The following result is a consequence of Theorem 4.1 and Theorem 4.2 and follows using
analogous arguments to those considered in Theorem 2 in Boente and Fraiman (1990).

Theorem 4.3. Assume A1, A2, H10 and A4 to A8 and that r̃n(p)
p−→ r(p), σ̃n(p)

p−→ σ(p).
Then, we have that √

kn(r̃n(p) − r(p)) D−→ N(b2(p), V2(p))

with

b2(p) =
(βd+4µ(V1))1/2

2(f(p))1/2

∫
V1
K(‖u‖)u2

1 du∫
V1
K(‖u‖)du

L(p)

and

V2(p) = σ2(p)µ(V1)
∫

Ψ2(z)dF0(z)
[
∫

Ψ′(z)dF0(z)]2

∫
V1
K2(‖u‖)du

[
∫
V1
K(‖u‖)du]2

where u = (u1, . . . , ud) and L(p) =
d∑

i=1

∂2φ ◦ ψ−1

∂uiui

∣∣∣
u=0

with φ(q) = f(q)(r(q) − r(p)) and

(Bh(p), ψ) some exponential chart induced by an orthonormal basis of TpM .

5 Monte Carlo Study

This section contains the results of a preliminary simulation study designed to evaluate the
performance of the robust procedure defined in Section 2.2. We only consider in this study
the estimators based on kernel weights. The aim of this study is to compare the behavior
of the classical and robust estimators under normal samples and under contamination.

We performed 1000 replications generating independent samples of size n = 200. In
all cases, the carriers x1, . . . ,xn are independent with support in the cylinder with radius
1 and height between (−2, 2) denoted C1,(−2,2). The predictors were generated as xi =
(cos(x1,i), sin(x1,i), x2,i) with x1,i and x2,i independent such that x1,i ∼ U(−π, π) and x2,i ∼
U(−2, 2). The response regression function was taken as r(x) = 4 − x2

2 + sin(x1).

The non-contaminated case, indicated by C0, corresponds to normally distributed errors
εi with mean 0 and standard deviation 1. Besides, the so–called contaminations C1 and
C2, which correspond to select a distribution in a neighborhood of the central normal
distribution, are defined as ε ∼ 0.9N(0, 1) + 0.1C(0, σ) and ε ∼ 0.9N(0, 1) + 0.1C(5, 0.5)
respectively, where C(0, σ) indicates the distribution Cauchy centered in 0 with scale σ.
The contamination C1 corresponds to inflating the errors and thus, will affect the variance
of the regression estimates while the goal of C2 is to introduce a bias in the estimation.
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As described in Section 2.2, we consider the local median, as initial estimate in the
iterative procedure to compute rn. In all cases, for smoothing, the kernel was taken as the
quartic kernel K(t) = (15/16)(1 − t2)2I(|x| < 1). We have considered two choices for the
smooting parameter h = 0.5 and h = 1. Besides, the robust estimators were computed
using as score function Ψ(u) = (1 − (u/c)2)2I(|u| < c), the bisquare function, with tuning
constant c = 4.685. Even if this choice of Ψ does not correspond to an increasing function, it
leads to consistent and asymptotically normally estimators if we choose the solution which
minimizes

∑n
i=1 win(p)ρ ((yi − a)/σn(p)) as in the location case.

5.1 Simulation results

The performance of an estimate rn of r is measured using an approximation to the MISE
where

MISE(rn) = E

∫
(r(q) − rn(q))2dq.

The value of the MISE was approximated by Monte Carlo as
∑1000
i=1 M(rin)/1000 where

rin corresponds to the estimators of r computed at the ith replication and

M(rin) =
1

800

20∑

l=1

40∑

j=1

(r(zlj) − rin(zlj))
2,

with zlj a grid of 800 equispaced points in C1,(−2,2). We have selected zlj = (cos θl, sin θl, aj)
with θl ∈ (−π, π) for 1 ≤ l ≤ 20 and aj ∈ (−2, 2) for 1 ≤ j ≤ 40.

Table 1 gives the values of the approximation of the MISE, denoted MISE for the sake of
simplicity, for the classical and robust nonparametric estimators when considering normal
samples and under C1 and C2, for the selected bandwidths.

h = 0.5 h = 1
MISE(rn,c) MISE(rn,r) MISE(rn,c) MISE(rn,r)

C0 0.4183 0.4240 0.2015 0.2038
C1 1832.452 2.7432 555.7038 0.2287
C2 459.7590 2.1784 139.7073 0.5069

Table 1: Estimated mean integrated Square Error (MISE) for the classical estimator (rn,c) and the
robust estimator (rn,r).

The simulation study confirms the inadequate behavior of the classical estimators un-
der the considered contaminations and in particular, how it leads to an increased mean
integrated square error when anomalous data are present. On the other hand, for normal
errors the robust estimates of the regression function r behaves almost as its linear rela-
tive, showing only a small lack of efficiency. It is worth noticing that the MISE for normal
samples corresponding to h = 0.5 is more than twice that related to h = 1, showing that
in this case, h = 1 provides a more adequate smoothing parameter. Moreover, when the
smallest bandwidth is selected, the MISE of the robust estimators are increased six and
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five times under C1 and C2, respectively. This can be explained by the fact than in some
of these small neighborhoods the proportion of outliers in the neighborhood exceeds the
breakdown point of the M−estimator. However, even in this situation, MISE(rn,r) is much
lower than that of the linear estimators. In fact when h = 0.5, the MISE of the classical
estimator is 668 times larger than that of the robust procedure under C1 and more than
200 times under C2. On the other hand, when h = 1, the MISE of the robust estimators
under C1 is almost the same of that obtained under C0, while, due to the bias introduced by
the asymmetric contamination C2, MISE(rn,r) is increased 2.5 times under C2. The linear
estimator is more sensitive to C1 than to C2 due to the large scale of the contaminating
distribution. In both cases, the MISE(rn,c) shows that the results obtained with the linear
estimators are not reliable giving mean square errors more than 2000 and 300 times larger
than those corresponding to the robust procedure, under C1 and C2, respectively.

This extreme behavior of the linear kernel estimator shows its inadequacy when one
suspects that the sample can contain outliers.

6 Concluding Remarks

We have introduced two robust procedures to estimate the regression function when the
regressors are random objects taking values in a Riemannian manifolds. Both procedures
are strongly consistent and asymptotically normally distributed. Under the considered con-
taminations, they showed their advantage over the classical estimators defined by Pelletier
(2006).

It is worth noticing that the added difficulties when regressors take values in Riemannian
manifolds are those imposed by the geometry of the manifold. Given a Riemannian mani-
fold, the volume density function and the geodesic distance can be difficult to calculate in
all points of the manifold. In the cylinder’s case considered in the simulation study, or in
the sphere’s case considered by Pelletier (2006), which can be the examples appearing more
often in applications, their particular geometries facilitate the calculation.
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Appendix

From now on, we will denote by dνg the usual volume element induced by the metric g and
the orientation of M .

Proof of Theorem 3.1. Let us begin by fixing some notation. Given y ∈ IR, denote Zj =
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I(−∞,y](yj) and for i = 0, 1, let Sin(p) =
∑n
j=1 Vij/

(
nhdn

)
with

Vij = Zij
1

θxj (p)
K

(
dg(p,xj)

hn

)
− Si(p) and Si(p) = E

(
Zi1

1
θx1(p)

K

(
dg(p,x1)

hn

))
.

Note that

sup
p∈M0

|Fn(y|x = p) − F (y|x = p)| ≤
[

sup
p∈M0

|S1n(p)| + sup
p∈M0

|S1(p) − S0(p)F (y|x = p)|

+ sup
p∈M0

|S0n(p)F (y|x = p)|
]
/ inf
p∈M0

(S0n(p) + S0(p)) .

Since infp∈M0(S0n(p) + S0(p)) ≥ infp∈M0 S0(p) − supp∈M0
|S0n(p)|, to conclude the proof it

is enough to show that

sup
p∈M0

|Sin(p)|
a.s.−→ 0 for i = 0, 1 , (6)

sup
p∈M0

|S1(p) − S0(p)F (y|x = p)| → 0 , (7)

inf
p∈M0

S0(p) ≥ A1 > 0 (8)

for some A1 > 0.

We begin by proving (8). Using that

S0(p) =
1
hdn

∫

M

1
θq(p)

K

(
dg(p, q)
hn

)
f(q)dνg(q) =

1
hdn

∫

Bh(p)

1
θq(p)

K

(
dg(p, q)
hn

)
f(q)dνg(q)

and H3 i) we have that

S0(p) ≥ A
1
hdn

∫

Bh(p)

1
θq(p)

K

(
dg(p, q)
hn

)
dνg(q) = A

∫

V1

K(‖u‖)du = A1 ,

which shows (8).

It is easy to see that (7) follows using H5 and a Taylor’s expansion of order two, as in
Pelletier (Theorem 3.2, 2006). On the other hand, Bernstein’s inequality implies that, for
n ≥ n0 and for some positive constant α, we have

P (|Sin(p)| > ε) ≤ 2e−nh
dα. (9)

Let us consider a finite collection of balls, {Bi = Bhγ (pi)}1≤i≤`, centered at points pi ∈ M

with radius hγ with γ > d+ 2, such that M0 ⊂ ∪`i=1Bhγ (pi). Then, ` = O(h−γ) and

sup
p∈M0

|Sin(p)| ≤ max
1≤j≤l

sup
p∈Bj

|Sin(p) − Sin(pj)| + max
1≤j≤l

|Sin(pj)|. (10)
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Using that K is a Lipschitz function with Lipschitz constant ‖K‖L, straightforward calcu-
lation lead to |Sin(p) − Sin(pj)| < 2‖K‖L hγ−(d+1)

n for any p ∈ Bj , which entails that for n
large enough, let us say, for n > n1, we have

max
1≤j≤l

sup
p∈Bj

|Sin(p) − Sin(pj)| < ε. (11)

Through (10) and (11), for n > n0 we have that

P

(
sup
p∈M0

|Sin(p)| > 2ε

)
≤ P

(
max
1≤j≤l

|Sin(pj)| > ε

)

and by (9) imply that

P

(
max
1≤j≤l

|Sin(pj)| > ε

)
≤ 2` e−nh

dα.

Then, if δn = nhdn/log n we get that e−nh
dα = n−αδn . By H7 we have that for n ≥ n1,

nhdn > 1, therefore, `n−αδn ≤ Cnγ/d−αδn for n ≥ n2. Since δn → ∞, we have that for
n ≥ n2, γ/d− δnα < 2 . Hence, for n ≥ max{n0, n1, n2} and some constant C, we get

P

(
sup
p∈M0

|Sin(p)| > 2ε

)
≤ Cn−2

which shows that
∞∑

n=1

P

(
sup
p∈M0

|Sin(p)| > 2ε

)
<∞ for i = 0, 1 concluding the proof.

Proof of Theorem 3.2. As in Theorem 3.1, given y ∈ IR, let Zi = I(−∞,y](yi) and denote by

r̂n(p, δn) =

∑n
i=1 Zi

1
θxi (p)

K
(
dg(p,xi)
δn

)

∑n
i=1

1
θxi (p)

K
(
dg(p,xi)
δn

)

and

f̂n(p, δn) =
1
nδdn

n∑

i=1

1
θxi(p)

K

(
dg(p,xi)

δn

)
.

Note that if δn = δn(p) verifies δ1n(p) ≤ δn(p) ≤ δ2n(p) for all p ∈ M0 where δ1n(p) and
δ2n(p) satisfy H7; Theorem 3.1. and Remark 3.2 entail that

sup
p∈M0

|r̂n(p, δn) − F (y|x = p)| a.s.−→ 0

and
sup
p∈M0

|f̂n(p, δn) − f(p)| a.s.−→ 0.
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Now, the proof follows as in the Theorem 3.2 in Boente and Fraiman (1991). Effectively,
for 0 < β < 1 we define

r̂−(p, β) =

∑n
i=1 Zi

1
θxi(p)

K

(
dg(p,xi)

β
d
2 hn

)

∑n
i=1

1
θxi (p)

K

(
dg(p,xi)

β−d
2 hn

)

and

r̂+(p, β) =

∑n
i=1 Zi

1
θxi(p)

K

(
dg(p,xi)

β−d
2 hn

)

∑n
i=1

1
θxi (p)

K

(
dg(p,xi)

β
d
2 hn

)

where hdn = kn/(n f(p)µ(V1)) and µ(Vr) denote the Lebesgue measure of the ball in IRd

with radius r centered at the origin. Then,

sup
p∈M0

∣∣∣∣∣
n∑

i=1

1
θxi(p)

K

(
dg(p,xi)

β
d
2hn

)/
n∑

i=1

1
θxi(p)

K

(
dg(p,xi)

β−
d
2hn

)
− β

∣∣∣∣∣
a.s.−→ 0 as n→ ∞.

which implies

sup
p∈M0

|r̂−(p, β) − βF (y|x = p)| a.s.−→ 0 and sup
p∈M0

|r̂+(p, β) − β−1F (y|x = p)| a.s.−→ 0. (12)

For all 0 < β < 1 and ε > 0, let us consider the sets

An(ε) = { sup
p∈M0

|F̃ (y|x = p) − F (y|x = p)| < ε },

S−
n (β, ε) = { sup

p∈M0

|r̂−(p, β) − F (y|x = p)| < ε },

S+
n (β, ε) = { sup

p∈M0

|r̂+(p, β) − F (y|x = p)| < ε },

Sn(β) = {r̂−(p, β) ≤ F̃ (y|x = p) ≤ r̂+(p, β) for all p ∈M0},

then Sn(β) ∩ S−
n (β, ε) ∩ S+

n (β, ε) ⊂ An(ε). Therefore, given 0 ≤ ε < 3
2 let βε = 1 − ε

3 and

G−
n (ε) = { sup

p∈M0

|r̂−(p, βε) − βεF (y|x = p)| < ε/3 },

G+
n (ε) = { sup

p∈M0

|r̂+(p, βε) − β−1
ε F (y|x = p)| < ε/3 },

Gn(ε) = {β
d
2
ε hn ≤ Hn(p) ≤ β

− d
2

ε hn for all p ∈M0}.

Then, we have that

Gn(ε) ⊂ Sn(βε), G−
n (ε) ⊂ S−

n (βε, ε) and G+
n (ε) ⊂ S+

n (βε, ε)

therefore Gn(ε) ∩G−
n (ε) ∩G+

n (ε) ⊂ An(ε).
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On the other hand, using that limr→0 V (Br(p))/rdµ(V1) = 1, where V (Br(p)) de-
notes the volume of the geodesic ball centered at p with radius r (see Gray and Vanhecke
(1979)) and similar arguments those considered in Devroye and Wagner (1977), we get that
IGc

n(ε)
a.s.−→ 0. This fact and (12) imply that IAc

n(ε)
a.s.−→ 0 which concludes the proof

Proof of Theorem 3.3. a) This proof can be divided in three steps. The first one is using
Theorem 3.1, H3 ii) and the equicontinuity condition given in H4 to get, as in Theorem
3.1 in Boente and Fraiman (1991) that

sup
y∈IR

sup
p∈M0

|Fn(y|x = p) − F (y|x = p)| a.s.−→ 0. (13)

The second step is derived from H3 and H4. We can easily prove that there exist positive
constants a, b and n0 such that a < σn(p) < b ∀p ∈ M0, for all n ≥ n0. These results can
be obtained from Lemma 3.1 in Boente and Fraiman (1991). Finally, the last step follows
from the following bound

sup
p∈M0

∣∣∣∣
∫

Ψ
(
y − (rn(p) + t)

σn

)
dF (y|x = p) −

∫
Ψ
(
y − (rn(p) + t)

σn

)
dFn(y|x = p)

∣∣∣∣

≤ C(Ψ) sup
p∈M0

sup
y∈IR

|F (y|x = p) − Fn(y|x = p)|, (14)

where C(Ψ) is the total variation of Ψ. Denote by

λ(p, t, σ) =
∫

Ψ
(
y − t

σ

)
dF (y|x = p)

and
λn(p, t, σ) =

∫
Ψ
(
y − t

σ

)
dFn(y|x = p).

Then by the first step, the left hand side of (14) converges to 0 a.s. as n → ∞. By the
second step there exist a and b such that a < σn(p) < b ∀p ∈M0 for all n > n0.
Given ε > 0, H1, H2 and the continuity of λ(p, r(p) + ε, σ) imply that

λ1 = sup
a<σ<b

sup
p∈M0

λ(p, r(p) + ε, σ) < 0 < inf
a<σ<b

inf
p∈M0

λ(p, r(p) − ε, σ) = λ2

and for n large enough

λn(p, r(p) + ε, σn(p)) < λ1/2 < 0 < λ2/2 < λn(p, r(p) − ε, σn(p))

for all p ∈M0. So, we can conclude that supp∈M0
|rn(p) − r(p)| < ε.

b) The proof of this part is similar that a) but using Theorem 3.2.

Proof of Theorem 4.1. Denote Win(p) = (θxi(p))
−1K (dg(xi, p)/hn) and

Sn(t, σ) =
1
nhdn

n∑

i=1

Win(p)Ψ′
(
yi − t

σ

)
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Tn(t, σ) =
1
nhdn

n∑

i=1

Win(p)Ψ
(
yi − t

σ

)

Rn(σ) =
1
nhdn

n∑

i=1

Win(p)Ψ
(
yi − r(xi)

σ

)
.

Using a Taylor’s expansion of order one, we obtain that
√
nhdn(rn(p) − r(p)) =

σn(p)
Sn(ξn(p), σn(p))

√
nhdn Tn(r(p), σn(p))

where ξn(p) is an intermediate point. Thus, it is enough to show that
√
nhdn Rn(σ(p)) D−→ N

(
0, f(p)

∫
Ψ2(z)dF0(z)

∫

V1

K2(‖u‖)du
)
,(15)

Sn(ξn(p), σn(p))
p−→ f(p)

∫
Ψ′(z)dF0(z)

∫
K(‖u‖)du , (16)

√
nhdn (Tn(r(p), σn(p)) −Rn(σn(p))

p−→ β(d+4)/2
∫
K(‖u‖)u2

1du
2σ(p)

L(p)
∫

Ψ′(u)dF0(u),(17)
√
nhdn (Rn(σn(p)) −Rn(σ(p))

p−→ 0 . (18)

The proof of (15) follows easily using the Lindeberg Central Limit Theorem. On the other
hand, (16) follows using similar arguments to those considered in Pelletier (2005), A6 and a
Taylor’s expansion of order two around q of the function f(q)κ(q). The proof of (18) follows
as in Boente and Fraiman (1990).

It remains to prove (17). Using a Taylor’s expansion of order two of Tn(r(p), σn(p))
around (yi− r(xi))/σn(xi) and a Taylor’s expansion of order one around (yi− r(xi))/σ(xi)
we have that

√
nhdn(Tn(r(p), σn(p)) −Rn(σn(p)) = T1n + T2n + T3n + T4n with

T1n =
1√
nhdn

n∑

i=1

Win(p)Ψ′
(
yi − r(xi)
σ(xi)

)
r(xi) − r(p)

σn(p)

T2n =
1

2σn2(p)
√
nhdn

n∑

i=1

Win(p)Ψ′′(δi)(r(xi) − r(p))(σ(xi) − σ(p))εi

T3n =
1

2σn2(p)
√
nhdn

n∑

i=1

Win(p)Ψ′′(δi)(r(xi) − r(p))(σ(p) − σn(p))εi

T4n =
1

2σn2(p)
√
nhdn

n∑

i=1

Win(p)Ψ′′(ξi)(r(xi) − r(p))2

where εi = (yi − r(xi))/σ(xi), δi and ξi stand for intermediate points. Using A1, A2, A4,
the fact that

∫
K(‖u‖)uiuj du = 0 if i 6= j and

∫
K(‖u‖)u2

i du =
∫
K(‖u‖)u2

j du; it is easy
to see that,

E(σn(p)T1n) =

√
nhd+4

n

2

∫
Ψ′(u)dF0(u)





d∑

i,j=1

∂2φ ◦ ψ−1

∂ui∂uj
|u=0

∫
K(‖u‖)uiuj du + o(h3

n)




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and Var(σn(p)T1n) → 0. Then, T1n
p−→ β(d+4)/2

∫
K(‖u‖)u2

1du L(p)
∫

Ψ′(u)dF0(u)/(2σ(p)).
Finally, A1, A2, A4 and the consistency of the scale estimator entail that Tin

p−→ 0 for
i=2,3,4, concluding the proof.

Proof of Theorem 4.2. Denote bn = hdn/(1 + zk
−1/2
n ), then P (

√
kn(hdn/H

d
n − 1) ≤ z) =

P (Hd
n ≥ bn).

Defined Bernoulli random variables Zi such that Zi = 1 when dg(p,xi) ≤ b
1/d
n and Zi = 0

elsewhere.Then, we have that P (Hd
n ≥ bn) = P (

∑n
i=1 Zi ≤ kn). Let qn = P (dg(p,xi) ≤ b

1/d
n )

the expected value of Zi, therefore

P

(
n∑

i=1

Zi ≤ kn

)
= P

(
1

√
nqn

n∑

i=1

(Zi −E(Zi)) ≤
1

√
nqn

(kn − nqn)

)
.

It’s easy to see that qn → 0 and nqn → ∞ as n → ∞, then using the Lindeberg Central
Limit Theorem we easily obtain that (nqn)−1/2∑n

i=1(Zi −E(Zi)) is asymptotically normal
with mean zero and variance one. Hence, it is enough to show that (nqn)

−1/2(kn−nqn)
p−→

z + b1(p).

Denote by µn = n

∫

B
b
1/d
n

(p)
(f(q) − f(p))dνg(q). Note that µn = n qn − wn with wn =

n f(p)V (B
b
1/d
n

(p)) and V (Br(p)) the volume of geodesic ball centered at p with radius r
and thus,

1
√
nqn

(kn − nqn) = w−1/2
n (kn − wn)

(
wn

wn + µn

)1/2

+
µn

w
1/2
n

(
wn

wn + µn

)1/2

.

We will prove that

i)
µn
wn

→ 0

ii) w−1/2
n (kn −wn) → z + β

d+4
2

τ
6d+12 (f(p)µ(V1))1/2

iii)
µn

w
1/2
n

→ β
d+4
2

(f(p)µ(V1))1/2

∫

V1

u2
1 du L1(p)

i) Let ψ some exponential chart induced by an orthonormal basis of TpM . Then, we note
that

1
µ(V

b
1/d
n

)

∫

B
b
1/d
n

(p)
f(q)dνg(q) =

1
µ(V

b
1/d
n

)

∫

V
b
1/d
n

f ◦ ψ−1(u)θp ◦ ψ−1(u)du

Therefore, the Lebesgue’s Differentiation Theorem and the fact that
V (B

b
1/d
n

(p))

µ(V
b
1/d
n

)
→ 1 imply

i).
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ii) From Gray and Vanhecke (1979), we have that

V (Br(p)) = rdµ(V1)(1 − τ

6d+ 12
r2 +O(r4))

with τ the Ricci’s curvature. Hence, we obtain that

w−1/2
n (kn − wn) =

w
−1/2
n kn z k

−1/2
n

1 + zk
−1/2
n

+
w

−1/2
n τb

2/d
n kn

(6d+ 12)(1 + zk
−1/2
n )

+ w−1/2
n kn O(b4/dn )

= An +Bn + Cn.

Note that An = z

1+zk
−1/2
n

(
kn

nf(p)bnµ(V1)

)1/2
(

bnµ(V1)
V (B

b
1/d
n

(p))

)1/2

. It’s easy to see that An → z.

On the other hand, as

w−1/2
n b2/dn kn =

knn
−1/2b

2/d−1/2
n

(f(p)µ(V1))1/2


 bnµ(V1)
V (B

b
1/d
n

(p))




1/2

,

A7 implies that Bn → τ β(d+4)/2/(6d + 12) (f(p)µ(V1))1/2. A similar argument shows that
Cn → 0. In order to prove iii), we use a second Taylor expansion that leads to,

∫

B
b
1/d
n

(p)
(f(q) − f(p))dνg(q) =

d∑

i=1

∂f ◦ ψ−1

∂ui
|u=0b

1+1/d
n

∫

V1

ui θp ◦ ψ−1(b1/dn u) du

+
d∑

i,j=1

∂2f ◦ ψ−1

∂ui∂uj
|u=0b

1+2/d
n

∫

V1

uiuj θp ◦ ψ−1(b1/dn u) du

+ O(b1+3/d
n ).

Using again a Taylor expansion on θp ◦ ψ−1(·) at 0 we have that

∫

B
b
1/d
n

(p)
(f(q) − f(p))dνg(q) = b1+2/d

n

∫

V1

u2
1 du

d∑

i=1

∂f ◦ ψ−1

∂ui
|u=0

∂θp ◦ ψ−1

∂ui
|u=0

+ b1+2/d
n

∫

V1

u2
1 du

d∑

i,j=1

∂2f ◦ ψ−1

∂ui∂uj
|u=0 +O(b1+3/d

n )

= b1+2/d
n

∫

V1

u2
1 du L1(p) +O(b1+3/d

n )

and A7 allow to conclude iii).
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Departamento de Matemática, FCEyN, Universidad de Buenos Aires

22



Ciudad Universitaria, Pabellón I, Buenos Aires, C1428EHA, Argentina
e-mail address: ghenry@dm.uba.ar

Daniela Rodriguez
Instituto de Cálculo, FCEyN, Universidad de Buenos Aires
Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EHA, Argentina
e-mail address: drodrig@dm.uba.ar

23


