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Abstract
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1 Introduction

Consider the nonparametric regression model

Yi = g(xi) + Uiσ(xi), 1 ≤ i ≤ n, (1)

The estimation of the scale function, both in homoscedastic and heteroscedastic models, has become
an essential problem, nearly as important as the estimation of g itself, for direct applications and
also because the performance of the estimators of the regression function depends of the behavior of
those of the scale function (see, Dette et al., 1998).

Examples of scale estimation appear in diverse fields such as economy and engineering. Ruppert
et al. (1997)reports on a study where the main interest is the analysis of data from a Monte Carlo
simulation of turbulence. The estimation of the conditional variance of the particle speed given the
position and its derivatives are essential. Ullah (1985) discuss data consisting of observations of
individuals’ annual income versus age, taken from the 1971 Canadian Population Census. Levine
(2003) suggests that “variance estimation for such a data set is of some economic interest. It is a
well known in labor economics that the discrepancy in individuals incomes depends primarily on
educational level. Moreover, this difference tends to increase with age ”.

In homoscedatic nonparametric regression, scale estimators based on differences are widely used
(Hall et al., 1990). These scale estimates are defined as

σ̂2r,n =
1

(n− r)

n−m2∑

i=m1+1




m2∑

k=−m1

dkYi+k



2

,

where {di}m2

i=−m1
is a difference sequence of real numbers satisfying

∑m2

i=−m1
di = 0 and

∑m2

i=−m1
d2i =

1, with d−m1
6= 0, dm2

6= 0 for m1 and m2 non–negative integers. The integer r = m1 +m2 is the
estimator order. When r = 1, σ̂2r,n = σ̂2

Rice,n is simply the well–known estimator proposed by Rice
(1984)

σ̂2
Rice,n =

1

2(n− 1)

n−1∑

i=1

(Yi+1 − Yi)
2 .

This class of scale estimators has been extended to heteroscedastic nonparametric models. See,
for instance, Müller and Stadtmüller (1987), and Brown and Levine (2007), who considered local
estimators based on kernel weights.

It is well known that scale estimators based on squared differences are not robust against outliers
and inliers. Robust estimators of scale are needed, for instance, to detect outliers (Hannig and Lee,
2006), to provide robust estimators of the regression function (see Härdle and Gasser, 1984; Härdle
and Tsybakov, 1988; Boente and Fraiman, 1989), or to improve the accuracy of bandwidth selectors
when estimating g (see, among others, Boente et al., 1997; Cantoni and Ronchetti, 2001; Leung et
al., 1993; Leung, 2005).

When the scale function is constant, Boente et al. (1997) proposed the robust scale estimator
σ̂MSD,n = q1/2/{

√
2Φ−1(3/4)}, where q1/2 is the median of the absolute differences |Yi+1−Yi|, 1 ≤ i ≤
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n− 1. Also, for homoscedastic nonparametric regression models, Ghement et al. (2008) generalized
the above estimators using a robust M−estimator based on differences defined as a solution σ̂0 of

1

n− 1

n−1∑

i=1

χ

(
Yi+1 − Yi
a σ̂0

)
= b (2)

where χ is a score function, a is a positive constant chosen to attain Fisher–consistency at the central
model and b is a positive tuning constants that gives the robustness level of the estimator.

We consider the situation where the scale function is not necessarily constant and define local
M−estimates of the scale function based on differences. Our estimators can be seen as the robust
counterpart of the variance estimators of order 1 considered by Levine (2003) and Brown and Levine
(2007) and are regression free, in the sense that they do not require previous nor simultaneous
estimation of the regression function. Besides, their asymptotic distribution does not depend of
the regression function. However, for small sample sizes, the performance of the estimators can be
affected by the shape of the regression function g. As mentioned by Rousseeuw and Hubert (1986),
similar situations exist in other models such as location–scale and linear regression models, in the
sense that robust scale estimators are typically based on an initial estimator of the location or the
regression parameters. However, as it is well known, robust location–free scale estimators are also
available, see, for instance, Rousseeuw and Croux (1993). Rousseeuw and Hubert (1986) considered
robust regression–free estimators of scale by considering triplets of data points. Our purpose is to
construct robust estimators of the variance function under the heteroscedastic regression model (1)
which do not depend on the choice of the regression estimators ĝ. In some sense, our estimators are
related to those considered by Rousseeuw and Croux (1993) for the location–scale model, but our
estimates are based on M−functionals in a nonparametric setting.

Preliminary estimation of the scale function is motivated, basically, by two reasons. Simultane-
ous estimation of the regression and scale function substantially increases the algorithmic complexity
and, in consequence, the computational time. Another reason, particularly important in the het-
eroscedastic context, is the possible lack of robustness of the regression function when considering
simultaneous estimation. This conjecture is based on the fact that, in the location–scale model
Y = µ + σU , when estimating simultaneously location and scale the location estimator µ̂ does not
attain a 1/2 breakdown point (see Maronna et al., 2006).

It should be noted that the asymptotic properties of the robust proposals are derived under
mild conditions on the errors distribution, in particular, without imposing moments conditions. It
is also worth noticing that our results are based on the asymptotic behavior of weighted sums of
r−dependent random variables, and so, our proposal can easily be extended to robust estimators
based on any difference orders. However, as mentioned by Dette (2002), “for moderate sample sizes
the Rice (1984) and Gasser et al. (1986) estimates will be sufficient in most cases”. Moreover, as
it may be expected, the resistance of the estimators to contamination will decrease as the difference
order increases, since contaminations propagate over the considered differences. This fact is analogous
to the behavior observed in time series by Caliskan et al. (2009) who proposed estimators based on
three consecutive observations attaining at most a breakdown point of 0.25, see also Gelper et al.
(2009). Note also that the breakdown point of the estimators considered in Rousseeuw and Hubert
(1986) is at most 20%. Hence, we shall develop the theory only for robust estimators based on
differences of order 1.
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The rest of the paper is organized as follows. Section 2, describes the robust local M−estimates
of the scale function. In section 3, we discuss finite sample properties of the estimators, while in
Section 4, the consistency and asymptotic distribution of our estimates are derived. Finally, Section
5 provides some concluding remarks. All the proofs are delayed to the Appendix.

2 The estimators and Robust Proposals

In this section, we introduce a family of robust estimators of the scale function σ(x) which we call
local M−estimates of scale based on differences. Throughout this paper, we consider observations
satisfying model (1) with errors {Ui}i≥1 having common distribution G from the gross error neigh-
borhood Pε(F0) defined as

Pε(F0) = {G : G(y) = (1− ε)F0(y) + εH(y); H ∈ D, y ∈ R} ,
where D denotes the set of all distribution functions, F0 is the central model, generally the normal
distribution, and H is any arbitrary distribution function modeling the contamination. The amount
of contamination ε ∈ [0, 1/2) represents the fraction of outliers that we expect be present in the
sample. Finally, Gx will denote the distribution of σ(x)(U2 − U1) where U1 and U2 are independent
random variables with common distribution G. Notice that, as mentioned in the Introduction, we do
not assume the existence of moments for the errors distribution G nor the symmetry of the central
model distribution F0.

For x ∈ (0, 1), we define the local M−estimator of the scale function σ(x) based on successive
differences of the responses variables as

σ̂M,n(x) = inf

{
s > 0 :

n−1∑

i=1

wn,i(x)χ

(
Yi+1 − Yi

as

)
≤ b

}
, (3)

where {wn,i(x)}n−1i=1 is a sequence of weight functions (such as kernel or nearest neighbor weights), χ
is a score function, the constants a ∈ (0,∞) and b ∈ (0, 1) satisfy

E[χ(Z1)] = b and E

[
χ

(
Z2 − Z1

a

)]
= b, (4)

with {Zi}i=1,2 independent random variables with common distribution Z1 ∼ F0. Typically, the
score function χ : R → R is even with χ(0) = 0, non-decreasing on R+ and 0 < ‖χ‖∞ where
‖f‖∞ = supx∈R |f(x)|. It is worth noticing that the infimum in (3) is needed to define the estimates
when the score function is discontinuous. When χ is continuous, it is easy to see that σ̂M,n(x) satisfies∑n−1

i=1 wn,i(x)χ ((Yi+1 − Yi)/(a σ̂M,n(x))) = b. Besides, the constant b is related to the robustness
properties of the estimator while the constant a ensures the Fisher–consistency under the central
model, as dicussed below.

Some Examples. Based on (3), in the sequel, we give some examples of local scale M−estimators.

i) When χ(x) = x2, a =
√
2 and b = 1, we obtain the classical local Rice estimator

σ̂Rice,n(x) =

[
n−1∑

i=1

wn,i(x)

(
Yi+1 − Yi√

2

)2]1/2
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ii) The proposal considered by Boente et al. (1997) can be extended to deal with heteroscedastic
nonparametric regression models by choosing χ(y) = I{u: |u|>Φ−1(3/4)}(y), a =

√
2 and b = 1/2

in (3). This estimator will be denoted by σ̂MSD,n(x), and called from now on the local median
of the squared differences.

iii) For c > 0 fixed, let

χc(y) =

{
3 (y/c)2 − 3 (y/c)4 + (y/c)6 if |y| ≤ c
1 if |y| > c

be the score function introduced by Beaton and Tukey (1974). Let σ̂BT,n(x) stand for the
local M−estimador with BT function that is, the solution of (3) with score function χc with
c = 0.70417, a =

√
2 and b = 3/4.

Some Robustness Considerations. In Section 4, we show that, under regularity conditions, for
all G in the contamination neighborhood, the sequence {σ̂M,n(x)}n≥1 converge almost surely to

S(Gx) = inf

{
σ > 0 : E

[
χ

(
σ(x) (U2 − U1)

aσ

)]
≤ b

}
.

As mentioned above, if χ is a continuous function, S(Gx) is the unique solution of

E

[
χ

(
σ(x) (U2 − U1)

aS(Gx)

)]
= b . (5)

For any fixed x denote S(G) = S(Gx) with G the errors distribution and by Fn(y|x) the empirical
conditional distribution, Fn(y|x) =

∑n−1
i=1 wn,i(x)I(−∞,y](Yi+1−Yi). Then, we have that S(Fn(·|x)) =

σ̂M,n(x) and so, our estimator is related to a robust functional (defined on a wide class of distribution
functions) in the sense that this functional is weakly continuous and such that at the central model
F0, S is Fisher–consistent, i.e., S(F0) = σ(x) which means that σ̂M,n(x) estimates the true value
σ(x) at the central model. For a discussion regarding robust weakly continuous functionals in the
nonparametric context see Boente et al. (1991).

When the scale function is constant, Ghement et al. (2008) showed that under certain regularity
conditions and design restrictions, M−estimators of scale attain their maximum breakdown point of
1/2 when b = 3/4. In heteroscedastic models, it might occur that the local breakdown point is lower,
similar to local M−estimators of the regression function in nonparametric regression (see Boente
and Rodriguez, 2008, and Maronna et al., 2006, Chapter 4). The empirical breakdown point and
influence function of local M−estimates of scale are discussed in Sections 3 and 5.

3 Finite sample properties

Robust procedures are expected to be less sensitive to outliers than their classical counterparts.
A popular measure of robustness is the finite sample breakdown point (BP). To investigate the
resistance of our proposals to different amounts/sizes of contamination (and to get some insight
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about their finite sample BP) we conduct a simulation study comparing the performance of the
classical estimator, σ̂Rice,n(x), and two robust local M−estimators of the scale function, σ̂MSD,n(x)
and σ̂BT,n(x), introduced in Section 2. We consider the regression model (1) with g(x) = 2sen(4πx)
and σ(x) = exp(x). This model has been considered for homoscedastic testing in Dette and Hetzler
(2008). Similar results were obtained for others models (see Ruiz, 2008, for further details).

The design points are chosen as xi = i/(n + 1), 1 ≤ i ≤ n while the error’s distribution is
G(y) = (1 − ε)Φ(y) + ε H, with Φ the standard normal distribution and H modeling two types of
contamination,

a) a symmetric outlier contamination where H(y) = C(0, τ 2) is the Cauchy distribution centered
at 0 with scale τ = 4 and

b) asymmetric contaminations where H = N(µ, τ 2) is the normal distribution with means µ =
10, 100 and µ = 1000 and common variance τ = 0.1.

In the first contamination scenario, we have a heavy–tailed distribution while, in the second one,
there is a sub–population in data (see Maronna et al., 2006). The amounts of contamination were
ε = 0, 0.1, 0.2, 0.30, 0.35 and 0.40. The main reason to incorporate high contaminations proportions
and extremely asymmetric contaminations is to give some insight on the breakdown point of the
estimators. The sample size considered is n = 100 and, the number of replications, N = 10000.

For both, the classical and robust estimators, we have used the Nadaraya–Watson weights,

wn,i(x) = K ((x− xi)/hn)
[∑n−1

j=1 K ((x− xj)/hn)
]−1

, with a standard gaussian kernel. As in any

smoothing procedure a value for the smoothing parameter must be selected. However, the study
of data–driven bandwidth selectors for the scale function is less developed. When considering scale
estimators based on squared differences, Levine (2006) recommended a version of K−fold cross–
validation for selecting the smoothing parameter. As in nonparametric regression, this approach can
be sensitive to outliers even when it is combined with robust scale estimators. The ideas of robust
cross–validation can be adapted to the present situation, however, the study of robust selectors is
beyond the scope of the paper. Based on extensive preliminary comparisons we selected a smoothing
parameter hn = 0.20 for our simulations.

To asses the behavior of each estimator Tables 1 and 2 report, as summary measures, the mean
and the standard deviation of the integrated square error in logarithmic scale of the estimators, îsel,
defined as

îselj(σ̂n) =
1

n

n∑

i=1

[
log

(
σ̂
(j)
n (xi)

σ(xi)

)]2

where σ̂
(j)
n (xi) denotes the scale estimator, classical or robust, obtained at the j−th replication.

As expected, under the central model, ε = 0, the classical local Rice scale estimator performs bet-
ter than the robust ones that show a loss of efficiency measured through the îsel. On the other hand,
the performance of the classical local Rice estimator is highly sensitive to the presence of outliers in
the sample. When anomalous observations are present, regardless of the amount of contamination
and the sample size σ̂Rice,n has a very poor integrated square error, in both contamination scenar-
ios. In particular, note that with only 10% of contamination the mean of the îsel(σ̂Rice,n) suffers a
considerable increase confirming the expected non–robustness of this estimator.
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Estimator ε = 0 ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.35 ε = 0.40

σ̂Rice,n 0.021 (0.017) 3.893 (5.467) 6.631 (6.894) 8.701 (7.623) 9.613 (7.999) 10.429 (8.231)
σ̂MSD,n 0.036 (0.030) 0.074 (0.060) 0.204 (0.138) 0.470 (0.271) 0.670 (0.356) 0.918 (0.442)
σ̂BT,n 0.052 (0.047) 0.082 (0.068) 0.177 (0.128) 0.357 (0.210) 0.487 (0.260) 0.647 (0.314)

Table 1: Mean and standard deviation (between brackets) of the îsel for the local scale–estimates under different

amounts of symmetric contamination, i.e., when G(y) = (1− ε)Φ(y) + ε H and H(y) = C(0, σ2) with σ = 4.

µ Estimator ε = 0.10 ε = 0.20 ε = 0.30 ε = 0.35 ε = 0.40
10 σ̂Rice,n 1.353 (0.321) 2.060 (0.261) 2.453 (0.218) 2.574 (0.202) 2.656 (0.186)

σ̂MSD,n 0.108 (0.088) 0.386 (0.352) 1.141 (0.862) 1.541 (1.015) 1.790 (1.097)
σ̂BT,n 0.099 (0.081) 0.201 (0.147) 0.323 (0.236) 0.372 (0.283) 0.390 (0.307)

100 σ̂Rice,n 11.530 (1.152) 13.744 (0.722) 14.899 (0.675) 15.132 (0.492) 15.344 (0.443)
σ̂MSD,n 0.118 (0.147) 0.829 (1.411) 5.235 (4.786) 6.380 (4.854) 8.333 (5.190)
σ̂BT,n 0.107 (0.087) 0.291 (0.237) 1.002 (0.899) 1.229 (1.119) 1.636 (1.379)

1000 σ̂Rice,n 32.413 (2.001) 36.101 (1.180) 37.832 (0.878) 38.339(0.787) 38.678 (0.704)
σ̂MSD,n 0.149 (0.329) 1.999 (3.480) 10.917 (9.110) 16.817 (10.638) 21.564 (10.964)
σ̂BT,n 0.117 (0.108) 0.600 (0.891) 3.092 (3.166) 5.246 (4.286) 7.438 (4.888)

Table 2: Mean and standard deviation (between brackets) of the îsel for the local scale–estimates under different

amounts of asymmetric contamination, i.e., when G(y) = (1− ε)Φ(y) + ε H and H = N(µ, σ2), with µ = 10, 100, 1000

and σ2 = 0.1.

Under none or small (10%) symmetric contamination the behavior of σ̂MSD,n and σ̂BT,n are similar.
On the other hand, under both contamination schemes, if the amount of the contamination is large,
the local M−estimate σ̂BT,n performs better than σ̂MSD,n, specially under asymmetric contamination.
These results suggest that the breakdown point of σ̂MSD,n is lower than that of σ̂BT,n.

Another useful robustness measure is the empirical influence function (EIF) introduced by Tukey
(1977). EIF reflects the behavior of the estimator when a single sample point is replaced by a new
observation that does not follow the original model.

We will follow an approach similar to that of Manchester (1996) who introduced a graphical
method to display sensitivity of a kernel estimator in nonparametric regression. Given a data set
{(xi, yi)}1≤i≤n, let σ̂(x) be the scale estimator computed at x with the Nadaraya–Watson weights.
Thus, for a smooth χ−function, the estimator σ̂(x) is the solution of

n−1∑

i=1

K

(
x− xi
hn

)[
χ

(
Yi+1 − Yi
a σ̂(x)

)
− b

]
= 0 .

Assume that z = (x0, y0) represents a contaminating point with x0 ∈ [0, 1] and denote σ̂z the scale
estimator based on the augmented data set {(x1, Y1), . . . (xn, Yn), z}. Thus, if xj0 ≤ x0 ≤ xj0+1, we
have that σ̂z(x) is the solution of

0 =
∑

1≤i≤n−1,i6=j0

K

(
x− xi
hn

)[
χ

(
Yi+1 − Yi
a σ̂z(x)

)
− b

]

+K

(
x− xj0
hn

)[
χ

(
y0 − Yi
a σ̂z(x)

)
− b

]
+K

(
x− x0
hn

)[
χ

(
Yj0+1 − y0
a σ̂z(x)

)
− b

]
.
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In order to detect if a contaminating point influences the scale estimator, we can define the EIF of
σ̂(x) at (x0, y0) as

EIF(σ̂(x); (x0, y0)) = (n+ 1) |log (σ̂z(x))− log (σ̂(x))| .

The log function is introduced in order to study the influence to inliers. Figure 1 gives the surface plots
for one of the samples generated under the central model described above, i.e., with g(x) = 2sen(4πx),
σ(x) = exp(x), xi = i/(n + 1), n = 100 and ε = 0 when x = 0.5 to illustrate the performance at
a central point. To build each surface plot, we consider a grid of values (x0, y0) taking values on
a equidistant grid on each axis of size 40 × 200 on [0.25, 0.75] × [−100, 100]. Thus, we have a grid
of 800 points (x0, y0) and for each of them we have computed the empirical influence function,
EIF(σ̂(x); (x0, y0))) for each estimator.

As expected, the classical estimator based on square differences has an unbounded EIF, while the
EIF of the robust alternatives related to bounded χ functions remain bounded. It is worth noticing
that the irregularity showed by EIF(σ̂MSD,n(x); (x0, y0))) may be related to the non–differentiability of
the score function. Note that EIF(σ̂BT,n(x); (x0, y0))) show larger values than EIF(σ̂MSD,n(x); (x0, y0))),
this fact may be related to the local–global robustness trade-off of σ̂BT,n. Besides, as it is well–known,
the robust scale estimators may be sensitive to inliers, this feature corresponds to the behavior near
y0 = 0 of the EIF of both robust procedures. To give more insight on the behavior with respect to
inliers, Figure 2 gives the surface plots constructed when considering a grid of values (x0, y0) taking
values on a equidistant grid on each axis of size 40×200 on [0.25, 0.75]× [−5, 5]. These plots confirm
that the robust estimators may be sensitive to inliers even if their effect remains bounded. Besides
the wiggly surface obtained for the σ̂MSD,n near y0 = 0 suggests that abrupt changes may arise when
using this estimator.

4 Asymptotic behavior of the local M−estimates of the scale func-

tion

In this section, we derive consistency and asymptotic normality of the estimators defined in Section
2 at any distribution G from the gross–error neighborhood Pε(F0), under mild conditions.

If I is an interval of R, let CL(I) be the set of bounded and Lipschitz continuous functions
f : I → R and denote by ‖f‖L = min {k : |f(x)− f(y)| ≤ k|x− y|, ∀x, y ∈ I}. In order to establish
the strong consistency of {σ̂M,n(x)}n≥1, we will need the following assumptions

H1. The score function χ is continuous, even, bounded, strictly increasing on the set Cχ = {x :
χ(x) < ‖χ‖∞} with χ(0) = 0. Without loss of generality, we assume that ‖χ‖∞ = 1.

H2. The design points {xi}ni=1 satisfy limn→∞Mn = 0, where Mn = max1≤i≤n−1 (xi+1 − xi).

H3. The regresion function g : [0, 1] −→ R is continuous.

H4. The scale function σ : [0, 1]→ R
+ is continuous.

H5. The weights {wn,i(x)}n−1i=1 are such that
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(i) limn→∞
∑n−1

i=1 wn,i(x) = 1.

(ii) There exists M > 0 such that
∑n−1

i=1 |wn,i(x)| ≤M , for all n ≥ 2.

(iii) limn→∞
∑n−1

i=1 |wn,i(x)|I{|xi−x|≥a} = 0, for any a > 0.

(iv) limn→∞wn logn = 0, where wn = max1≤i≤n−1 |wn,i(x)|.

Remark 4.1 Assumptions H2, H3 and H5 are standard conditions in nonparametric estimation.
They have been considered, for instance, by Georgiev (1989) to derive the strong consistency of
regression estimators. In particular, H5 is fulfilled for the weight functions described in Section 2
if K has bounded support and the bandwidth sequence is such that hn → 0 and nhn/ log(n) → ∞
and max (xi+1 − xi) ≤ ∆/n. On the other hand, H5(ii) allows for kernels taking negative values,
such as high order kernels or kernels modified to overcome boundary effects (see, for instance, Gasser
and Müller, 1984). Assumption H4 is a smoothness requirement on the scale function needed to
guarantee consistency at any x ∈ (0, 1).

Theorem 4.1 Under H1 to H5, given x ∈ (0, 1), the local M−estimators are strongly consistent to
S(Gx) defined in (5), i.e., σ̂M,n(x)

a.s.−→ S(Gx).

To derive the asymptotic distribution of the proposed local M−estimators, we will need some
additional assumptions. From now on, we will denote by cn =

∑n−1
i=1 w

2
n,i(x).

H6. g ∈ CL([0, 1]).

H7. Mn = max1≤i≤n−1(xi+1 − xi) = O(n−1).

H8. χ is twice continuously differentiable and the functions χ1(u) = uχ ′(u) and χ2(u) = u2χ ′′(u)
are bounded.

H9. The scale function σ : [0, 1]→ R
+ satisfies (i) or (ii) where

(i) σ ∈ CL([0, 1]).
(ii) σ is continuous and limn→∞ c

−1/2
n

∑n−1
i=1 |wn,i(x)| |σ(xi+1)− σ(xi)| = 0.

H10. Let wn = max1≤i≤n−1 |wn,i(x)|.

(i) limn→∞ c
−1/2
n wn = 0

(ii) limn→∞ c
−1/2
n

(∑n−1
i=1 wn,i(x)− 1

)
= 0.

H11. The score function χ is such that ν(α1, α2) = E |χ ′(α1U1 + α2U2)U2| < ∞, for any α1 6= 0,
α2 6= 0, where {Ui}i=1,2 are i.i.d, U1 ∼ G.

H12. For any x ∈ (0, 1) the following conditons hold

(i) limn→∞ c
−1/2
n

∑n−1
i=1 wn,i(x)(σ(xi)− σ(x)) = β1

(ii) limn→∞ c
−1/2
n

∑n−1
i=1 |wn,i(x)| (σ(xi)− σ(x))2 = 0.
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Remark 4.2. It is worth noticing that H7, H9(i) and H10(i) entail H9(ii) which is needed when
no differentiability conditions on σ are required. Moreover, H10(i) is needed to guarantee that the

order of convergence is c
−1/2
n while H12(i) deals with the asymptotic bias. Note that since

ν(α1, α2) ≤ ‖χ ′‖∞
[
2c

|α1|
+ E

(
|U2| I|α1U1+α2U2|≤c I|α1U1|>2c I|α2U2|>c

]]
<∞ , (6)

if χ ′(u) = 0 for |u| > c , χ ′ is bounded and

E
[
|U2| I|α1U1+α2U2|≤c I|α1U1|>2c I|α2U2|>c

]
<∞ , (7)

is fulfilled for any α1, α2, then H11 holds. Besides, the bound given in (6) and the fact that χ ′ is
continuous entail that sup(α1,α2)∈K1×K2

ν(α1, α2) <∞, for any compact set Ki ⊂ R−{0}. Note that
the Beaton–Tukey family of score functions clearly satisfies the required conditions. Moreover, (7)
is not as restrictive as it may seem, as it is fulfilled, for instance, when Ui has Cauchy distribution.

Theorem 4.2. Let x ∈ (0, 1) be fixed and let cn =
∑n−1

i=1 w
2
n,i(x). Assume that β > 0 and vi > 0,

i = 1, 2 where

β = lim
n→∞

c−1n

n−2∑

i=1

wn,i+1(x)wn,i(x)

v1 = v1(Gx) = var

[
χ

(
σ(x)U∗1
aS(Gx)

)]
+ 2β cov

[
χ

(
σ(x)U∗1
aS(Gx)

)
, χ

(
σ(x)U∗3
aS(Gx)

)]

v2 = v2(Gx) = E

[
χ ′
(
σ(x)U∗1
aS(Gx)

)(
σ(x)U∗1

a(S(Gx))2

)]
,

with U∗1 = U2 − U1, U
∗
3 = U4 − U3 and {Ui}i≥1 are i.i.d. random variables with distribution G. Let

v = v(Gx) = v1/v
2
2. If, in addition, H1 and H5 to H12 hold, we have that

c−1/2n (σ̂M,n(x)− S(Gx))
D−→ N

(
S(Gx)β1
σ(x)

, v

)

where β1 is given in H12.

Remark 4.3.

(a) Note that the asymptotic bias depends on χ only through the functional S(Gx). Hence, at
the central model, i.e., when G = F0, the asymptotic bias is independent of the score function
and, consequently, the asymptotic behavior of the sequence ofM−estimates depends on χ only
through its asymptotic variance.

(b) It is worth noticing that we do not obtain the usual expression for the asymptotic variance
of the scale M−estimator based on independent observations. This fact can be explained by
the intrinsic one–dependence, due to the responses differences appearing in each term of the
estimator’s definition, that leads to the second term in v1.
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5 Concluding Remarks

Robust estimation of the scale function, σ(x), is an important problem in any nonparametric regres-
sion analysis. In this paper, for heteroscedastic models, we introduced a robust estimator for the
scale function based on local M−scale estimators. These estimators are a robust version of the very
well–known family of regression–free estimators based on responses differences (see, among others,
Hall et al., 1990 and Levine, 2003). They can also be seen as an extension to heteroscedastic mod-
els of the robust global M−scale estimators introduced for homoscedastic nonparametric regression
models by Ghement et al., 2008. Under mild regularity conditions, the local M−estimators turn is
consistent and asymptotically normal.

As we mentioned in Section 2, robustness of the estimators can be considered in the sense of weak
continuity of the scale functional. However, the determination of the breakdown point and influence
function of local M−estimators of the scale function deserves a careful investigation as future work.

As Giloni and Simonoff (2005) indicate, when estimating the regression function, one possible
approach to the breakdown point problem is to consider a conditional concept in the sense that,
unlike for parametric models, the breakdown value changes depending on the evaluation point x.
Although the simulation results suggest that the local M−estimator based on the Beaton–Tukey
score function is more resistant than the local median of the squared differences, there still exists a
need to define a local version of asymptotic breakdown point for scale functions, taking into account
both implosion and explosion of the estimators.

Besides, when using kernel weights, the influence function of the estimator may be investigated
by defining a smoothed influence function through a smoothed functional related to the kernel scale
estimators as it was done for nonparametric regression by Aı̈t Sahalia (1995) and Tamine (2002).
However, unlike the notion of asymptotic breakdown point, a finite sample version of the influence
function following the ideas of Tukey (1977) may be more adequate. Following the ideas of Manchester
(1996) who introduced a graphical method to display sensitivity of a scatter plot smoother, we have
defined an empirical influence function that takes into account the effect of both inliers and outliers
on the scale estimator function.

Acknowledgment. The authors wish to thank an anonymous referee and the Associate Editor for valuable

comments which led to an improved version of the original paper.

A Appendix

For the sake of simplicity, we will begin by fixing some notation. For any i = 1, . . . , n− 1, let

Y ∗i = Yi+1 − Yi , U
∗
i = Ui+1 − Ui and Ũi = σ(xi+1)Ui+1 − σ(xi)Ui. (A.1)

Before proving Theorem 4.1, we state the following result whose proof follows easily using Hoeffding’s
inequality (Bosq, 1996, page 22).

Lemma A.1 Let Z1, . . . , Zn be independent random variables with E(Zi) = 0 and sup
1≤i≤n

|Zi| ≤ c.

Let {wn,i}n−1i=1 be a sequence of weights and wn = max
1≤i≤n−1

|wn,i(x)|.

13



(a) If {wn,i}n−1i=1 satisfies H5(ii) then, for any ε > 0,

P

(∣∣∣∣∣
n−1∑

i=1

wn,iZi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− ε2

2c2Mwn

)
,

(b) If, moreover, the sequence of weights verifies H5(iv), then
∑n−1

i=1 wn,iZi → 0, completely.

Proof of Theorem 4.1. Fix x ∈ (0, 1) and consider the (conditional) empirical distribution

functions Fn(y) =

n−1∑

i=1

wn,i(x)I(−∞,y](Y
∗
i ) and F̃n(y) =

n−1∑

i=1

wn,i(x)I(−∞,y](Ũi) where we have omitted

the dependence on x. Let π stand for the Prohorov distance. Note that H1 entails that the functional
S is weakly continuous and so, consistency will follow if

π(Fn, Gx)
a.s.−→ 0 . (A.2)

To derive (A.2), it is enough to show that

π(Fn, F̃n)
a.s.−→ 0 (A.3)

π(F̃n, Gx)
a.s.−→ 0 (A.4)

hold. Note that (A.3) holds since for any f ∈ CL(R),
∫
f(y)d(Fn − F̃n)(y)

a.s.−→ 0. Effectively, H2,
H3 and H5(ii) and the fact that

∣∣∣∣
∫
f(y)d(Fn − F̃n)(y)

∣∣∣∣ ≤ ‖f‖L
n−1∑

i=1

|wn,i(x)| |g(xi+1)− g(xi)| ,

entail
∫
f(y)d(Fn − F̃n)(y)

a.s.−→ 0.

To obtain (A.4), it will be enough to prove that for any f ∈ CL(R)

Sn =
n−1∑

i=1

wn,i(x)f(Ũi)− E

[
n−1∑

i=1

wn,i(x)f
(
Ũi

)]
a.s.−→ 0, (A.5)

and

lim
n→∞

E

[
n−1∑

i=1

wn,i(x)f
(
Ũi

)]
=

∫
fdGx = E [f (σ(x)U∗1 )] (A.6)

hold.

Let us begin by showing that (A.5) holds. Write Sn = S1,n+S2,n, where Sj,n =
∑

i∈Ij,n
wn,i(x)Zi

with I1,n = {1 < i ≤ n − 1 : i is even } and I2,n = {1 < i ≤ n − 1 : i is odd }. Let wn =
max1≤i≤n−1 |wn,i(x)|. Applying Lemma A.1(a) to each term Sj,n we get

P (|Sn| > 2ε) ≤ P (|S1,n| > ε) + P (|S2,n| > ε) ≤ 4 exp

(
− ε2

2‖f‖2∞Mwn

)
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which together with H5(iv) implies (A.5).

Finally, we will show that (A.6) holds. Note that

E

[
n−1∑

i=1

wn,i(x)f(Ũi)

]
− Ef(σ(x)U∗1 ) =

n−1∑

i=1

wn,i(x)E
[
f(Ũi)− f(σ(x)U∗1 )

]

+

(
n−1∑

i=1

wn,i(x)− 1

)
E [f(σ(x)U∗1 )] .

By H5(i), the second term on the right hand side converges to zero. To prove that the first term also

converges to 0, define h(y) = Ef
(
σ(y)U∗1

)
and write

n−1∑

i=1

wn,i(x)E
[
f
(
Ũi
)
− f

(
σ(x)U∗1

)]
= T1,n+T2,n

where T1,n =
∑n−1

i=1 wn,i(x) (h(xi)− h(x)) and

T2,n =
n−1∑

i=1

wn,i(x)E
[
f
(
(σ(xi+1)− σ(xi))U2 + σ(xi)U

∗
1

)
− f

(
σ(xi)U

∗
1

)]
.

Since h is a bounded and continuous function, we have that, given ε > 0 there exists δ > 0 such that
if |x− y| < δ then |h(x)− h(y)| < ε/M , where M is given in H5(ii) and so,

|T1,n| ≤ 2 ‖h‖∞
n−1∑

i=1

|wn,i(x)|I{|xi−x|≥δ} + ε ,

which together with H5(iii), implies that T1,n → 0.

To conclude the proof, it remains to show that T2,n → 0. For all 1 ≤ i ≤ n − 1, let ui =
(σ(xi+1)− σ(xi))U2 + σ(xi)U

∗
1 and vi = σ(xi)U

∗
1 . Given ε > 0, let k > 0 be such that P (|U2| > k) ≤

ε/(4 ‖f‖∞M) and δ > 0 such that if

|s− t| < δ ⇒ |σ(s)− σ(t)| < ε/(2Mk ‖f‖L) . (A.7)

Hence, using H5(ii) and the Lipschitz continuity of f , we get that

|T2,n| ≤ ‖f‖L
n−1∑

i=1

|wn,i(x)|E
[∣∣σ(xi+1)− σ(xi)

∣∣∣∣U2
∣∣I{|U2|≤k}

]
+ ε/2 . (A.8)

On the other hand, H2 implies that there exists n0 ∈ N such that Mn = max
1≤i≤n−1

(xi+1 − xi) < δ,

for n ≥ n0. Hence, using (A.7), we obtain that the first term of the roght hand side of (6) can be
majorized by ε/2 which implies that limn→∞ |T2,n| = 0 concluding the proof.

To derive the asymptotic distribution of the local scale M−estimators, we will need the following
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Lemma. For any s > 0 and x ∈ (0, 1), define

λn,b(s, x) =

n−1∑

i=1

wn,i(x)χ

(
Y ∗i
as

)
− b

λ∗n,b(s, x) =
n−1∑

i=1

wn,i(x)χ

(
σ(x)U∗i
as

)
− b

λ1,n(s, x) =
n−1∑

i=1

wn,i(x)χ
′

(
σ(x)U∗i
as

)(
U∗i
as

)
(σ(xi)− σ(x))

where Y ∗i and U∗i , 1 ≤ i ≤ n− 1 are as in (A.1).

Lemma A.2 Under the assumptions H1, H5(ii), H6 to H10(i), H11 and H12, we have that

c−1/2n λn,b(s, x) = c−1/2n λ∗n,b(s, x) + c−1/2n λ1,n(s, x) + op(1) (A.9)

c−1/2n λ1,n(s, x) = β1E

[
χ ′
(
σ(x)U∗1
as

)(
U∗1
as

)]
+ op(1). (A.10)

proof. To show (A.9) it is enough to prove that

c−1/2n λn,b(s, x) = c−1/2n λ̃n,b(s, x) + op(1) (A.11)

c−1/2n λ̃n,b(s, x) = c−1/2n λ∗n,b(s, x) + c−1/2n λ1,n(s, x) + op(1), (A.12)

where λ̃n,b(s, x) =
n−1∑

i=1

wn,i(x)χ

(
Ũi
as

)
− b and Ũi = σ(xi+1)Ui+1−σ(xi)Ui, 1 ≤ i ≤ n− 1 as in (A.1).

Using H6, H8 and H5(ii) we conclude that

∣∣∣c−1/2n λn,b(s, x)− c−1/2n λ̃n,b(s, x)
∣∣∣ ≤ (as)−1 ‖g‖L ‖χ‖L (nMn)c

−1/2
n wn

where wn = max
1≤i≤n−1

|wn,i(x)| and Mn = max
1≤i≤n−1

(xi+1 − xi). Thus, (A.11) follows from H7 and

H10(i). Note now that (A.12) will follow if we prove that Hn = op(1) and Tn = c
−1/2
n λ1,n(s, x)+op(1)

where

Hn = c−1/2n

n−1∑

i=1

wn,i(x)

[
χ

(
σ(xi+1)Ui+1 − σ(xi)Ui

as

)
− χ

(
σ(xi)U

∗
i

as

)]

Tn = c−1/2n

n−1∑

i=1

wn,i(x)

[
χ

(
σ(xi)U

∗
i

as

)
− χ

(
σ(x)U∗i
as

)]
,

Using H5(ii), H9 and H11 we get that

E |Hn| ≤ (as)−1 sup
1≤i≤n−1

ν(αi, βi)c
−1/2
n

n−1∑

i=1

|wn,i(x)| |σ(xi+1)− σ(xi)|
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where ξi = αiU2 + βiU1, αi = σ̃i/(as), βi = −σ(xi)/(as) and σ̃i is an intermediate point be-
tween σ(xi+1) and σ(xi). As σ is continuous and strictly positive on the interval [0, 1], there exist
compact sets Kj ⊂ R − {0}, j = 1, 2, such that αi ∈ K1 and βi ∈ K2, 1 ≤ i ≤ n − 1. Thus,
sup1≤i≤n−1 ν(αi, βi) < sup(α,β)∈K1×K2

ν(α, β) <∞ which together with H7, H9 and H10(i) implies
that E |Hn| → 0.

It remains to show that Tn = c
−1/2
n λ1,n(s, x) + op(1). From a second order Taylor’s expansion,

we have that

Tn = c−1/2n λ1,n(s, x) + c−1/2n

n−1∑

i=1

wn,i(x)χ2

(
σ̃iU

∗
i

as

)
1

σ̃2i
(σ(xi)− σ(x))2

with χ2 (u) = u2χ ′′ (u) and σ̃i an intermediate point between σ(xi) and σ(x), i = 1, . . . , n−1. Hence,
noticing that inf

u∈(0,1)
σ2(u) > 0 and using H8 we obtain that

E
∣∣∣Tn − c−1/2n λ1,n(s, x)

∣∣∣ ≤ ‖χ2‖
inf

u∈(0,1)
σ2(u)

c−1/2n

n−1∑

i=1

|wn,i(x)| (σ(xi)− σ(x))2 ,

which together with H12(ii) imply that Tn − c
−1/2
n λ1,n(s, x) = op(1).

We now prove (A.10). Let Zi = χ ′
(
σ(x)U∗i
aSx

)(
U∗i
aSx

)
and write c

−1/2
n λ1,n(s, x) = Hn + Tn with

Hn = c−1/2n

n−1∑

i=1

wn,i(x)E(Zi) (σ(xi)− σ(x)) and Tn = c−1/2n

n−1∑

i=1

wn,i(x)(Zi − E(Zi)) (σ(xi)− σ(x)) .

Since, E(Zi) = E(Z1), from H12(i) we obtain easily that Hn −→ β1E(Z1). Besides, H10(i) and

H12 imply that var [Tn]→ 0 and so, Tn
p−→ 0, concluding the proof.

Proof of Theorem 4.2. Fix x ∈ (0, 1) and let Sx = S(Gx). Noting that the local M−estimator
σ̂M,n(x) satisfies λn,b (σ̂M,n(x), x) = 0, a Taylor’s expansion of order one yields

0 = λn,b(σ̂M,n(x), x) = λn,b(Sx, x) + (σ̂M,n(x)− Sx)λ
′
n,b(σ̂0,n, x) ,

with λ ′n,b(s, x) =
∂

∂s
λn,b(s, x) = −1

s

n−1∑

i=1

wn,i(x)χ
′

(
Y ∗i
as

)(
Y ∗i
as

)
and σ̂0,n an intermediate value be-

tween Sx and σ̂M,n(x). Hence, c
−1/2
n (σ̂M,n(x)− Sx) = − c−1/2n λn,b(Sx, x)/λ

′
n,b(σ̂0,n, x) and, in conse-

quence, it is enough to prove that

c−1/2n λn,b(Sx, x)
D−→ N (Sxv2β1/σ(x), v1) (A.13)

−λ′n,b(σ̂0,n, x)
p−→ v2 . (A.14)

Lemma A.2 implies that c
−1/2
n λn,b(Sx, x) = c

−1/2
n λ∗n,b(Sx, x) + c

−1/2
n λ1,n(Sx, x) + op(1). Using that

c−1/2n λ1,n(Sx, x)
p−→ β1E

[
χ ′
(
σ(x)U∗1
aSx

)(
U∗1
aSx

)]
= Sxv2β1/σ(x)

17



and

c−1/2n λ∗n,b(Sx, x) = V 1/2n

n−1∑

i=1

an,iξi + bc−1/2n (
n−1∑

i=1

wn,i(x)− 1)

= B1,n +B2,n

with an,i = V
−1/2
n c

−1/2
n wn,i(x), ξi = χ(σ(x)U∗i / (aSx)) − b and Vn = var

[∑n−1
i=1 c

−1/2
n wn,i(x)ξi

]
to

derive (A.13) it will be enough to show that

Vn → v1 (A.15)
n−1∑

i=1

an,iξi
D−→ N(0, 1) , (A.16)

since H10(ii) implies that B2,n → 0. Considering that

Vn = var

[
χ

(
σ(x)U∗1
aSx

)]
+ 2cov

[
χ

(
σ(x)U∗1
aSx

)
, χ

(
σ(x)U∗2
aSx

)]
c−1n

n−2∑

i=1

wn,i(x)wn,i+1(x).

and that c−1n

n−2∑

i=1

wn,i(x)wn,i+1(x) → β, (A.15) follows. To obtain (A.16) we will use Theorem 2.2

in Pelligrad and Utev (1997). As Vn → v1 > 0, without loss of generality, we can assume that
inf
n>1

Vn > 0. So,

sup
n>1

n∑

i=1

a2ni = sup
n>1

V −1n c−1n

n∑

i=1

w2n,i(x) = 1/ inf
n>1

Vn <∞ .

On the other hand (A.15) and H10(i) imply that max1≤i≤n |an,i| → 0. It is straightforward to check
that {ξi}i≥1 is a uniformly square–integrable, ϕ−mixing (it is one–dependent) zero–mean sequence
of random variables, satisfying that var (

∑n
i=1 aniξi) = 1. Therefore, the assumptions of Theorem

2.2 of Pelligrad and Utev (1997) are fulfilled and, in consequence, (A.16) holds, concluding the proof
of (A.13).

Let us show now (A.14). Denote η(t) = (t/a)χ ′(t/a). As σ̂0,n
p−→ Sx, we have only to prove that

n−1∑

i=1

wn,i(x)η

(
Y ∗i
σ̂0,n

)
p−→ E

[
η

(
U∗1σ(x)

Sx

)]
. (A.17)

Define, for any s ∈ R
+, f(s) =

n−1∑

i=1

wn,i(x)η (Y
∗
i /s). Using a Taylor’s expansion of order one, we

obtain

n−1∑

i=1

wn,i(x)η

(
Y ∗i
σ̂0,n

)
=

n−1∑

i=1

wn,i(x)η

(
Y ∗i
Sx

)
+

1

σ̂
(1)
0,n

n−1∑

i=1

wn,i(x)η
′

(
Y ∗i

σ̂
(1)
0,n

)(
Y ∗i

σ̂
(1)
0,n

)
(Sx − σ̂0,n)

= A1,n +A2,n(Sx − σ̂0,n)
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with σ̂
(1)
0,n an intermediate point between Sx and σ̂0,n. Note that σ̂

(1)
0,n

p−→ Sx. On the other hand,

h(t) = −aη′(t)t =
[
(t/a)χ′(t/a) + (t/a)2χ′′(t/a)

]
is bounded, so A2,n = Op(1) which entails that,

to obtain (A.17), it will be enough to show that A1,n =
n−1∑

i=1

wn,i(x)η

(
Y ∗i
Sx

)
a.s.−→ E

[
η

(
U∗1σ(x)

Sx

)]

which follows using analogous arguments to those considered to derive (A.2) in Theorem 4.1, since
η ∈ CL(R) by H8.
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