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Abstract

In many situations, when dealing with several populations with different covariance
operators, equality of the operators is assumed. Usually, if this assumption does not
hold, one estimates the covariance operator of each group separately, which leads to
a large number of parameters. As in the multivariate setting, this is not satisfactory
since the covariance operators may exhibit some common structure. In this paper, we
discuss the extension to the functional setting of common principal component model
that has been widely studied when dealing with multivariate observations. Moreover,
we also consider a proportional model in which the covariance operators are assumed to
be equal up to a multiplicative constant. For both models, we present estimators of the
unknown parameters and we obtain their asymptotic distribution. A test for equality
against proportionality is also considered.
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1 Introduction

Functional data analysis is an emerging field in statistics that has received considerable
attention during the last decade due to its applications to many biological problems. It
provides modern data analytical tools for data that are recoded as images or as a continuous
phenomenon over a period of time. Because of the intrinsic nature of these data, they can
be viewed as realizations of random functions X1(t), . . . ,Xn(t) often assumed to be in
L2(I), with I a real interval or a finite dimensional Euclidean set. In this context, principal
components analysis offers an effective way for dimension reduction and it has been extended
from the traditional multivariate setting to accommodate functional data. In the functional
data analysis literature, it is usually referred to as functional principal component analysis
(fpca). Since the pioneer work by Rao [16], further analysis on functional data has been
developed, for instance, by Rice and Silverman [17] or Ramsay and Dalzell [13]. See also,
Ramsay and Silverman [14], Ramsay and Silverman [15], Ferraty and Vieu [6]. In particular,
functional principal component analysis was studied by Dauxois, Pousse and Romain [5],
Besse and Ramsay [2], Pezzulli and Silverman [12], Silverman [18] and Cardot [4]. Several
examples and applications can be found in these references.

Let us consider a random function X(t) where t ∈ I = [0, 1] with mean µ(t) = E(X(t))
and covariance operator Γ. Let γ(s, t) = cov(X(s),X(t)), s, t ∈ I. Under general condi-
tions, the covariance function may be expressed as

γ(s, t) =
∑

i≥1

λiφi(s)φi(t)

where the λj are the ordered eigenvalues, λ1 ≥ λ2 ≥ . . . ≥ 0 of the covariance operator and
the functions φj the associated orthonormal eigenfunctions with the usual inner product
in L2[0, 1]. Then, the spectral decomposition of the covariance operator, which is the
analogous of a covariance matrix in a function space, allows to get a small dimension
space which exhibits the main modes of variation of the data. Effectively, the well–known
Karhunen–Loéve expansion allows to write the process as

X = µ+
∞∑

j=1

βj φj

where 〈X − µ, φj〉 = βj are random scalar loadings such that E(βj) = 0, E(β2
j ) = λj and

E(βj βk) = 0 for j 6= k. Note that the process can also be written as

X = µ+
∞∑

j=1

λ
1
2
j fj φj

with fj random variables such that E(fj) = 0, E(f2
j ) = 1, E(fj fs) = 0 for j 6= s. This

representation provides a nice interpretation of the principal component analysis in the
functional setting, since φ1(t), φ2(t), . . . represent the major modes of variation of X(t)
over t.
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In this paper, we go further since we generalize the previous ideas to the setting in
which we are dealing with several populations. In many situations, we have independent
observations Xi,1(t), · · · ,Xi,ni(t) from k independent samples of smooth random functions
in L2[0, 1] with mean µi and different covariance operators Γi. However, as it is the case in
the finite–dimensional setting, the covariance operators may exhibit some common structure
and it is sensible to take it into account when estimating them. A simple generalization
of equal covariance operators consists of assuming their proportionality, i.e., Γi = ρiΓ1, for
1 ≤ i ≤ k and ρ1 = 1.

The common principal components model, introduced by Flury [7] for p−th dimensional
data, generalizes proportionality of the covariance matrices by allowing the matrices to have
different eigenvalues but identical eigenvectors, that is, Σi = βΛiβ

t, 1 ≤ i ≤ k, where the
Λi are diagonal matrices and β is the orthogonal matrix of the common eigenvectors.
This model can be viewed as a generalization of principal components to k groups, since
the principal transformation is identical in all populations considered while the variances
associated with them vary among groups. In biometric applications, principal components
are frequently interpreted as independent factors determining the growth, size or shape of
an organism. It seems therefore reasonable to consider a model in which the same factors
arise in different, but related species. The common principal components model clearly
serves this purpose.

A natural extension to the functional setting of the common principal components model
introduced by Flury [7] is to assume that the covariance operators Γi have common eigen-
functions φj(t) but different eigenvalues λij . In this sense, the processes Xi,1(t), 1 ≤ i ≤ k
can be written as

Xi,1 = µi +
∞∑

j=1

λ
1
2
ij fij φj

with λi1 ≥ λi2 ≥ . . . ≥ 0 and fij random variables such that E(fij) = 0, E(f2
ij) = 1,

E(fij fis) = 0 for j 6= s and so, the common eigenfunctions, as in the one–population
setting, exhibit the same major modes of variation. We will denote this model the func-
tional common principal component (fcpc) model. As in principal component analysis,
the fcpc model could be used to reduce the dimensionality of the data, retaining as much
as possible of the variability present in each of the populations. Besides, this model pro-
vides a framework for analyzing different population data that share their main modes of
variation φ1, φ2, . . .. It is worth noticing that when considering a functional proportional

model, Xi,1(t), 1 ≤ i ≤ k can be written as Xi,1 = µi + ρi
∑∞

j=1 λ
1
2
j fij φj , with ρ1 = 1,

λ1 ≥ λ2 ≥ . . . ≥ 0 and fij are random variables as described above. A similar problem
was recently studied by Benko, Härdle and Kneip [1] who considered the case of k = 2
populations and provide tests for equality of means and equality of a fixed number of eigen-
functions.

The aim of this paper is to provide estimators of the common eigenfunctions under a
fcpc model and to study their asymptotic behavior, as well as to consider estimators of the
proportionality constants under a functional proportional model. In Section 2, we introduce
the notation that will be used in the paper while in Section 3, we describe the estimators
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for the restricted models. Under a fcpc, two families of estimators for the common eigen-
functions are considered. Besides, the proportionality constant estimators defined under
a functional proportional model allow to construct an asymptotic test to decide between
equality against proportionality of the covariance operators which corresponds to the first
two hierarchical levels considered in the finite–dimensional case, by Flury [9]. The asymp-
totic distribution of the given proposals is stated in Section 4. Proofs are given in the
Appendix.

2 Notation and Preliminaries

LetXi,1(t), · · · ,Xi,ni(t), 1 ≤ i ≤ k, be independent observations from k independent samples
of smooth random functions in L2(I), where I ⊂ IR is a finite interval, with mean µi.
Without loss of generality, from now on, we will assume that I = [0, 1]. Denote by γi and Γi

the covariance function and operator, respectively, related to each population. To be more
precise, we are assuming that {Xi,1(t) : t ∈ I} are k stochastic processes defined in (Ω,A, P )
with continuous trajectories, mean µi and finite second moment, i.e., E (Xi,1(t)) = µi(t)
and E

(
X2

i,1(t)
)
< ∞ for t ∈ I. Each covariance function γi(t, s) = cov(Xi,1(s),Xi,1(t)),

s, t ∈ I has an associated linear operator Γi : L2[0, 1] → L2[0, 1] defined as (Γi u) (t) =∫ 1
0 γi(t, s)u(s)ds, for all u ∈ L2[0, 1]. As in the case of one population, throughout this

paper, we will assume that the covariance operators satisfy ‖γi‖2 =
∫ 1
0

∫ 1
0 γ2

i (t, s)dtds <∞.
The Cauchy-Schwartz inequality implies that |Γiu|2 ≤ ‖γi‖2|u|2, where |u| stands for the
usual norm in the space L2[0, 1].Therefore, Γi is a self–adjoint continuous linear operator.
Moreover, Γi is a Hilbert-Schmidt operator. F will stand for the Hilbert space of such
operators with inner product defined by 〈Γ1,Γ2〉F = trace(Γ1Γ2) =

∑∞
j=1〈Γ1uj,Γ2uj〉,

where {uj : j ≥ 1} is any orthonormal basis of L2[0, 1] and 〈u, v〉 denotes the usual inner
product in L2[0, 1]. Choosing a basis {φij : j ≥ 1} of eigenfunctions of Γi we have that
‖Γi‖2

F =
∑∞

j=1 λ
2
ij = ‖γi‖2 < ∞, where {λij : j ≥ 1} are the eigenvalues of Γi. Note that

under the fcpc model, the basis is the same for all populations.

As mentioned in the Introduction, when dealing with one population, non–smooth es-
timators of the eigenfunctions and eigenvalues of Γ were considered by Dauxois, Pousse
and Romain [5], in a natural way through the empirical covariance operator. More pre-
cisely, the non–smooth estimators of the population functional principal component φk

are the eigenfunction φ̂k related to the k−th largest eigenvalue λ̂k of the random op-
erator Γ̂n where Γ̂n is the linear operator related to the empirical covariance function
γ̂n(t, s) =

∑n
j=1

(
Xj(t) −X(t)

) (
Xj(s) −X(s)

)
/n. Smooth versions of the previous es-

timates have been defined adding a penalty term or using a kernel approach. Smooth
estimators of the covariance operators are useful when dealing with sparse data or when
one wants to guarantee smoothness of the resulting common principal components. When
dealing with one population, Ramsay and Silverman [15] argue for smoothness properties
of the principal components as “for many data sets, pca of functional data is more re-
vealing if some type of smoothness is required to the principal components themselves”.
The same ideas apply when dealing with several populations sharing their eigenfunctions.
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One way to perform smooth principal component analysis is through roughness penalties
on the sample variance or on the L2−norm, as defined by Rice and Silverman [17] and by
Silverman [18], respectively, where consistency results were obtained. A different approach
is a kernel–based one which corresponds to smooth the functional data and then perform
pca on the smoothed trajectories. In Boente and Fraiman [3] it is shown that the degree
of regularity of kernel–based principal components is given by that of the kernel function
used. See also Ramsay and Dalzell [13], Ramsay and Silverman [15] and Ferraty and Vieu
[6]. Under a fcpc model, the kernel smoothing procedure becomes easier to implement and
allows to derive the properties of the resulting estimators from those of the estimators of
the covariance operator.

We will give two proposals to estimate the common eigenfunctions under a fcpc model.
Both of them are based on estimators of the covariance operators. As mentioned above,
for each population, one can consider either the non–smooth estimators studied in Dauxois,
Pousse and Romain [5] or the kernel proposal studied in Boente and Fraiman [3], since
under mild conditions they both have the same asymptotic distribution. For the sake of
completeness, we briefly remind their definition in the actual setting.

The empirical covariance functions γ̂i,r or the smoothed version of them γ̂i,s(t, s) are
defined as

γ̂i,r(s, t) =
1
ni

ni∑

j=1

(
Xi,j(s) −Xi(s)

) (
Xi,j(t) −X i(t)

)
(2.1)

γ̂i,s(s, t) =
1
ni

ni∑

j=1

(
Xi,j, h(s) −Xi, h(s)

) (
Xi,j, h(t) −Xi, h(t)

)
, (2.2)

whereXi,j, h(t) =
∫
Kh(t−s)Xi,j(s)ds are the smoothed trajectories andKh(.) = h−1K(./h)

is a nonnegative kernel function with smoothing parameter h, such that
∫
K(u)du = 1

and
∫
K2(u)du < ∞. The linear operators related to γ̂i,r and γ̂i,s will be denoted by

Γ̂i,r and by Γ̂i,s, respectively. Methods for selecting the smoothing parameter h can be
developed using cross–validation methods as it was described for penalizing methods in
Section 7.5 in Ramsay and Silverman [15] but adapted to the problem of estimating the
common directions, i.e., when considering the cross validation loss, the i−th sample should
be centered with an estimator of µi.

Assume ni = τiN with 0 < τi < 1 fixed numbers such that
∑k

i=1 τi = 1 and where
N =

∑k
i=1 ni denotes the total number of observations in the sample. Define the weighted

covariance function as γ =
∑k

i=1 τiγi and its related operator as Γ =
∑k

i=1 τiΓi. Therefore,
estimators of the weighted covariance function γ can be defined as γ̂r =

∑k
i=1 τiγ̂i,r and

Γ̂r =
∑k

i=1 τiΓ̂i,r or γ̂s =
∑k

i=1 τiγ̂i,s and Γ̂s =
∑k

i=1 τiΓ̂i,s, the raw or smoothed estimators
of γ and Γ, respectively. It is worth noticing that our results do not make use of the
explicit expression of the covariance operators, but they only require their consistency and
asymptotic normality.
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3 The proposals

3.1 Estimators of the common eigenfunctions and their size under a
FCPC model

Let us assume that the fcpc model hold, i.e., that the covariance operators Γi have common
eigenfunctions φj(t) but possible different eigenvalues λij where λij denotes the eigenvalue
related to the eigenfunction φj , i.e., λij = 〈φj ,Γiφj〉. Moreover, we will assume that the
eigenvalues preserve the order among populations, i.e., throughout this paper we will assume
that

A1. λi1 ≥ λi2 ≥ · · · ≥ λip ≥ λip+1 · · ·, for 1 ≤ i ≤ k

A2. There exists ` such that for any 1 ≤ j ≤ `, there exists 1 ≤ i ≤ k such that λij > λi j+1.

Assumption A2 is weaker than assuming that for any j ≥ 1, there exists 1 ≤ i ≤ k such that
λij > λi j+1 since it allows for finite rank operators. Note that if

∑k
i=1 τiλij >

∑k
i=1 τiλi j+1

for any j ≥ 1, then A2 is fulfilled for any value `.

As mentioned in Section 2, we will assume that ni = τiN with 0 < τi < 1 fixed numbers
such that

∑k
i=1 τi = 1 and N =

∑k
i=1 ni.

The first proposal is based on the fact that under the fcpc model, the common eigen-
functions {φj : j ≥ 1} are also a basis of eigenfunctions for the operator Γ =

∑k
i=1 τiΓi,

with eigenvalues given by

ν1 =
k∑

i=1

τiλi1 ≥ · · · ≥ νp =
k∑

i=1

τiλip ≥ νp+1 =
k∑

i=1

τiλi p+1 · · · .

Note that A1 and A2 entail that the first ` eigenfunctions will be related to the ` largest
eigenvalues of the operator Γ, having multiplicity one and being strictly positive. A first
attempt to estimate the common eigenfunctions consists in considering the eigenfunctions
φ̃j related to the largest eigenvalues ν̂j of a consistent estimator Γ̂ of Γ, obtained as Γ̂ =∑k

i=1 τiΓ̂i where Γ̂i denotes any estimator of the i−th covariance operator. Examples
of such estimators are, for instance, the empirical covariance functions or the smoothed
version of them described in Section 2. The eigenvalue estimators can then be defined as
λ̂ij = 〈φ̃j , Γ̂iφ̃j〉.

The second proposal tries to improve the efficiency of the previous one for gaussian
processes. To that purpose, we will have in mind that, in the finite–dimensional case, the
maximum likelihood estimators of the common directions for normal data solve a system of
equations involving both the eigenvalue and eigenvector estimators (see Flury, [7]). To be
more precise, let Yi,1, . . . ,Yi,ni , 1 ≤ i ≤ k be k independent samples of normally distributed
random vectors in IRp with covariance matrices Σi satisfying a cpc model, i.e., such that
Σi = βΛiβ

t, 1 ≤ i ≤ k. Then, the maximum likelihood estimators, β̂, of β solve the
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system of equations

β̂
t
m

[
k∑

i=1

τi
λ̂im − λ̂ij

λ̂imλ̂ij

Si

]
β̂j = 0 for m 6= j (3.1)

β̂
t
mβ̂j = δmj ,

where Si =
∑ni

j=1

(
Yi,j −Yi,j

)(
Yi,j −Yi,j

)t
/ni is the sample covariance matrix of the

i−th population and λ̂im = β̂
t
mSiβ̂m.

Using consistent estimators of the eigenvalues, we generalize this system to the infinite–
dimensional case. Effectively, let λ̂ij be initial estimators of the eigenvalues and Γ̂i any
consistent estimator of the covariance operator of the i−th population. Define for j < `
and m < `,

Γ̂mj =
k∑

i=1

τi
λ̂ij − λ̂im

λ̂imλ̂ij

Γ̂i , (3.2)

which will be asymptotically well defined under A2 if in addition λi` > 0 for 1 ≤ i ≤ k. Let
us consider the solution φ̂j of the system of equations

{
δmj = 〈φ̂m, φ̂j〉

0 = 〈φ̂m, Γ̂mjφ̂j〉 1 ≤ j < m .
(3.3)

The fcpc method can be viewed as a simultaneous rotation of the axes yielding variables
that are as uncorrelated as possible over the k groups. Moreover, as in the finite–dimensional
setting (3.3) can be viewed as a generalized system of characteristic equations. If all the
operators Γ̂mj were identical to say Γ̃, then the characteristic eigenfunctions of Γ̃ will be a
solution of (3.3). It is well known that for finite–dimensional normal populations with covari-
ance matrices satisfying a cpc model, the solution of (3.1), being the maximum likelihood
estimators, will provide efficient estimators of the common directions. This suggests that
solving (3.3) will improve the asymptotic variance of the eigenfunctions of Γ̂ for gaussian
processes.

To summarize, the two proposals to estimate the common principal eigenfunctions and
the eigenvalues of each population can be described as follows. Let Γ̂i be a consistent
estimator of the covariance operator of the i−th population

• Proposal 1. Define the pooled operator as Γ̂ =
∑k

i=1 τiΓ̂i. Then, the estimators of
the common eigenfunction φj can be defined as the eigenfunction φ̃j related to the
j−th largest eigenvalue of Γ̂. Besides, the estimator of the j−th eigenvalue of the
i−th population, λij, is defined as λ̂ij = 〈φ̃j , Γ̂iφ̃j〉.

• Proposal 2. Given initial consistent estimators of the eigenvalues λ̂ij define Γ̂mj as in
(3.2). Then, the solution {φ̂j}j≥1 of the system (3.3) will provide estimators of the
common eigenfunctions.
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3.2 Computational methods for FCPC

To compute the family of estimators defined in (3.3), we can proceed as follows. Let {αs}s≥1

be any orthonormal basis of L2[0, 1], p = pN an increasing sequence of integers such that
pN < N and define Yi,j,s = 〈αs,Xi,j〉, for 1 ≤ s ≤ p. When αs = φs the covariance
matrices, Σi, of Yi,1 = (Yi,1,1, . . . , Yi,1,p)

t satisfy a cpc model since they are diagonal.
However, since the eigenfunctions are our target, we have to consider a known orthonormal
basis of L2[0, 1], such as the Fourier basis. In this case, Σi can be approximated (through
an order p truncation) by symmetric and non–negative definite commutable matrices with
common eigenvectors βj = (〈α1, φj〉, . . . , 〈αp, φj〉)t. In order to obtain a solution φ̂j of
(3.3), we will use the solution β̂j = (β̂j1, . . . , β̂jp)t of (3.1) where the matrices Si are such
that the (m, s)−component of Si equals 〈αm, Γ̂iαs〉. Therefore, for 1 ≤ j ≤ p, a solution
φ̂j of (3.3) that provides estimators of the common eigenfunctions can be computed as
φ̂j =

∑p
s=1 β̂jsαs. It is worth noticing that this is equivalent to solving (3.3) with the

truncated finite expansion (of order p) of φ̂j =
∑

s≥1〈αs, φ̂j〉αs. Note that considering as
Si the sample covariance matrix of the i−th finite–dimensional observations {Yi,j}1≤j≤ni

corresponds to the sample covariance operator Γ̂i,r. On the other hand, using as Γ̂i the
smoothed covariance estimators, Γ̂i,s, to construct Si is equivalent to define Yi,j through
the smoothed trajectories Xi,j, h in the above description.

The approach of basis expansion of the functional data to obtain the principal compo-
nents in a one–sample setting is discussed in Ramsay and Silverman [15] where they argue
that the number p of basis functions depends on the sample size N and on the number of
sampling points if the whole curve is not observed, on the level of smoothing imposed by
using pN < N and on how efficient the basis reproduces the behavior of the data, among
others. Moreover, they recommend to use a basis expansion of order p only to calculate
more than a fairly small proportion of p eigenfunctions. A cross–validation method can
be developed in our setting by choosing first the number k of principal components to be
estimated. The procedure can be described as follows

• As in Ramsay and Silverman [15], we first center the data, i.e., we define X̃i,j =
Xi,j − µ̂i where µ̂i denotes any estimator of the mean of the i−th population as the
sample mean, for instance.

• For a fixed number of basis functions k < p < N , let φ̂(−(i,j))
m,p , 1 ≤ m ≤ k, be the

estimators of the common directions computed without the j−th observation of the
i−th sample.

• Define X⊥
i,j(p) = X̃i,j − π

(
X̃i,j,H(−(i,j))

k (p)
)

where π(X,H) denotes the projection of

X over the closed subspace H and H(−(i,j))
k (p) stands for the linear space spanned by

φ̂
(−(i,j))
1,p , . . . , φ̂

(−(i,j))
k,p . Note that in our situation, we have that 〈φ̂s, φ̂j〉 = δsj .

• Minimize the cross-validation scores CVk(p) =
∑k

i=1

∑ni
j=1 ‖X⊥

i,j(p)‖2.
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If smoothed trajectories are considered, the minimization procedure involve both parameters
p and h and it can be performed similarly to the proposals given by He, Müller and Wang
[10] in functional canonical correlation analysis or by Kayano and Konishi [11] in functional
principal component analysis. The advantage of this selection procedure is that is fully data
driven. However, as it is well known in the one population setting, cross–validation may
lead to unstable results and it is computationally expensive. Therefore, more research is
needed in this direction in order to obtain more stable and faster data–driven procedures.

3.3 Estimators of the proportionality constants under a proportional
model

Under a proportionality model Γi = ρiΓ1, 2 ≤ i ≤ k, ρ1 = 1 and so, ‖Γi‖2
F =

∑∞
j=1 λ

2
ij =

ρ2
i ‖Γ1‖2

F . Therefore, if ‖Γ1‖2
F 6= 0, we can define estimators of the proportionality constants

ρi as

ρ̂2
i =

‖Γ̂i‖2
F

‖Γ̂1‖2
F
, (3.4)

where Γ̂i, 1 ≤ i ≤ k, are consistent estimators of the covariance operators, Γi. Estima-
tors {φ̃j} of the common eigenfunctions {φj} can be obtained as in Section 3.1 while, the
eigenvalues of the first population, {λj}, can be estimated through λ̂j = 〈φ̃j , Γ̂1φ̃j〉.

Moreover, as in the finite–dimensional case, one can define a new family of estimators
of λj . This family allows to construct estimators of the ratio λj/λ1 more efficient than the
previous one, for gaussian processes. Let λ̂ij = 〈φ̃j , Γ̂iφ̃j〉 and let ρ̂i be defined as in (3.4),
then, the eigenvalue estimators for the first population, λ̂j, are defined as

λ̂j =
k∑

i=1

τi
ρ̂i
λ̂ij 1 ≤ j . (3.5)

4 Asymptotic properties of the eigenfunction and eigenvalue
estimators under a FCPC model

4.1 Asymptotic distribution of Proposal 1

It is clear that consistency of each population covariance operator estimator ensures consis-
tency of the pooled one. On the other hand, since the samples of the different populations
are independent it is easy to derive the asymptotic distribution of the pooled operator
estimator. We have thus the following result.

Lemma 4.1.1. Let Γ̂i be an estimator of the i−th population covariance operator, Γ̂ =∑k
i=1 τiΓ̂i be the pooled estimator defined in Proposal 1 and Γ =

∑k
i=1 τiΓi.
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a) If Γ̂i are consistent, i.e., if ‖Γ̂i − Γi‖F
a.s.−→ 0 then ‖Γ̂ − Γ‖F

a.s.−→ 0.

b) If
√
ni(Γ̂i − Γi)

D−→ Ui, where Ui is zero mean gaussian random element of F with
covariance operator Υi, then

√
N (Γ̂− Γ) =

k∑

i=1

√
τ i

√
ni(Γ̂i − Γi)

D−→ U , (4.1)

where U =
∑k

i=1

√
τ iUi is a mean zero Gaussian process in F whose covariance

operator is given by Υ =
∑k

i=1 τiΥi.

Remark 4.1.1. As mentioned above, using the Central Limit Theorem in Hilbert spaces,
Dauxois, Pousse and Romain [5] have shown that, when E(‖Xi,1‖4) <∞, for 1 ≤ i ≤ k, if
Γ̂i are the raw empirical operators defined in (2.1),

√
ni

(
Γ̂i − Γi

)
converges in distribution

to a zero mean gaussian random element, Ui, of F with covariance operator Υi given by

Υi =
∑

m,r,o,p

simsirsiosipE[fimfirfiofip]φm⊗φr⊗̃φo⊗φp −
∑

m,r

λimλir φm⊗φm⊗̃φr⊗φr (4.2)

where s2im = λim. On the other hand, as shown in Boente and Fraiman [3], if we choose
Γ̂i as the smoothed empirical operators defined in (2.2), then the same result holds under
mild smoothness conditions on the covariance functions, if the bandwidth parameters for
each population, hni , satisfy that nihni → 0.

As proposed by Dauxois, Pousse and Romain [5], once we have consistent estimators of
the covariance operator, a natural guess for estimating the eigenfunctions is to consider the
corresponding eigenfunctions of the covariance estimators. Denote by φ̃j the eigenfunction
related to the j−largest eigenvalue ν̂j of Γ̂. Then, from the results in Section 2.1 of Dauxois,
Pousse and Romain [5], we get easily the following result.

Theorem 4.1.1. Under the assumptions of Lemma 4.1.1b), for each eigenfunction φj of Γ
related to the eigenvalue νj =

∑k
i=1 τiλij with multiplicity one, we have that
√
N(φ̃j − φj)

D−→ SjUφj

where U is a mean zero gaussian process defined in (4.1) and Sj is the linear operator
defined by

(Sju)(t) =
∑

m 6=j

{ k∑

i=1

τi(λij − λim)
}−1

φm(t) 〈φm, u〉 .

Note that, from A1 and A2, we get that for j ≤ `, φj is an eigenfunction related to
an eigenvalue with multiplicity one and so, Theorem 4.1.1 can be used. In particular, we
obtain the following result.

Corollary 4.1.1. Let us assume that Γ̂i is the raw empirical operator,Γ̂i,r, defined in (2.1),
that E(‖Xi,1‖4) <∞, for 1 ≤ i ≤ k, and that A1 and A2 hold. For each eigenfunction φj

of Γ related to the eigenvalue νj =
∑k

i=1 τiλij with multiplicity one, we have that

10



a)
√
N(φ̃j − φj , φj)

p−→ 0

b) For any j 6= m
√
N〈φ̃j − φj , φm〉 → N (0, σ2

mj) with

σ2
jm =

{
k∑

i=1

τi(λij − λim)

}−2 k∑

i=1

τiλimλijE[f2
imf

2
ij]

Moreover, if Xi,1 are gaussian processes, for all 1 ≤ i ≤ k, we get that

σ2
jm =

{
k∑

i=1

τi(λij − λim)

}−2 k∑

i=1

τiλimλij . (4.3)

The following Theorem provides the asymptotic behavior of the eigenvalue estimators
under mild conditions on the eigenfunction estimators.

Theorem 4.1.2. Let Γ̂i be an estimator of the covariance operator of the i−th population

such that
√
ni(Γ̂i −Γi)

D−→ Ui, where Ui is zero mean gaussian random element of F with

covariance operator Υi. Let φ̃j be consistent estimators of the common eigenfunctions such

that
√
N
(
φ̃j − φj

)
= Op(1) and define estimators of λij as λ̂ij = 〈φ̃j , Γ̂iφ̃j〉. For any fixed

m, denote Λ̂
(m)
i =

{√
ni

(
λ̂ij − λij

)}
1≤j≤m

. Then,

a) For each 1 ≤ i ≤ k,
√
ni

(
λ̂ij − λij

)
has the same asymptotic distribution as

√
ni

(
〈φj , Γ̂iφj〉 − λij

)
.

b) For any m fixed, Λ̂
(m)
1 , . . . , Λ̂

(m)
k are asymptotically independent.

c) If, in addition, the covariance operator Υi of Ui is given by (4.2), then Λ̂
(m)
i is

jointly asymptotically normally distributed with zero mean and covariance matrix

C(i,m) such that C(i,m)
jj = λ2

ij

[
E
(
f4

ij

)
− 1

]
and C(i,m)

js = λijλis

[
E
(
f2

ijf
2
is

)
− 1

]
, that

is, the asymptotic variance of
√
ni

(
λ̂ij − λij

)
is given by λ2

ij

[
E
(
f4

ij

)
− 1

]
and the

asymptotic correlations are given by

E
(
f2

ijf
2
is

)
− 1

[
E
(
f4

ij

)
− 1

] 1
2
[
E
(
f4

is

)
− 1

] 1
2

.

Moreover, in the normal case, we get that the components of Λ̂
(m)
i are asymptotically

independent with asymptotic variances 2λ2
ij .

Remark 4.1.2. When all the populations have a gaussian distribution, Theorems 4.1.1
and 4.1.2 provide an expression for the asymptotic variance of the estimators that is related

11



to that given in the finite–dimensional setting. A more general framework in which an
analogous statement can be given, is when all the populations have the same distribution
except for changes in the location parameter and the covariance operators. To be more
precise, assume that the processes Xi,1(t), 1 ≤ i ≤ k can be written as

Xi,1 = µi +
∞∑

j=1

λ
1
2
ij fij φj

with λi1 ≥ λi2 ≥ . . . ≥ 0 and fij random variables such that E(fij) = 0, E(f2
ij) = 1,

E(fij fis) = 0 for j 6= s. Moreover, assume that for any j, fij and f1j have the same
distribution. In this case, the asymptotic variance of

√
N〈φ̂j − φj, φm〉 reduces to

σ2
jm = E

(
f2
1mf

2
1j

) { k∑

i=1

τi(λij − λim)

}−2 k∑

i=1

τiλimλij ,

that is, it is proportional to that obtained for gaussian processes.

Similarly, the asymptotic variance of
√
ni

(
λ̂ij − λij

)
is given by λ2

ij

[
E
(
f4
1j

)
− 1

]
and

the asymptotic correlations are the same for all populations.

It is worth noticing, that under the additional assumption of gaussian process E(f4
ij) = 3

and so there is no need to estimate this quantity if we are seeking for confidence intervals
or hypothesis testing. Under a more general framework, the expectation appearing in the
previous expressions for the asymptotic variances, i.e., E(f4

ij) and E
(
f2
1mf

2
1j

)
can easily

be estimated using consistent estimators of the eigenvalues and eigenfunctions and the fact
that 〈Xi,1, φj〉2 = λijf

2
ij.

4.2 Asymptotic Properties of Proposal 2

In this section we will study the asymptotic behavior of the second proposal given in Section
3.1. We will show that a better efficiency is attained ifXi,1(t) are gaussian random functions.

Denote Γmj =
∑k

i=1 τi [(λij − λim) / (λimλij)]Γi and denote φ?
j any solution of

{
δmj = 〈φ?

m, φ
?
j 〉

0 = 〈φ?
m,Γmjφ

?
j 〉 1 ≤ j < m .

(4.4)

It is easy to see that if the covariance operators satisfy a fcpc model, then φj satisfies (4.4).
The following result state the consistency of the estimators defined through (3.3).

Theorem 4.2.1. Let Γ̂i be consistent estimators of the covariance operator of the i−th
population, i.e., ‖Γ̂i − Γi‖F

a.s.−→ 0. Moreover, assume that the fcpc model hold and let
{λ̂ij} consistent estimators of the eigenvalues of the i−th population {λij}. Assume that
for each j there exists 1 ≤ ij ≤ k such that λij j > 0 and that the system (4.4) has a

unique solution, then the solution φ̂j of (3.3) provide consistent estimators of the common
eigenfunctions φj .

12



The following result states the asymptotic behavior of the coordinates {〈φ̂j , φs〉 : s ≥ 1}
of the common eigenfunctions estimators φ̂j defined through Proposal 2 that will allow to
establish the claimed improvement in efficiency for gaussian processes.

Theorem 4.2.2. Let Γ̂i be an estimator of the covariance operator of the i−th population

such that
√
ni(Γ̂i −Γi)

D−→ Ui, where Ui is zero mean gaussian random element of F with

covariance operator Υi given by (4.2). Moreover, let λ̂ij be consistent estimators of the
eigenvalues of the i−th population λij. Assume A1, A2 and that λi` > 0, for all 1 ≤ i ≤ k.

If the solution φ̂j of (3.3) are consistent estimators of the common eigenfunctions φj such

that either ĝj =
√
N
(
φ̂j − φj

)
= Op(1) or N

1
4

(
φ̂j − φj

)
= op(1) hold, then, for any j ≤ `,

m ≤ `, m 6= j we have that

a) 〈ĝm, φj〉 has the same asymptotic distribution as −〈ĝj , φm〉.

b) For j < m, 〈ĝj , φm〉 D−→ N (0, θ2
jm), where

θ2
jm =

k∑

i=1

τi
(λim − λij)2

λimλij
E
(
f2

imf
2
ij

)

{
k∑

i=1

τi
(λim − λij)2

λimλij

}2 (4.5)

Remark 4.2.1. Note that in the gaussian case, we get E
(
f2

imf
2
ij

)
= 1 and so the as-

ymptotic variance of coordinates of the common eigenfunction estimates, defined through
Proposal 2, reduces to

θ2
jm =

{
k∑

i=1

τi
(λim − λij)2

λimλij

}−1

On the other hand, the common eigenfunction estimates, defined through Proposal 1, have
asymptotic variances σ2

jm given by (4.3). Since θ2
jm ≤ σ2

jm, we obtain that the estimates
of Proposal 2 are more efficient that those of Proposal 1 for gaussian processes.

Note that if we relax the gaussian distribution assumption by requiring, as in Remark
4.1.2, that fij and f1j have the same distribution, for all j, then, the same conclusion holds.

4.3 Asymptotic Distribution of the proportionality constants

We will first state some results regarding the norm of a covariance operator estimator that
will allow to derive easily the asymptotic behavior of the proportionality constant estimators
defined in Section 3.3. Strong consistency follows easily from the continuity of the norm
‖ · ‖F and the consistency of the covariance estimators of each population.
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The following Theorem states the asymptotic distribution of the proportionality con-
stants.

Theorem 4.3.1. Let Xi,1(t), · · · ,Xi,ni(t) be independent observations from k independent
samples of smooth random functions in L2[0, 1] with gaussian distribution with mean µi

and covariance operators Γi such that Γi = ρiΓ1, 1 ≤ i ≤ k, ρ1 = 1. Let Γ̂i be estimators

of the covariance operators Γi such that
√
ni(Γ̂i − Γi)

D−→ Ui, where Ui are independent
zero mean gaussian random elements of F with covariance operators Υi given by (4.2).
Let ρ̂i be defined as in (3.4). Then, if ‖Γ1‖F 6= 0 and we denote by r̂i =

√
N (ρ̂i − ρi),

r̂ = (r̂2, . . . , r̂k)
t, we have that r̂ is asymptotically normally distributed with zero mean

and asymptotic variances given by

asvar (r̂i) = 2 ρ2
i (τ1 + τi)

∑
j≥1 λ

4
j

‖Γ1‖4
F

2 ≤ i ≤ k . (4.6)

Moreover, if we denote by ρ = (ρ2, . . . , ρk)
t, we have that r̂ D−→ N (0k−1,B) where

B = 2
∑

j≥1 λ
4
j

‖Γ1‖4
F

[
1
τ1
ρρt + diag

(
ρ2
2

τ2
, . . . ,

ρ2
k

τk

)]

It is worth noticing that
∑

j≥1 λ
4
j = ‖Γ1 Γ1‖2

F .

The following result gives the asymptotic distribution of the estimators of the ratio
λj/λ1.

Theorem 4.3.2. Let Xi,1(t), · · · ,Xi,ni(t) be independent observations from k independent
samples of smooth random functions in L2[0, 1] with mean µi and covariance operators Γi

such that Γi = ρiΓ1, 1 ≤ i ≤ k, ρ1 = 1. Let Γ̂i be estimators of the covariance operators

Γi such that
√
ni(Γ̂i − Γi)

D−→ Ui, where Ui are independent zero mean gaussian random
elements of F with covariance operators Υi given by (4.2). Let ρ̂i consistent estimators of
the proportionality constants ρi and λ̂j be defined as in (3.5) where λ̂ij = 〈φ̃j , Γ̂iφ̃j〉 with√
N
(
φ̃j − φj

)
= Op(1). Denote by ψ̂j =

√
N
(
λ̂j/λ̂1 − λj/λ1

)
and for any fixed p ≥ 2, let

ψ̂ =
(
ψ̂2, . . . , ψ̂p

)t
. Then, we have that ψ̂ is asymptotically normally distributed with zero

mean and asymptotic variances given by

asvar
(
ψ̂j

)
=

λ2
j

λ2
1

k∑

i=1

τivar
(
f2

ij − f2
i1

)
2 ≤ j ≤ p

ascov
(
ψ̂j , ψ̂m

)
=

λjλm

λ2
1

k∑

i=1

τi
[
E
(
f2

ijf
2
im

)
−E

(
f2

i1f
2
im

)
−E

(
f2

ijf
2
i1

)
+E

(
f4

i1

)]

for 2 ≤ j < m ≤ p.
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Remark 4.3.1 Note that if the process is gaussian, the asymptotic variance of ψ̂j =√
N
(
λ̂j/λ̂1 − λj/λ1

)
reduces to σ2

j = 4λ2
j/λ

2
1 while the correlations are 1/2 as in the finite–

dimensional case. Moreover, these ratio estimators are more efficient than those obtained
by considering as eigenvalue estimators 〈φ̃j , Γ̂1φ̃j〉.

Theorem 4.3.1 can be used to test the hypothesis of equality of several covariance opera-
tors against proportionality. This corresponds to the two first levels of similarity considered
in the finite–dimensional setting by Flury [9]. Effectively, assume that we want to test

H0 : Γ1 = Γ2 = . . . = Γk against H1 : Γi = ρiΓ1 , 2 ≤ i ≤ k and ∃ i : ρi 6= 1 . (4.7)

The estimators defined in Section 3.3 allow to construct a Wald statistic.

From now on, let γρ =
(
τ2
ρ2
, . . . ,

τk
ρk

)t
and denote

Cρ =

[
diag

(
τ2
ρ2
2

, . . . ,
τk
ρ2

k

)
− γργt

ρ

]
.

The following result provides a test for (4.7).

Theorem 4.3.3. Let Xi,1(t), · · · ,Xi,ni(t) be independent observations from k independent
samples of smooth random functions in L2[0, 1] with gaussian distribution with mean µi

and covariance operators Γi such that Γi = ρiΓ1, 1 ≤ i ≤ k, ρ1 = 1. Assume that we want
to test (4.7) and that ‖Γ1‖F 6= 0.
Let Γ̂i be estimators of the covariance operators Γi such that

√
ni(Γ̂i − Γi)

D−→ Ui, where
Ui are independent zero mean gaussian random elements of F with covariance operators
Υi given by (4.2). Let ρ̂i be defined as in (3.4), ρ̂ = (ρ̂2, . . . , ρ̂k)

t and T be defined as

T =
√
N (ρ̂− 1k−1)

t Ĉ (ρ̂− 1k−1)
‖Γ̂1‖4

F
2‖Γ̂1Γ̂1‖2

F
,

where Ĉ = Cρ̂ and 1k−1 is the k−th dimensional vector with all its components equal to
1. Then,

a) Under H0, T
D−→ χ2

k−1.

b) Under H1,a : Γi =
(
1 + aiN

− 1
2

)
Γ1, we have that T D−→ χ2

k−1(θ) with

θ = atC1k−1
a

‖Γ1‖4
F

2‖Γ1Γ1‖2
F

=




p∑

i=2

τi a
2
i −

( p∑

i=2

τi ai

)2

 ‖Γ1‖4

F
2‖Γ1Γ1‖2

F
.

Therefore, a test, with asymptotic level α, rejects the null hypothesis when

T > χ2
k−1,1−α ,
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with P
(
χ2

k−1 > χ2
k−1,1−α

)
= α.

If the covariance operators are proportional the above testing procedure allows to decide
if equality holds. If it does not, a modified discriminating rule using estimators of the
proportional constants needs to be considered.
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Appendix

Proof of Corollary 4.1.1. The proof follows easily from the fact that the covariance
operator of Vj = SjUφj is ΣVj (s, t) =

∑
r,m 6=j cm cmr cr φm(s)φr(t), where

cm =

{
k∑

i=1

τi (λij − λim)

}−1

and cmr =
k∑

i=1

τiλ
1
2
imλ

1
2
irλij E

(
fimfirf

2
ij

)
.

Proof of Theorem 4.1.2. The proof of b) follows easily from a). The proof of a) can
be derived using analogous arguments to those considered in Flury [8] for the maximum
likelihood estimates. Effectively, the consistency of φ̃j entails that

√
ni〈φ̃j , (Γ̂i −Γi)φ̃j〉 and

√
ni〈φj , (Γ̂i − Γi)φj〉 have the same the asymptotic distribution and so, the proof will be

completed if we show that
√
ni

[
〈φ̃j ,Γiφ̃j〉 − 〈φj ,Γiφj〉

]
p−→ 0.

Since 〈φ̃j , φ̃j〉 = 1 and
√
ni(φ̃j −φj) is bounded in probability, using that 〈φj , φ̃j −φj〉 =

−(1/2)〈φ̃j − φj , φ̃j − φj〉, we get easily that
√
ni〈φj , φ̃j − φj〉

p−→ 0. On the other hand, we
have that

√
ni

(
〈φ̃j ,Γiφ̃j〉 − 〈φj ,Γiφj〉

)
= U1ni + U2ni + U3ni

where

U1ni =
√
ni〈φ̃j − φj ,Γi

(
φ̃j − φj

)
〉

U2ni =
√
ni〈φ̃j − φj ,Γiφj〉

U3ni =
√
ni〈φj ,Γi

(
φ̃j − φj

)
〉.

Using that
√
N
(
φ̃j − φj

)
= Op(1), we obtain that U1ni

p−→ 0. Besides, U2ni + U3ni =

2λij
√
ni〈φj , φ̃j − φj〉

p−→ 0 concluding the proof of a).

c) As in a) we have that {√ni

(
λ̂ij − λij

)
}1≤j≤p has the same asymptotic distribution

as
{
〈φj ,

√
ni(Γ̂i − Γi)φj〉

}
1≤j≤p

. Using that
√
ni(Γ̂i − Γi)

D−→ Ui, we get that Λ̂
(p)
i

D−→
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(〈φ1,Uiφ1〉, · · · , 〈φp,Uiφp〉) which is a zero mean normally distributed random vector. The
expression for its covariance matrix, follows easily using (4.2).

Proof of Theorem 4.2.1. From the consistency of Γ̂i and λ̂ij , we get that Γ̂mj
a.s.−→ Γmj .

Therefore, the solution {φ̂j}j≥1 of the system (3.3) will converge to a solution φ?
j of the

system (4.4). The assumed uniqueness, entails Fisher–consistency and thus, consistency.

Proof of Theorem 4.2.2. Denote by Ẑi =
√
N
(
Γ̂i − Γi

)
. Then, we have that Γ̂i =

N− 1
2 Ẑi + Γi and φ̂j = N− 1

2 ĝj + φj . Replacing in the first equation of (3.3), we get that
N1/2〈φ̂j −φj , φ̂m −φm〉+ 〈ĝj , φm〉+ 〈ĝm, φj〉 = 0, for all m, j. On the other hand, replacing
in equation (3.3), we get that for j 6= m

〈ĝj , φm〉 + 〈ĝm, φj〉 = −ĉmj , (A.1)

âmj〈ĝm, φj〉 + b̂mj〈ĝj , φm〉 = −ũmj − R̂mj ,

where

ĉmj = N1/2〈φ̂j − φj , φ̂m − φm〉 , âmj =
k∑

i=1

τi
λ̂ij − λ̂im

λ̂imλ̂ij

λij

b̂mj =
k∑

i=1

τi
λ̂ij − λ̂im

λ̂imλ̂ij

λim , ũmj =
k∑

i=1

τi
λ̂ij − λ̂im

λ̂imλ̂ij

〈φ̂m, Ẑiφ̂j〉 for j < m

R̂mj =
k∑

i=1

τi
λ̂ij − λ̂im

λ̂imλ̂ij

〈ĝm,Γi(φ̂j − φj)〉 .

Let us restrict the system of equations (A.1) only to those indexes with 1 ≤ j < m ≤ `.
Therefore, it can be written as the linear system B̂` Ĝ = Ŵ, where B̂` is a matrix and
Ĝ = 〈ĝj , φm〉1≤j 6=m≤` .

Since ĝj = Op(1) or N
1
4

(
φ̂j − φj

)
= op(1), we have that ĉmj

p−→ 0 and R̂mj
p−→ 0

which entails a). Moreover, the weak consistency of the eigenvalue estimators guarantees
that âmj

p−→ amj and b̂mj
p−→ bmj , where

amj =
k∑

i=1

τi
λij − λim

λim
and bmj =

k∑

i=1

τi
λij − λim

λij

and hence, convergence in probability of the matrix B̂` to a matrix B`. Furthermore, the
assumptions made on the eigenvalues λij guarantee that B` is non singular.

Using that Ẑi
D−→ Ui for each i, we get that (ũmj)1≤j<m≤` is asymptotically normally

distributed, i.e., (ũmj)1≤j<m≤`
D−→ u where u is a gaussian vector with zero mean, zero

correlations and the variance of um,j is given by

k∑

i=1

τi
(λim − λij)

2

λimλij
E
(
f2

imf
2
ij

)
.
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Therefore, Ŵ D−→ W, a random vector with its first s(s + 1) rows equal to 0 and the
last ones equal to u implying that Ĝ D−→ B−1

p W and so (ĝj , φm) D−→ N (0, θ2
jm), with θ2

jm

defined in (4.5).

In order to prove Theorem 4.3.1, we will need the following Lemma.

Lemma 1. Let X1 . . . Xn be independent random elements L2([0, 1]) with covariance oper-
ator Γ. Denote by λj the eigenvalues of Γ. Let Γ̂ be an estimator of the covariance operator

Γ such that
√
n(Γ̂−Γ) D−→ U, where U is a zero mean gaussian random element of F with

covariance operator Υ, given by

Υ =
∑

m,r,o,p

smsrsospE (fmfrfofp) φm ⊗ φr⊗̃φo ⊗ φp −
∑

m,r

λmλr φm ⊗ φm⊗̃φr ⊗ φr (A.2)

and s2m = λm. Then, we have that
√
n(‖Γ̂‖2

F − ‖Γ‖2
F ) D−→ 2(U,Γ)F = 2Y , where Y is a

zero mean normal random variable with variance given by

σ2
Y =

∑

m,p≥1

λ2
mλ

2
pE
(
f2

mf
2
p

)
−

∑

m,p≥1

λ2
mλ

2
p .

Moreover, in the normal case, we get that σ2
Y = 2

∑
j≥1 λ

4
j .

Proof. Denote by Wn =
√
n(Γ̂ − Γ). Then, we have that

√
n
(
(Γ̂, Γ̂)F − (Γ,Γ)F

)
=

2(Wn,Γ)F+(Wn, Γ̂−Γ)F = 2(Wn,Γ)F+op(1), sinceWn = Op(1) and Γ̂−Γ = op(1). Finally,

since Wn
D−→ U where U is zero mean gaussian random element of F with covariance

operator Υ, given by (A.2), we get that (Wn,Γ)F
D−→ (U,Γ)F which is a mean zero

normal random variable. From the explicit formula for Υ given in (A.2), straightforward
calculations lead to the expression for the variance of (U,Γ)F .

Proof of Theorem 4.3.1. Denote by T̂i =
√
N(‖Γ̂i‖2

F − ‖Γi‖2
F ). Then, using Lemma 1,

we get that T̂i
D−→ Ti ∼ N (0, σ2

i ) where σ2
i = 8ρ4

i

∑
j≥1 λ

4
j/τi and T1, . . . , Tk are independent.

It is easy to see that, for 2 ≤ i ≤ k,

r̂i =
1

2 ρi ‖Γ1‖2
F

(
T̂i − ρ2

i T̂1

)
+ op(1)

and so the asymptotic distribution of r̂ is the distribution of (Z2, . . . , Zk)
t with Zi =(

Ti − ρ2
i T1

)
/
(
2 ρi ‖Γ1‖2

F
)
. The proof follows now easily from the fact that Ti are indepen-

dent and normally distributed.

Proof of Theorem 4.3.2. The consistency of the eigenvalue estimators entails that it
will be enough to obtain the asymptotic distribution of

√
N
(
λ̂jλ1 − λjλ̂1

)
.

From the proof of Theorem 4.1.2, we have that
√
ni

(
λ̂ij − λij

)
= t̂ij+rij , where rij

p−→ 0

and t̂ij = 〈φj ,
√
ni

(
Γ̂i − Γi

)
φj〉 is asymptotically normally distributed. Therefore, using

18



that ρ̂i
p−→ ρi and that t̂ij are bounded in probability, we have the following expansion

λ̂j = λj

k∑

i=1

τi ρi

ρ̂i
+

1√
N

k∑

i=1

√
τi
ρi

t̂ij +
1√
N
Rj

with Rj
p−→ 0. Hence,

√
N
(
λ̂jλ1 − λjλ̂1

)
=

k∑

i=1

√
τi
ρi

(
λ1 t̂ij − λj t̂i1

)
+ op(1)

Now, the result follows easily using that t̂i =
(
t̂i1, . . . , t̂ip

)
are asymptotically independent

and asymptotically normally distributed with variances and covariances given in Theorem
4.1.2 c).

Proof of Theorem 4.3.3. The proof of a) follows immediately from Theorem 4.3.1. As
in Theorem 4.3.1 denote by r̂i =

√
N (ρ̂i − 1k−1) and r̂ = (r̂2, . . . , r̂k)

t. The proof of b)
follows immediately from the fact that, when Γi = Γi,N =

(
1 + aiN

− 1
2

)
Γ1, Ĉ

p−→ C1k−1

and r̂ D−→ N(a,D) with D = 2 ‖Γ1Γ1‖2
F

[
1k−11t

k−1/τ1 + diag
(
τ−1
2 , . . . , τ−1

k

)]
/‖Γ1‖4

F .
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