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1 Introduction

In many situations, when dealing with several populations, in multivariate analysis, models
for common structure dispersion need to be considered to overcome the problem of an
excessive number of parameters. Flury (1984) introduced the so–called Common Principal
Components (cpc) model, in which the common structure assumes that the k covariance
matrices have possibly different eigenvalues but identical eigenvectors, i.e.,

Σi = βΛiβ
t , 1 ≤ i ≤ k , (1.1)

where Λi are diagonal matrices, β is the orthogonal matrix of the common eigenvectors and
Σi is the covariance matrix of the i−th population. The maximum likelihood estimators of β
and Λi are derived in Flury (1984), assuming multivariate normality of the original variables
while Flury (1988) considered a unified study of the maximum likelihood estimators under
different hierarchical models.

Let (xij)1≤j≤ni,1≤i≤k be independent observations from k independent samples in Rp

with location parameter µi and scatter matrix Σi. Let N =
k∑

i=1

ni, τiN = ni/N , where

τiN → τi ∈ (0, 1) as N → ∞, and Xi = (xi1, . . . ,xini). For the sake of simplicity and
without loss of generality, we will also assume that µi = 0p.

For the cpc model, the common decomposition given in (1.1) implies that for any a ∈ Rp,
and 1 ≤ i ≤ k, var

(
atxi1

)
= atβΛiβ

ta. Therefore, the first (or the last) axis could be

obtained through a projection approach by maximizing (or minimizing)
k∑

i=1

τivar
(
atxi1

)

over a ∈ Rp with ‖a‖ = 1. By considering orthogonal directions to β1, the second axis
is defined and so on. It is well known that, as in the one–population setting, the classical
cpc analysis can be affected by the existence of outliers in a sample. The above described
projection approach allows to define robust projection–pursuit estimators by considering
a robust measure of dispersion (see Boente and Orellana, 2001 and Boente, Pires and
Rodrigues, 2002) and provides clear interpretations of the resulting common directions.

On the other hand, it is well known (see Flury (1988)) that the maximum likelihood
estimator of β for gaussian populations minimizes

k∏

i=1

[
det {diag (Fi)}

det (Fi)

]ni

where Fi = βtSiβ, and Si is the sample covariance matrix of the i−th population and so,

it can be viewed as the minimizer of
p∑

j=1

k∑

i=1

ni ln (`ij), where `ij are the diagonal elements of

Fi, i.e., `ij equals the sample variance of the projected vectors βt
j xi1, . . . ,β

t
j xini . Boente,

Pires and Rodrigues (2006) considered a general approach which consists of applying a score
function to the scale estimator
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Let f : R+ → R be a general increasing score function and s a univariate scale estimator,
Boente, Pires and Rodrigues (2006) propose to estimate the common directions as





β̂1 = argmax
‖a‖=1

k∑

i=1

τiN f
(
s2(atxi1, . . . ,atxini)

)

β̂m = argmax
a∈Bm

k∑

i=1

τiNf
(
s2(atxi1, . . . ,atxini)

)
2 ≤ m ≤ p ;

(1.2)

where Bm = {a ∈ Rp : ‖a‖ = 1,atβ̂j = 0 for 1 ≤ j ≤ m − 1}. The estimators of the

eigenvalues of the i-th population are then computed as λ̂im = s2(β̂
t
mxi1, . . . , β̂

t
mxini) for

1 ≤ m ≤ p. A different definition arises by minimumizing instead of maximizing, which
lead to different solutions (beyond the order) due to the use of a robust scale (see Li and
Chen, 1985). However, both proposals will have the same asymptotic behavior.

Partial influence functions of the described propjection–pursuit estimators were derived
in Boente, Pires and Rodrigues (2006). The aim of this paper is to obtain under mild condi-
tions the consistency and asymptotic normality of the robust projection–pursuit estimators
of the common directions and their size under a cpc model. Asymptotic normality will be
derived through Bahadur representations that are applicable to some common choices of
robust dispersions. In this sense, our results extend those given by Cui, He and Ng (2003),
from one to several populations. Under elliptically symmetric models, our results simplify
to provide the same asymptotic variances computed by Boente, Pires and Rodrigues (2006)
using partial influence functions.

In Section 2, we describe the general projection–index estimators and the assumptions
needed to derive the asymptotic behavior. Our main results are stated in Section 3 where
the situation in which all the populations have elliptical distribution except for changes in
location and scale is also discussed. Proofs are left to the Appendix. In Boente et al. (2006),
it was assumed that ni = τiN , where 0 < τi < 1, are fixed numbers such that

∑k
i=1 τi = 1,

i.e., that τiN = ni/N = τi. To consider a more general framework, the asymptotic results
will be stated by assuming that the sample sizes, ni, go to infinity in such a way that
τiN → τi ∈ (0, 1) and N

1
2 (τiN − τi) → 0. This includes the situation in which ni is the

integer part of τiN .

2 Projection–index estimators: Notation and Assumptions

In a one–population setting, robust estimators for the principal directions using alternative
measures of variability, were first considered in Li and Chen (1985) who proposed projection
pursuit estimators maximizing (or minimizing) a robust scale. Later on, Croux and Ruiz–
Gazen (2005) provided the influence functions of the resulting principal components while
their asymptotic distribution was studied in Cui, He and Ng (2003).

Under a cpc model, robust projection–pursuit estimators were introduced by Boente
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and Orellana (2001) who considered as score function f the identity function in (1.2) while
in Boente, Pires and Rodrigues (2002) their partial influence function was obtained. Boente,
Pires and Rodrigues (2006) proposed the general projection–pursuit estimators defined
through (1.2) to estimate the common directions.

From now on Xi = (xi1, . . . ,xini) will denote independent vectors from k independent
samples in Rp such that, for 1 ≤ j ≤ ni xij ∼ Fi, where Fi is a p−dimensional distribution
with location parameter µi and scatter matrix Σi satisfying (1.1). As in Boente, Pires and
Rodrigues (2006), without loss of generality, we will assume that µi = 0. Denote by Fi[a]
the distribution of atxi1, and by F the product measure F = F1 × F2 . . . × Fk . Let F1

be the one dimensional distribution space, Sp the p−dimensional unit sphere and Ip the
identity matrix in Rp×p.

Moreover, let ς be a projection index, i.e., a functional ς : F1 → R≥0 and σ(·) a
univariate scale functional. Denote by s2i,ni

: Rp → R and ςi,ni : Rp → R the functions
s2i,ni

(a) = σ2(atXi) and ςi,ni(a) = ς(atXi), respectively, where ς(atXi) and σ2(atXi)
stand for the functionals ς and σ computed at the empirical distribution of atxi1, . . . ,atxini ,
respectively. Analogously, σi : Rp → R and ςi : Rp → R will stand for σi(a) = σ(Fi[a])
and ςi(a) = ς(Fi[a]), respectively. The estimators defined in Boente, Pires and Rodrigues
(2006) correspond to the choice ς(F ) = f(σ2(F )). We will assume that ςi(a) = ςi(−a) and
ςi,ni(a) = ςi,ni(−a), that holds if ς(F ) = f(σ2(F )). Moreover, let ρN(a) and ρ(a) stand for

ρN(a) =
k∑

i=1

τiN ςi,ni(a) (2.1)

ρ(a) =
k∑

i=1

τiςi(a) . (2.2)

Then, a more general framework than (1.2) defines the estimators of the common direc-
tions as 




β̂1 = argmax
‖a‖=1

k∑

i=1

τiNςi,ni(a) = argmax
‖a‖=1

ρN(a)

β̂m = argmax
a∈Bm

k∑

i=1

τiNςi,ni(a) = argmax
a∈Bm

ρN(a) 2 ≤ m ≤ p.

(2.3)

where Bm = {a ∈ Rp : ‖a‖ = 1,atβ̂j = 0 , ∀ 1 ≤ j ≤ m − 1}. The estimators of the
eigenvalues of the i−th population are then, computed as

λ̂im = σ2(β̂
t
mXi) = s2i,ni

(β̂m) , 1 ≤ m ≤ p . (2.4)

We will now introduce the statistical functional related to (2.3). Let ρ(a) be defined in
(2.2). The projection–index common directions functional βς(F ) = (β1,ς(F ), . . . ,βp,ς(F ))
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is defined as the solution of




β1,ς(F ) = argmax
‖a‖=1

ρ(a)

βm,ς(F ) = argmax
a∈Cm

ρ(a) 2 ≤ m ≤ p

(2.5)

where Cm = {a ∈ Rp : ‖a‖ = 1,atβ`,ς(F ) = 0 , ∀ 1 ≤ ` ≤m− 1}. It is clear that both β̂m

and βm,ς(F ) are defined except for a multiplicative factor −1. As in Cui, He and Ng (2003),
we will assume that βm,ς(F ) is unique, up to direction reversal, for any m, i.e., βm,ς(F )
and −βm,ς(F ) are considered equivalent and it does not matter which one we take. In this
sense, the convergence β̂m

p−→ βm,ς(F ) mean convergence in axis, not in the signed vector.
In order to identify uniquely the vectors (functional and estimators), one can choose them
such that the component with its largest absolute value will be positive, for instance. The
eigenvalue functional is defined as

λim,ς,σ(F ) = σ2(Fi[βm,ς(F )]) 1 ≤ m ≤ p, 1 ≤ i ≤ k . (2.6)

When ς(F ) = f(σ2(F )), conditions under which the functional defined through (2.5) will be
Fisher–consistent were obtained in Boente, Pires and Rodrigues (2006), while the particular
case in which f(t) = t was studied in Boente and Orellana (2001). To simplify the notation,
we will avoid the subscript ς and/or σ and so, we will indicate βm(F ) = βm,ς(F ) and
λim(F ) = λim,ς,σ(F ).

From now on, the notation ḣ(x,a) will be used for the derivative of the function h(x,a)
with respect to a. Throughout this paper we will consider the following set of assumptions

S0. For some q ≤ p, we have that ν1(F ) > ν2(F ) . . . > νq(F ). Moreover, for 1 ≤ m ≤ q,
βm(F ) are unique except for changes in their sign.

S1. ςi,ni(a) − ςi(a) = n−1
i

∑ni
j=1 hi(xij ,a) +Ri,ni , where

a) ςi(a) is a continuous function of a.

b) hi(x,a) is continuous in both variables.

c) ςi,ni(a) is a continuous function of a a.e.

d) Ehi(xi1,a) = 0 and E
(
supa∈Sp

|hi(xi1,a)|
)
<∞.

e) supa∈Sp
|Ri,ni |

p−→ 0, i.e., Ri,ni = op (1) uniformly in a ∈ Sp

f) E
(
supa∈Sp

h2
i (xi1,a)

)
<∞ and Ri,ni = op

(
n
− 1

2
i

)
uniformly in a ∈ Sp.

S2. ςi(a) is twice continuously differentiable with respect to a. ς̇i(a) and ς̈i(a) will stand
for its first and second derivatives, respectively.

5



S3. The function ςi,ni(a) is differentiable with respect to a for any a ∈ Sp, almost every-
where. Moreover,

ς̇i,ni(a) − ς̇i(a) = n−1
i

ni∑

j=1

h?
i (xij ,a) + op

(
n
− 1

2
i

)

uniformly in a ∈ Sp with h?
i : Rp × Rp → Rp such that

a) For any given x, h?
i (x,a) is continuous in a.

b) E h?
i (xi1,a) = 0 for all a ∈ Rp and E

(
supa∈Sp

‖h?
i (xi1,a)‖2

)
<∞.

S4. si,ni(a) − σi(a) = n−1
i

∑ni
j=1 hi,σ(xij ,a) +Ri,ni,σ, where

a) σi(a) is a continuous function of a.

b) Ehi,σ(xi1,a) = 0 and E
(
supa∈Sp

|hi,σ(xi1,a)|
)
<∞.

c) hi,σ(x,a) is continuous in both variables.

d) Ri,ni,σ = op (1) uniformly in a ∈ Sp

e) E
(
supa∈Sp

h2
i,σ(xi1,a)

)
<∞ and Ri,ni,σ = op

(
n
− 1

2
i

)
uniformly in a ∈ Sp.

S5. The families of functions Hi = { f(x) = hi(x,a) a ∈ Sp},Hi,σ = { f(x) = hi,σ(x,a) a ∈
Sp} and H?

i,` = { f(x) = h?
i,`(x,a) a ∈ Sp} , for 1 ≤ i ≤ k, 1 ≤ ` ≤ p, with

enveloppes Hi(x) = supa∈Sp
|hi(x,a)|, Hi,σ(x) = supa∈Sp

|hi,σ(x,a)| and H?
i,`(x) =

supa∈Sp
|h?

i,`(x,a)|, respectively, have finite uniform–entropy, where h?
i,`(x,a) stands

for the `−th component of h?
i (x,a).

Remark 2.1 It is worth noticing that conditions S1 to S4 are analoguous to Condtions
1 to 5 in Cui, He and Ng (2003). On the other hand, S5 is fulfilled if, for instance,
|hi(x,a1)− hi(x,a2)| ≤ Gi(x)‖a1 − a2‖ with EG2

i (xi1) <∞, see for instance, van der vaart
and Wellner (1996). On the other hand, if hi(x,a) = χi(atx/g(a)) with χi : R → R a
bounded function with bounded variation and g : Rp → R, then, S5 holds. This result
follows easily using the permanence properties stated in van der Vaart and Wellner (1996)
and that the fact that, given ε > 0, for any classes of functions G1 and G2, if G = {g =
g1 + g2 : gi ∈ Gi , i = 1, 2}, then N

(
ε,G, L2(Q)

)
≤ N

(
ε
2 ,G1, L

2(Q)
)

. N
(

ε
2 ,G2, L

2(Q)
)
.

For the sake of simplicity, let us define

νm(F ) = max
a∈Cm

ρ(a) 1 ≤ m ≤ p , (2.7)

ν̂m = max
a∈Bm

ρN(a) 1 ≤ m ≤ p , (2.8)

and let
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• um = −N− 1
2
∑k

i=1

∑ni
j=1 h

?
i (xij ,βm(F ))

• Pm+1 = Ip−
∑m

j=1 βj(F ) βj(F )t the projection matrix over the linear space orthog-
onal to that spanned by β1(F ), . . . ,βm(F ),

• Bjm = βj(F )t ρ̇(βm(F )) Ip + βj(F ) ρ̇(βm(F ))t,

• Am = Pm+1 ρ̈(βm(F ))−βm(F )t ρ̇(βm(F ))Ip−
∑m−1

j=1 βj(F )t ρ̇(βm(F ))βm(F ) βj(F )t.

• With Z0 = 0 and for 1 ≤ m ≤ q, we define Zm recursively by

Zm =
m−1∑

j=0

A−1
m BjmZj + A−1

m Pm+1um ,

provided that A−1
j exists for 1 ≤ j ≤ m. It is clear that the process Zm can by

represented by Zm =
∑m−1

j=0 Cjmuj, for some sequences of matrix Cjm depending on
Am, Bjm and Pm+1.

• ξi,m(x) =
∑m

`=1 C`m h?
i (x,β`(F )), for x ∈ Rp.

• ξm(−→x ) =
∑k

i=1 τ
1/2
i ξi,m(xi), where −→x = (x1 . . . ,xk) and xi ∈ Rp.

3 Main results

3.1 Consistency and Asymptotic Distribution

The following Theorem establishes the consistency of the estimators of the common di-
rections defined through (2.3), under mild conditions. From their consistency, it is easy to
derive that of the eigenvalue estimators (2.4) and also that of the estimators of the i−scatter
matrix defined as V̂i =

∑p
j=1 λ̂imβ̂mβ̂

t
m.

Theorem 3.1. Let Xi = (xi1, . . . ,xini) denote independent vectors from k independent
samples in Rp such that, for 1 ≤ j ≤ ni, xij ∼ Fi, where Fi is a p−dimensional distribution.

Moreover, assume that ni = τiNN , with 0 < τiN < 1 such that
∑k

i=1 τiN = 1 and τiN →
τi ∈ (0, 1). Let βm, λim and νm be the functionals defined through (2.5), (2.6) and (2.7),
respectively. Let β̂m and λ̂im be the estimators defined in (2.3) and (2.4), respectively.

Under S0, S1a) to e) and S4a) to d), we have that, for 1 ≤ m ≤ q, β̂m
p−→ βm(F ) and

λ̂im
p−→ λim(F ), for 1 ≤ i ≤ k as N → ∞.

The following Theorem gives a Bahadur representation for the estimators β̂m and λ̂im

which allows to derive easily their asymptotic distribution.
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Theorem 3.2.Under the conditions of Theorem 3.1, if, in addition, N
1
2 (τiN − τi) → 0, S1

to S5 hold and the matrices Am, 1 ≤ m ≤ q, are non singular, we have that, for 1 ≤ m ≤ q,

β̂m − βm(F ) =
1
N

k∑

i=1

ni∑

j=1

ξi,m(xij) + op (N− 1
2 ) (3.1)

λ̂im − λim(F ) =
1
ni

ni∑

j=1

hi,σ(xij ,βm(F )) + op (n
− 1

2
i ) (3.2)

Theorem 3.2 entails that, for 1 ≤ i ≤ k, the joint distribution of N− 1
2 (β̂1 −β1(F ), . . . , β̂q −

βq(F ), λ̂i1 − λi1(F ), . . . , λ̂iq − λiq(F )) converges to a multivariate normal distribution with
mean 0 and covariance matrix

covF

(
ξ1(−→x1), . . . , ξq(−→x1), . . . , hi,σ(xi1,β1(F )), . . . , hi,σ(xi1,βq(F ))

)

where −→x1 = (x11 . . . ,xk1).

It is worth noticing that when dealing with only one population, i.e., when k = 1,
Theorem 3.2 provides the Bahadur expansion given in Cui, He and Ng (2003).

3.2 General–Projection pursuit estimates under the CPC model

Let σ be a univariate robust scale functional and f : R+ → R an increasing score function.
Considering the functional ς(·) = f{σ2(·)} in (2.3), we obtain the estimators defined through
(1.2) in Boente, Pires and Rodrigues (2006). As mentioned above, these authors studied
conditions for the Fisher–consistency of the common direction functional defined through ς
and they also provide an expression for their partial influence functions. From the general
results in Pires and Branco (2002), the asymptotic variance of the common direction and
eigenvalue estimates, i.e., the variance of the approximating normal distribution, was also
computed in Boente, Pires and Rodrigues (2006).

The aim of this section is to show that the expansion obtained Theorem 3.2 allows to
obtain under mild conditions the expressions obtained by these authors.

When ς(·) = f{σ2(·)}, Proposition 1 in Boente, Pires and Rodrigues (2006) provides
conditions to ensure the Fisher–consistency of the functionals defined through (2.5). Be-
sides, under regularity conditions on σ, we get that

hi,σ(x,a) = 2σ(Fi[a])ψi(x,a)
hi(x,a) = f ′ (σ2(Fi[a])

)
2σ(Fi[a])ψi(x,a)

h?
i (x,a) = ḣi(x,a) = f ′ (σ2(Fi[a])

)
(2σ(Fi[a])ψ?

i (x,a) + 2σ̇(Fi[a])ψi(x,a))
+ 4 f ′′ (σ2(Fi[a])

)
σ̇(Fi[a])σ2(Fi[a])ψi(x,a) 1 ≤ i ≤ k ,

where ψi(x,a) = IF(x, σa;Fi), ψ?
i (x,a) = IF(x, σ̇a;Fi) = ψ̇i(x,a) and σa : F1 → R+ is such

that σa(F ) = σ(F [a]) and σ̇a(F ) is the derivative of σa(F ) respect to a.

Let us consider the following conditions
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A1. Fi is an ellipsoidal distribution with location parameter µi = 0 and scatter matrix
Σi = CiCt

i satisfying (1.1). Moreover, when xij ∼ Fi, C−1
i xij = zi has the same

spherical distribution G for all 1 ≤ i ≤ k.

A2. σ(·) is a robust scale functional, equivariant under scale transformations, such that
σ(G0) = 1, with G0 the distribution of z11.

A3. The function (ε, y) → σ((1 − ε)G0 + ε∆y) is twice continuously differentiable in
(0, y), y ∈ R where ∆y denotes the point mass at y.

A4. f is a twice continuously differentiable function.

A5. For any 1 ≤ m ≤ p, the eigenvalues ηm` =
∑k

i=1 τif
′(λim)λi` of Σ̃m =

∑k
i=1 τif

′(λim)Σi

are such that ηm` 6= ηm = ηmm =
∑k

i=1 τif
′(λim)λim .

Remark 3.1 It is worth noticing that under A1 to A4, the Bahadur expansions required
in S1, S3 and S4 can be obtained under mild conditions on the scale functional, see Cui,
He and Ng (2003) for a discussion.

Typically, the influence function of a robust scale functional is bounded. Therefore,
using that if A1 to A4 hold, ψi(x,a) = σa(Fi)IF( atx

σa(Fi)
, σ;G0) and σ2

a(Fi) = atΣia we get
easily that hi,σ(x,a) and hi(x,a) are bounded. Moreover, if IF(y, σ;G0) = χ(y) for some
function χ of bounded variation, as is, for instance, the case of an M−scale function, then
Hi,σ and Hi will have finite uniform–entropy. On the other hand, if Σi is non-singular,
using that

ψ̇i(x,a) = σ−1
a (Fi)IF

(
atx
σa(Fi)

, σ;G0

)
Σia + DIF

(
atx
σa(Fi)

, σ;G0

)(
Ip −

1
σ2
a(Fi)

Σiaat
)

x

where DIF(y, σ;G0) denotes the derivative of the influence function IF(y, σ;G0) with re-
spect to y. It is easy to see that the first term on the right hand side will be bounded while
the second one, can be unbounded for some values of a, for instance, if a = βm. Hence,
to ensure that the enveloppe H?

i,` has second finite moment it is enough to require that
E‖xi1‖2 < ∞. Therefore, if f ′ and f ′′ are functions of bounded variation, to obtain con-
ditions under which H?

i,` will have finite entropy, it is enough to derive conditions ensuring
that

L(1)
i,` = {L(x) = f ′ (atΣia

) (
atΣia

) 1
2 DIF

(
atx
σa(Fi)

, σ;G0

)
x` , a ∈ Sp}

L(2)
i,` = {L(x) = f ′ (atΣia

) (
atΣia

) 1
2 DIF

(
atx
σa(Fi)

, σ;G0

)
atx
σa(Fi)

(Σia)`
σa(Fi)

, a ∈ Sp}

have finite entropy. It is worth noticing that L(1)
i,` and L(2)

i,` will have finite entropy if

L(1,C)
i,` = {L(x) = λDIF

(
atx
σa(Fi)

, σ;G0

)
x` , a ∈ Sp , |λ| ≤ C}

L(2,C)
i,` = {L(x) = λDIF

(
atx
σa(Fi)

, σ;G0

)
atx
σa(Fi)

, a ∈ Sp , |λ| ≤ C}
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have finite uniform–entropy, which holds for instance if IF(y, σ;G0) = χ(y) for some contin-
uously differentiable function χ such that χ1(y) = χ′(y) and χ2(y) = yχ′(y) have bounded
variation.

Under A1 to A4, we get that βm(F ) = βm, σ2
i (βm) = λim, ςi(βm) = f(λim), ς̇i(βm) =

f ′(λim)λim βm and so,

ψi(x,βm) =
√
λim IF

(
xtβm√
λim

, σ;G0

)

ψ̇i(x,βm) =
√
λimβmIF

(
xtβm√
λim

, σ; G0

)
+ DIF

(
xtβm√
λim

, σ; G0

)
(Ip − βmβt

m)x .

Moreover, we have that

ρ(βm) =
k∑

i=1

τif(λim) = νm

ρ̇(βm) = 2ηmβm

ρ̈(βm) = 4
k∑

i=1

τif
′′(λim)λ2

imβmβt
m + 2Σ̃m

ḣi(x,βm) = 2
√
λimf

′ (λim))
[
ψ̇i(x,βm) + ψi(x,βm)βm

]
+ 4 λ

3
2
imf

′′ (λim)ψi(x,βm)βm .

Therefore, using that βt
j βm = 0 for 1 ≤ j ≤ m− 1, we get that

Am = 2Pm+1Σ̃m − 2ηmIp − 2 ηm

m−1∑

j=1

βt
j βmβmβt

j = 2
k∑

i=1

τif
′(λim)(Pm+1 Σi − λimIp)

= 2
k∑

i=1

τif
′(λim)




p∑

j=m+1

λijβjβ
t
j − λimIp


 = 2

p∑

j=m+1

ηmjβjβ
t
j − 2ηmIp ,

which implies that

A−1
m =

1
2

p∑

j=m+1

1
(ηmj − ηm)

βj βt
j − 1

2

m∑

j=1

1
ηm

βj βt
j . (3.3)

On the other hand, we have that Bjm = 2 ηm βj βt
m for j ≤ m − 1, which together with

(3.3) leads to A−1
m Bjm = −βj βt

m, for j ≤ m− 1. Hence, we have that

A−1
m Pm+1 um = −N− 1

2

k∑

i=1

ni∑

j=1

√
λimf

′(λim)DIF
(

xtβm√
λim

, σ; G0

) p∑

`=m+1

1
(ηm` − ηm)

(xt
ij βm,`)β` .
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From (3.1), we get that

N
1
2 (β̂m − βm) = −

m−1∑

`=1

β` βt
mN

1
2 (β̂` − β`)

−N− 1
2

k∑

i=1

ni∑

j=1

√
λimf

′(λim)DIF

(
xt

ijβm√
λim

, σ; G0

)
p∑

`=m+1

1
(ηm` − ηm)

(xt
ij β`)β` + op(1) .

Therefore, we get that

N
1
2 (β̂m − βm) = N− 1

2

k∑

i=1

ni∑

j=1

m−1∑

`=1

√
λi`f

′(λi`)DIF

(
xt

ijβ`√
λi`

, σ;G0

)
1

(η`m − η`)
(xt

ij βm)β`

+ N− 1
2

k∑

i=1

ni∑

j=1

p∑

l=m+1

√
λimf

′(λim)DIF

(
xt

ijβm√
λim

, σ;G0

)
1

(ηm − ηm`)
(xt

ij β`)β` + op(1),

as suggested by the partial influence functions obtained in Boente, Pires and Rodrigues
(2006) and the expansion given in Pires and Branco (2002).

In particular, when f(t) = t, we obtain the Bahadur representation of the estimators
defined in Boente and Orellana (2001), suggested by the partial influence functions derived
in Boente, Pires and Rodrigues (2002).

A Appendix

From now on, whenever it is needed we understand that B1 = C1 = Sp.

A.1 Proof of Theorem 3.1

The following two Lemmas will be useful to derive the consistency of the estimators. We
omit the proof of the first one since it follows straighforwardly.

Lemma A.1. Let fn : Sp → R be a sequence of random continuous functions such that
fn(a) = fn(−a) and assume that supa∈Sp

|fn(a) − f(a)| = op(1) where f : Sp → R is
a continuous function such that f(a) = f(−a). Denote by wn = argmaxa∈Sp

fn(a) and
w = argmaxa∈Sp

f(a). Assume that w is the unique maximum of f in Sp, except for

direction reversal, then wn−w = op(1), i.e., wn−w
p−→ 0, where the convergence wn

p−→ w
mean convergence in axis, not in the signed vector. In particular, if we choose wn and w such
that their component with larger absolute value will be positive, we have that wn

p−→ w.

Remark A.1. It is easy to see that if f is a continuous function over a compact K with a
unique maximum, w, and if (wn)n≥1 is a sequence of random elements taking values in K
such that f(wn) − f(w) = op(1), then wn −w = op(1).
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Lemma A.2. Let Xi = (xi1, . . . ,xini) denote independent vectors from k independent
samples in Rp such that for 1 ≤ j ≤ ni, xij ∼ Fi, where Fi is a p−dimensional distribution.

i) Assume that S1b), d) and e) holds, then, we have that supa∈Sp
|ρN(a) − ρ(a)| p−→ 0,

when ni → ∞ in such a way that τiN → τi ∈ (0, 1).

ii) Assume that S4b) to d) holds, then, we have that, for any 1 ≤ i ≤ k, supa∈Sp
|si,ni(a)−

σi(a)| p−→ 0, when ni → ∞.

Proof. We only prove i) since the proof of ii) is analogous. Note that since

ρN(a) − ρ(a) =
k∑

i=1

τiN (ςi,ni(a) − ςi(a)) +
k∑

i=1

(τi − τiN)ςi(a) ,

and τiN ≤ 1, we have that

sup
a∈Sp

|ρN(a) − ρ(a)| ≤
k∑

i=1

τiN sup
a∈Sp

|ςi,ni(a) − ςi(a)| +
k∑

i=1

|τi − τiN | sup
a∈Sp

|ςi(a)|

≤
k∑

i=1

sup
a∈Sp

|ςi,ni(a) − ςi(a)| + max
1≤i≤k

|τi − τiN | max
1≤i≤k

sup
a∈Sp

|ςi(a)| ,

and so using using that τiN → τi and that ςi(a) is a continuous functions, from S1e) it will
be enough to show that for any 1 ≤ i ≤ k

sup
a∈Sp

1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,a)

∣∣∣∣∣∣
p−→ 0

Let AK = {x ∈ Rp : ‖x‖ ≤ K}. Given η > 0, let K ∈ N, be such that

E sup
a∈Sp

|hi(xi1,a)|IAc
K

(xi1) ≤ η (A.1)

The uniform continuity of hi(x,a) over AK × Sp entails that there exists δ > 0 such that,
for any x1,x2 ∈ AK and a1,a2 ∈ Sp such that ‖x1 − x2‖ < δ and ‖a1 − a2‖ < δ, we have
that |hi(x1,a1) − hi(x2,a2)| < η. Let (Vs)1≤s≤` be a finite collection of balls centered at

points as ∈ Sp with radius smaller than δ such that Sp ⊂
⋃̀

s=1

Vs, then

max
1≤s≤`

sup
a∈Vs

1
ni

∣∣∣∣∣∣

ni∑

j=1

(hi(xij ,a) − hi(xij ,as)) IAK
(xij)

∣∣∣∣∣∣
< η

and so,

sup
a∈Sp

1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,a)

∣∣∣∣∣∣
≤ 1
ni

ni∑

j=1

sup
a∈Sp

|hi(xij ,a)| IAc
K

(xij)+ max
1≤s≤`

1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)IAK
(xij)

∣∣∣∣∣∣
+η
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The law of large numbers and (A.1) entail that

Ani(η) = P


 1
ni

ni∑

j=1

sup
a∈Sp

|hi(xij ,a)| IAc
K

(xij) > 2η


→ 0 .

Therefore, the proof will be concluded if we show that

Bni(η) = P


max

1≤s≤`

1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)IAK
(xij)

∣∣∣∣∣∣
> 3η


→ 0 .

Note that

Bni(η) ≤ ` max
1≤s≤`

P


 1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)IAK
(xij)

∣∣∣∣∣∣
> 3η




≤ ` max
1≤s≤`

P


 1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)

∣∣∣∣∣∣
> η


+ ` max

1≤s≤`
P


 1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)IAc
K

(xij)

∣∣∣∣∣∣
> 2η




≤ ` max
1≤s≤`

P


 1
ni

∣∣∣∣∣∣

ni∑

j=1

hi(xij ,as)

∣∣∣∣∣∣
> η


+Ani(η)

Hence, the proof follows from the fact that Ani(η) → 0 and the law of large numbers using
that Ehi(xi1,as) = 0, for any 1 ≤ s ≤ `.

From now on, to simplify the notation βj and λij will stand for βj(F ) and λij(F ),
respectively

Proof of Theorem 3.1. Let ρN , νm and ν̂m be defined in (2.1), (2.7) and (2.8) , respec-
tively .

Let us first show that

a) if β̂j
p−→ βj , 1 ≤ j ≤ m− 1, then, ν̂m

p−→ νm and

b) if β̂m
p−→ βm, then, λ̂im

p−→ λim, which shows the consistency of the eigenvalue
estimators.

a) Lemma A.2 entails that

sup
a∈Sp

|ρN(a) − ρ(a)| p−→ 0 , (A.2)

and so

|ν̂m − νm| = |ρN(β̂m) − ρ(βm)| = | max
a∈Bm

ρN(a) − max
a∈Cm

ρ(a)|

≤ max
a∈Sp

|ρN(a) − ρ(a)| + | max
a∈Cm

ρ(a) − max
a∈Bm

ρ(a)|
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and thus, the result follows from (A.2), the continuity of ρ and the fact that β̂j
p−→ βj ,

1 ≤ j ≤ m− 1.

b) Using Lemma A.2 ii), we get that sup
a∈Sp

|si,ni(a) − σi(a)| p−→ 0. Hence, since λ̂im =

s2i,ni
(β̂m), λim = σ2

i (βm) and

|λ̂im − λim| = |s2i,ni
(β̂m) − σ2

i (β̂m) + σ2
i (β̂m) − σ2

i (βm)|

≤ max
a∈Sp

|s2i,ni
(a) − σ2

i (a)| + |σ2
i (β̂m) − σ2

i (βm)|

the continuity of σi(a) and the fact that β̂m
p−→ βm entail that λ̂im

p−→ λim.

Therefore, it remains to show that β̂j
p−→ βj . From (A.2), using that β̂1 and β1

maximize ρN and ρ, respectively, the continuity of ρN and ρ and Lemma A.1, we obtain
easily that β̂1

p−→ β.

Let 2 ≤ m ≤ p and assume that β̂j
p−→ βj, 1 ≤ j ≤ m − 1, we will then show that

β̂m
p−→ βm. Denote by am, . . . ,ap an orthonormal basis of the linear space orthogonal to

that spanned by β1, . . . ,βm−1, then, {β1, . . . ,βm−1,am, . . . ,ap} is an ortonormal basis of
Rp. Hence, we have that

β̂m =
m−1∑

j=1

〈β̂m,βj〉βj +
p∑

i=m

〈β̂m,ai〉ai =
m−1∑

j=1

ĉjβj + bm ,

where 〈βj,bm〉 = 0, for 1 ≤ j ≤ m− 1. On the other hand, since ‖β̂m‖ = 1, 〈β̂j , β̂m〉 = 0
and β̂j

p−→ βj for 1 ≤ j ≤ m− 1, we have that

ĉj = 〈β̂m,βj〉 = 〈β̂m,βj − β̂j〉
p−→ 0 ,

and so, ‖bm‖ p−→ 1. Let bm = ĉm b̂m, where ĉm = ‖bm‖ p−→ 1 and ‖b̂m‖ = 1, then,

β̂m−b̂m = β̂m−b̂m+b̂m ĉm−b̂m ĉm = β̂m−bm+b̂m (ĉm−1) =
m−1∑

j=1

ĉj βj+b̂m (ĉm−1)
p−→ 0 .

(A.3)
Therefore, to prove the consistency of β̂m it is enough to show that b̂m −βm

p−→ 0. Using
that b̂m, βm ∈ Cm, βm is the unique maximum of ρ over Cm and Remark A.1, it is enough
to show that ρ(b̂m) − ρ(βm)

p−→ 0. Note that

|ρ(b̂m) − ρ(βm)| ≤ |ρ(b̂m) − ρ(β̂m)| + |ρ(β̂m) − ρN(β̂m)| + |ρN(β̂m) − ρ(βm)|
≤ |ρ(b̂m) − ρ(β̂m)| + sup

a∈Sp

|ρN(a) − ρ(a)| + |ν̂m − νm|

Therefore, ρ(b̂m)− ρ(βm)
p−→ 0 since ρ is a continuous function, (A.3) and (A.2) hold and

and ν̂m − νm = op(1).
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A.2 Proof of Theorem 3.2

To aid the proof of the Bahadur representations in (3.1), we will state several lemmas
conducting to the desired conclusion.

Lemma A.3. Under the conditions of Theorem 3.2, we have that

i) ρN(β̂m) − ρN(βm) − ρ(β̂m) + ρ(βm) = op(N− 1
2 )

ii) ρ̇(β̂m) + N−1
∑k

i=1

∑ni
j=1 h

?
i (xij , β̂m) −

{
ρ̇(βm) + N−1

∑k
i=1

∑ni
j=1 h

?
i (xij ,βm)

}
=

ρ̈(βm)(β̂m − βm) + op(‖β̂m − βm‖) + oP (N− 1
2 )

Proof. We will only show ii) of the Lemma, the proof of i) being analogous using the fact
that N1/2(τiN − τi) → 0, 0 ≤ τiN ≤ 1, the continuity of ςi, S1f) and the equality

ρN(a) − ρ(a) =
k∑

i=1

τiN (ςi,ni(a) − ςi(a)) +
k∑

i=1

(τi − τiN)ςi(a) ,

Given 1 ≤ ` ≤ p, under S5 and since E{h?
i,`(xi1,a)} = 0, we have that H?

i,` is Donsker.

Therefore, denoting d2(a,b) = E
(
h?

i,`(xi1,a) − h?
i,`(xi1,b)

)2
, we have that (see van der

vaart and Wellner, 1996, page 115), for any αN → 0

sup
d(a,βm)≤αN

a∈Sp

E |n−
1
2

i

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}| → 0 , for 1 ≤ i ≤ k .

Therefore using that 0 ≤ τiN ≤ 1 and

E|N− 1
2

k∑

i=1

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}| = E|N− 1
2

k∑

i=1

n
1
2
i n

− 1
2

i

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}|

≤
k∑

i=1

τ
1
2
iNE|n−

1
2

i

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}|

≤ max
1≤i≤k

E|n−
1
2

i

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}|

we get that

sup
d(a,βm)≤αN

a∈Sp

E |N− 1
2

k∑

i=1

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}| → 0 .

The continuity on a of h?
i,`(x,a) implies that lim‖a−βm‖→0 d(a,βm) = 0, and so, if αN → 0

sup
‖a−βm‖≤αN

a∈Sp

| 1
N

k∑

i=1

ni∑

j=1

{h?
i,`(xij ,a) − h?

i,`(xij ,βm)}| = op(N− 1
2 ) ,
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which together with the consistency of β̂m imply that

1
N

|
k∑

i=1

ni∑

j=1

{h?
i,`(xij , β̂m) − h?

i,`(xij ,βm)}| = op(N− 1
2 )

Finally, from S3 and the continuity of ρ̈(a), the result holds using a Taylor expansion of
order one of ρ̇(a).

We will now derive the Bahadur expansions given in 3.1. For that purpose, we need
to obtain, as in Cui, He and Ng (2003) some identities satisfied by the common direction
estimators.

Using the Lagrange multiplier method, we have that β̂1 maximises

G1(a, µ1) = ρN(a) − µ1(ata− 1),

where µ1 ∈ R. Hence, differentiating G1 respect to a, we get that ρ̇N (β̂1) = 2µ1β̂1, and so,
using S3, the fact that N1/2(τiN − τi) → 0 and the equality

ρ̇N(a) =
k∑

i=1

τiN ς̇i,ni(a) =
k∑

i=1

τiN ς̇i(a) +
k∑

i=1

τiN
1
ni

ni∑

j=1

h?
i (xij ,a) + op(N−1/2)

=
k∑

i=1

(τiN − τi)ς̇i(a) +
k∑

i=1

τiς̇i(a) +
1
N

k∑

i=1

ni∑

j=1

h?
i (xij ,a) + op(N−1/2)

= ρ̇(a) +
1
N

k∑

i=1

ni∑

j=1

h?
i (xij ,a) + op(N−1/2) (A.4)

we obtain

ρ̇(β̂1) +N−1
k∑

i=1

ni∑

j=1

h?
i (xij , β̂1) = 2µ1β̂1 + op (N− 1

2 ). (A.5)

Let, for 1 ≤ m ≤ p, P̂m+1 = Ip −
∑m

j=1 β̂jβ̂
t
j be the projection matrix over the linear space

orthogonal to that spaned by β̂1, . . . , β̂m. Then, we have that P̂2β̂1 = 0 and so, we get

P̂2


ρ̇(β̂1) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij , β̂1)


 = op (N− 1

2 ).

Similarly, we have that β̂m maximises

Gm(a, µ1, . . . , µm) = ρN(a) −
m−1∑

j=1

µjβ̂
t
j a− µm(ata− 1),
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for m = 1, . . . q which implies that ρ̇N (β̂m) =
∑m−1

j=1 µjβ̂j +2µmβ̂m. Therefore, using again
S3, the fact that N1/2(τiN − τi) → 0, (A.4) and that P̂m+1 β̂j = 0, 1 ≤ j ≤ m, we obtain
that

P̂m+1


ρ̇(β̂m) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij , β̂m)


 = op (N− 1

2 ). (A.6)

The equation (A.6) has its asymptotic version given in the next Lemma.

Lemma A.4. Under the conditions of Theorem 4.2. the following equation holds.

Pm+1ρ̇(βm) = 0 (A.7)

Proof. Using Lemma A.3(ii) and the consistency of β̂m, we get that

N−1
k∑

i=1

ni∑

j=1

h?
i (xij , β̂m) = N−1

k∑

i=1

ni∑

j=1

h?
i (xij ,βm) + op(1)

Replacing in (A.6), we obtain that

P̂m+1


ρ̇(β̂m) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij ,βm)}


+ op(1) = 0 .

Using the law of large numbers, the continuity of ρ̇ and the consistency of β̂m, we obtain
(A.7).

Moreover, we have the following relation between the estimators β̂m and the projection
matrix.

Lemma A.5. Under conditions of Theorem 3.2. we have that, for all b ∈ Rp

(P̂m+1 −Pm+1)b = −
m∑

j=1

( βt
j bIp + βjb

t )(β̂j − βj) + Op( ‖b‖
m∑

i=1

‖β̂i − βi‖2 ).

Proof. Indeed,

m∑

j=1

( βt
j bIp + βjb

t )(β̂j − βj) =
m∑

j=1

βt
j bβ̂j −

m∑

j=1

βt
j bβj +

m∑

j=1

βjb
tβ̂j −

m∑

j=1

βjb
tβj =

m∑

j=1

〈βj,b〉β̂j +
m∑

j=1

〈β̂j,b〉βj −
m∑

j=1

〈βj,b〉βj −
m∑

j=1

〈βj,b〉βj .

Therefore,

m∑

j=1

( βt
j bIp + βjb

t )(β̂j − βj) =
m∑

j=1

〈βj ,b〉β̂j +
m∑

j=1

〈β̂j ,b〉βj − 2
m∑

j=1

〈βj,b〉βj .
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On the other hand,

(P̂m+1 −Pm+1)b =
m∑

i=1

βiβ
t
i b−

m∑

i=1

β̂iβ̂
t
i b =

m∑

i=1

〈βi,b〉βi −
m∑

i=1

〈β̂i,b〉β̂i.

Adding the last two equations and using the proprieties of the inner product, we get
m∑

j=1

( βt
j bIp + βjb

t )(β̂j − βj) + (P̂m+1 −Pm+1)b =
m∑

j=1

〈β̂j − βj ,b〉(βj − β̂j).

The Cauchy- Schwartz inequality implies that

‖
m∑

j=1

〈β̂j − βj ,b〉(βj − β̂j)‖ ≤
m∑

j=1

|〈β̂j − βj ,b〉|‖(βj − β̂j)‖

≤
m∑

j=1

‖β̂j − βj‖2‖b‖,

and so, we get the desired result.

The Lemma A.6 gives the key to obtain the equality given in (3.1).

Lemma A.6. Under conditions of Theorem 3.2, we have that
{
Pm+1ρ̈(βm) − βt

mρ̇(βm)Ip − βmρ̇(βm)t
}

(β̂m − βm) + op( ‖β̂m − βm ‖) =
m−1∑

j=1

{
βt

j ρ̇(βm) Ip + βj ρ̇(βm)t
}

(β̂j − βj) + N− 1
2 Pm+1 um

+op (
m−1∑

i=1

‖β̂i − βi‖ ) + op (N− 1
2 )

Proof. Let

L = Pm+1ρ̈(βm)(β̂m − βm) − βt
mρ̇(βm)(β̂m − βm) − βmρ̇(βm)t(β̂m − βm).

Adding and subtracting P̂m+1 ρ̈(βm) (β̂m − βm) in L we have that

L = (Pm+1 − P̂m+1) ρ̈(βm) (β̂m − βm) − βt
m ρ̇(βm) (β̂m − βm)

− βm ρ̇t(βm) (β̂m − βm) + P̂m+1 ρ̈(βm) (β̂m − βm).

Since (Pm+1 − P̂m+1) = op(1) the first term of L is a op(‖β̂m − βm‖).

Using Lemma A.3(ii), we obtain

L = op(‖β̂m − βm‖) − βt
mρ̇(βm)(β̂m − βm) − βmρ̇(βm)t(β̂m − βm)

+ P̂m+1

[
ρ̇(β̂m) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij , β̂m) − {ρ̇(βm) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij ,βm)}

]

+ op(‖β̂m − βm‖) + op(N− 1
2 ).
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Now, by (A.6) we get P̂m+1

[
ρ̇(β̂m) + N−1

∑k
i=1

∑ni
j=1 h

?
i (xij , β̂m)]

]
= op (N− 1

2 ) and so,
reordering the terms, we obtain

L = op(‖β̂m − βm‖) + op(N− 1
2 ) − ( βt

mρ̇(βm)Ip + βmρ̇(βm)t )(β̂m − βm)

− P̂m+1

[
ρ̇(βm) +N−1

k∑

i=1

ni∑

j=1

h?
i (xij ,βm)

]
.

Remind that um = −N− 1
2
∑k

i=1

∑ni
j=1 h

?
i (xij ,βm), thus, we have that

L = op(‖β̂m − βm‖) + op(N− 1
2 ) − ( βt

mρ̇(βm)Ip + βmρ̇(βm)t )(β̂m − βm)

+ P̂m+1umN
− 1

2 − P̂m+1ρ̇(βm).

Then, adding and subtracting Pm+1umN
− 1

2 and Pm+1ρ̇(βm) to the last equation and using
(A.7) we obtain

L = op(‖β̂m − βm‖) + op(N− 1
2 ) − ( βt

mρ̇(βm)Ip + βmρ̇(βm)t )(β̂m − βm)

+ (P̂m+1 −Pm+1)umN
− 1

2 + Pm+1umN
− 1

2 − (P̂m+1 −Pm+1)ρ̇(βm).

The central limit theorem entails that um converges in distribution to a random normal
variable. Therefore, um is bounded in probability. Using that (P̂m+1 −Pm+1) = op(1), we
get that

(P̂m+1 −Pm+1)umN
− 1

2 = op(N− 1
2 ).

Hence,

L = op(‖β̂m − βm‖) + op(N− 1
2 ) − ( βt

mρ̇(βm)Ip + βmρ̇(βm)t )(β̂m − βm)

+ Pm+1umN
− 1

2 − (P̂m+1 −Pm+1)ρ̇(βm).

Using Lemma A.5, we get that

L = op(‖β̂m − βm‖) + op(N− 1
2 ) − ( βt

mρ̇(βm)Ip + βmρ̇(βm)t )(β̂m − βm)

+Pm+1umN
− 1

2 +
m∑

j=1

( βt
j ρ̇(βm)Ip + βjρ̇(βm)t )(β̂j − βj) + Op( ‖ρ̇(βm)‖

m∑

j=1

‖β̂j − βj‖2 ).

On the other hand, the continuity of ρ̇ in Sp implies that ρ̇ is bounded, therefore, using that
‖β̂j − βj‖ = op(1), we obtain that

Op( ‖ρ̇(βm)‖
m∑

j=1

‖β̂j − βj‖2) = op(
m∑

j=1

‖β̂j − βj‖) = op(
m−1∑

j=1

‖β̂j − βj‖)+op(‖β̂m−βm‖),

which entails that

(Pm+1ρ̈(βm) − βt
mρ̇(βm)Ip − βmρ̇(βm)t)(β̂m − βm) + op( ‖β̂m − βm ‖) =

m−1∑

j=1

( βt
j ρ̇(βm)Ip + βj ρ̇(βm)t )(β̂j − βj) +N− 1

2 Pm+1um + op(
m−1∑

j=1

‖β̂j − βj‖ ) + op(N− 1
2 )

19



concluding the proof.

Using the last Lemma we are going to prove the next equality

Lemma A.7. Under conditions of Theorem 3.2.

Am(β̂m − βm) + op(‖β̂m − βm‖) =
m−1∑

j=1

Bjm(β̂j − βj) +N− 1
2 Pm+1um

+ op(
m−1∑

j=1

‖β̂j − βj‖) + op(N− 1
2 ) (A.8)

where

Am = Pm+1ρ̈(βm) − βt
mρ̇(βm)Ip −

m−1∑

i=1

βt
i ρ̇(βm)βmβt

i

Bjm = βt
j ρ̇(βm)Ip + βj ρ̇(βm)t

Proof. Since Pm+1ρ̇(βm) = 0, we have that

ρ̇(βm) =
m∑

j=1

〈ρ̇(βm);βj〉βj . (A.9)

Then, using Theorem 3.1, it will be enough to show that

βt
m(β̂m − βm) = Op(‖β̂m − βm‖2).

Using that β̂m y βm ∈ Sp, we get easily that

〈βm, β̂m〉 = 1 − ‖β̂m − βm‖2

2
,

and so,

βt
m(β̂m − βm) = 〈βm, β̂m − βm〉 = 〈βm − β̂m, β̂m − βm〉 + 〈β̂m, β̂m − βm〉

= −‖β̂m − βm‖2 + 1 − 〈βm, β̂m〉

= −‖β̂m − βm‖2 + 1 − (1 − ‖β̂m − βm‖2

2
)

= −‖β̂m − βm‖2

2
.

Thus, βt
m(β̂m − βm) = Op(‖β̂m − βm‖2) = op(‖β̂m − βm‖), which concludes the prove.

Lemma A.8. Under conditions of Theorem 3.2. we have

a) β̂1 − β1 = Op(N− 1
2 )
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b) β̂m − βm = Op(N− 1
2 )

Proof. a) Using (A.8) with m = 1, we get A1(β̂1 − β1) + op( ‖β̂1 − β1‖ ) = N− 1
2 P2 u1 +

op(N− 1
2 ) which implies that (β̂1−β1) = op( ‖β̂1−β1‖ )+A−1

1 N− 1
2 P2 u1+op(N− 1

2 ). Since
P2 u1 converges in distiribution to a normal random variable, we have that A−1

1 N− 1
2 P2 u1 =

Op(N− 1
2 ), and so, we have that N

1
2 (β̂1 −β1) = N

1
2 op( ‖β̂1 −β1‖ ) +Op(1) + op(1). Thus,

N
1
2 (β̂1 − β1) = N

1
2 op( ‖β̂1 − β1‖ ) + Op(1). (A.10)

Hence,

N
1
2 ‖β̂1 − β1‖

[
(β̂1 − β1)

‖β̂1 − β1‖
− op(‖β̂1 − β1‖ )

‖β̂1 − β1‖

]
= Op(1).

Since
∥∥∥∥

(β̂1−β1)

‖β̂1−β1‖
− op( ‖β̂1−β1‖ )

‖β̂1−β1‖

∥∥∥∥
p−→ 1 , we have that N

1
2 ‖β̂1 − β1‖ = Op(1) as desired.

b) Let us show that N
1
2 ‖β̂j − βj‖ = Op(1), for all 2 ≤ j ≤ m− 1 entails that N

1
2 ‖β̂m −

βm‖ = Op(1). Indeed, from (A.8), we get

N
1
2 (β̂m − βm) = N

1
2 op(‖β̂m − βm‖) +

m−1∑

j=1

A−1
m BjmN

1
2 (β̂j − βj)

+ A−1
m Pm+1um +N

1
2 op(

m−1∑

j=1

‖β̂j − βj‖) + op(1)

Since Pm+1um converges in distribution to a normal random variable and using the induc-
tive assumption, we get

N
1
2 (β̂m − βm) = N

1
2 op(‖β̂m − βm‖) + Op(1) ,

which is is analoguous to (A.10), and so, we get easily that β̂m−βm = Op(N− 1
2 ) concluding

the proof.

The Bahadur representation for β̂m given in (3.1) follows now easily using (A.8) and
Lemma A.8.

Now we are going to obtain the expansion given in (3.2). Similar arguments to those
considered in Lemma A.3, allow to show that

1
ni

ni∑

j=1

hi,σ(xij , β̂m) =
1
ni

ni∑

j=1

hi,σ(xij ,βm) + op(n
− 1

2
i ) ,

then

λ̂im − λim = ςi,ni(β̂m) − ςi(βm) = ςi,ni(β̂m) − ςi(β̂m) + ςi(β̂m) − ςi(βm)
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=
1
ni

ni∑

j=1

hi,σ(xij ,βm) + op(n
− 1

2
i ) + ς̇i(βm)t(β̂m − βm) + op(‖β̂m − βm‖)

=
1
ni

ni∑

j=1

hi,σ(xij ,βm) + op(n
− 1

2
i ),

and so, the proof is concluded.
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