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Abstract

When dealing with several populations of functional data, equality of the covariance oper-
ators is often assumed even when seeking for a lower–dimensional approximation to the data.
Usually, if this assumption does not hold, one estimates the covariance operator of each group
separately, which leads to a large number of parameters. As in the multivariate setting, this
is not satisfactory since the covariance operators may exhibit some common structure. In this
paper, we discuss the extension to the functional setting of projection–pursuit estimators for the
common directions under a common principal component model that has been widely studied
when dealing with multivariate observations. We present estimators of the unknown parameters
combining robust projection–pursuit with different smoothing methods. We obtain consistency
results under mild assumptions.
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1 Introduction

The common principal components, cpc, model introduced by Flury (1984) for p−th dimensional
data, generalizes proportionality of the covariance matrices by allowing the matrices to have differ-
ent eigenvalues but identical eigenvectors, that is, Σi = βΛiβ

t, 1 ≤ i ≤ k, where Λi are diagonal
matrices and β is the orthogonal matrix of the common eigenvectors. This model can be viewed
as a generalization of principal components to k groups, since the principal transformation is iden-
tical in all populations considered while the variances associated with them vary among groups.
In biometric applications, principal components are frequently interpreted as independent factors
determining the growth, size or shape of an organism. It seems therefore reasonable to consider
a model in which the same factors arise in different, but related species. The common principal
components model clearly serves this purpose.

In this paper, we go further and we will consider several populations of functional data instead
of finite–dimensional ones. To be more precise, the observations to be considered are elements
of a separable Hilbert space H with the inner product 〈·, ·〉 and related norm ‖α‖2 = 〈α,α〉. If
X ∈ H is a random element with finite second moment, i.e., E(‖X‖2 < ∞, the bilinear operator
aX : H×H → R defined as aX(α, β) = cov(〈α,X〉, 〈β,X〉) leads to a continuous operator. Hence,
Riesz representation theorem implies that there exists a bounded operator, ΓX : H → H, such
that aX(α, β) = 〈α,ΓXβ〉. The operator ΓX is called the covariance operator of X and is linear,
self–adjoint and continuous. Moreover, ΓX is a Hilbert-Schmidt operator so, it has a countable
number of eigenvalues, all of which are real. Furthermore, since the covariance operator ΓX is
also positive semi-definite, its eigenvalues are non-negative. As with symmetric matrices in finite
dimensional Euclidean spaces, one can choose the eigenfunctions of a Hilbert-Schmidt operator so
that they form an orthonormal basis for H. Let {φj : j ≥ 1} and {λj : j ≥ 1} be respectively an
orthonormal basis of eigenfunctions and their corresponding eigenvalues for the covariance operator
ΓX , with λj ≥ λj+1. Let ⊗ stand for the tensor product on H, e.g., for u, v ∈ H, the operator
u⊗v : H → H is defined as (u⊗v)w = 〈v,w〉u. With this notation, the spectral value decomposition
for ΓX can then be expressed as ΓX =

∑∞
j=1 λjφj ⊗ φj. Besides, the covariance operator ΓX can

also be written as ΓX = E{(X − µ)⊗ (X − µ)}. In particular, principal components analysis has
been successfully extended from the multivariate setting to accommodate functional data. The
j-th principal component variable is defined as Zj = 〈φj ,X − µ〉, leading to the Karhunen–Loève
expansionX = µ+

∑∞
j=1 Zjφj , with µ = E(X) and the Zj’s being uncorrelated and having variances

λj in descending order.

As in the p−dimensional case, in many situations, one collects functional data Xi,1, · · · ,Xi,ni

from k independent samples with mean µi and different covariance operators Γi which may exhibit
some common structure to be taken into account in the estimation procedure. The simplest gener-
alization of equal covariance operators consists of assuming their proportionality, i.e., Γi = ρiΓ1, for
1 ≤ i ≤ k and ρ1 = 1. On the other hand, a natural extension of functional principal components
to several populations, which also corresponds to a generalization to the functional setting of the
cpc model introduced by Flury (1984), is to assume that the covariance operators Γi have common
eigenfunctions φj but different eigenvalues λi,j, i.e.,

Γi =
∞∑

j=1

λi,jφj ⊗ φj . (1)

As in Boente et al. (2010), we will assume that the eigenvalues preserve the order among popu-
lations, i.e., λi,1 ≥ λi,2 ≥ · · · ≥ λi,j ≥ λi,j+1 · · ·, for 1 ≤ i ≤ k. In this sense, the processes Xi,1,

1 ≤ i ≤ k, can be written as Xi,1 = µi +
∑∞

j=1 λ
1
2
i,j ξij φj, with λi1 ≥ λi2 ≥ . . . ≥ 0 and ξij
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zero mean random variables such that E(ξ2ij) = 1, E(ξij ξis) = 0 for j 6= s and so, the common
eigenfunctions, as in the one–population setting, exhibit the same major modes of variation. This
model is usually denoted the functional common principal component (fcpc) model. As in princi-
pal component analysis, the fcpc model could be used to reduce the dimensionality of the data,
retaining as much as possible of the variability present in each of the populations. Besides, this
model provides a framework for analysing different population data that share their main modes
of variation φ1, φ2, . . .. It is worth noticing that when considering a functional proportional model,

Xi,1, 1 ≤ i ≤ k, can be written as Xi,1 = µi + ρ
1
2
i

∑∞
j=1 λ

1
2
j ξij φj, with ρ1 = 1, λ1 ≥ λ2 ≥ . . . ≥ 0

and ξij random variables as described above. A similar problem was studied by Benko et al. (2009)
who considered the case of k = 2 populations and provide tests for equality of means and equality
of a fixed number of eigenfunctions and by Boente et al. (2010) who considered estimators under
a general fcpc model.

The estimators defined in Boente et al. (2010) are based on the sample covariance operators
of each population being, therefore, sensitive to atypical trajectories. Clearly, when Xi,1 ∈ L2(I),
with I ⊂ R a finite interval, it is always possible to reduce the functional problem to a multivariate
one, by evaluating the observations on a common output grid or by using the coefficients of a basis
expansion, as done in Locantore et al. (1999), for the one–population case. However, even when
k = 1, this approach has several drawbacks which are discussed, for instance, in Gervini (2008), who
also study a fully functional approach to robust estimation of the principal components. Up to our
knowledge, robust proposals for functional principal components consider only the one–population
case. For instance, Gervini (2009) develop robust functional principal component estimators for
sparsely and irregularly observed functional data and use it for outlier detection while, Sawant et
al. (2011) consider a robust approach of principal components based on a robust eigen–analysis
of the coefficients of the observed data on some known basis. On the other hand, Hyndman and
Ullah (2007) give an application of a robust projection–pursuit approach, applied to smoothed
trajectories, but do not study the properties of their method in detail. More recently, Bali et al.
(2011) introduce robust estimators of the principal directions based on robust projection–pursuit
combined with different smoothing methods through a penalization in the scale or in the norm
and establish their strong consistency. On the other hand, when dealing with several populations
of multivariate observations, robust estimators under a cpc model are considered in Boente and
Orellana (2001). Further developments are given by Boente et al. (2006) who define a general class
of projection–pursuit estimators in order to improve the efficiency of the robust estimators for a
given scale and also, to recover the maximum likelihood estimators when the scale is the standard
deviation.

The aim of this paper is to extend some of the previous proposals to a functional setting
with observations from several populations, in order to provide robust estimators of the common
directions under a fcpcmodel. In Section 2, we introduce the notation to be used and we generalize
the fcpcmodel described above to avoid second moment conditions. In Section 3, robust estimators
for the common directions are considered through a projection–pursuit approach combined with
different smoothing procedures. The strong consistency of the given proposals is stated in Section 4
and a robust cross–validation procedure to select the penalization parameter is described in Section
5. Section 6 summarizes the results of a Monte Carlo study conducted to compare the performance
of the robust proposals between them and also with that of the classical estimators based on the
sample variance while a real data set is studied in Section 7. Some preliminary results are given in
Appendix A while proofs are relegated to Appendix B.
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2 Preliminaries

2.1 The FCPC model: notation and definitions

We recall some definitions given in Bali et al. (2011) which will help to generalize the fcpc model
to the situation in which second moments do not exist.

If X ∼ P and α ∈ H, P [α] will denote the measure of the real random variable 〈α,X〉. In
the context of several independent populations with probability measures P1, . . . , Pk, that is, when
Xi,1, · · · ,Xi,ni

are independent and such that Xi,j ∼ Xi,1 ∼ Pi, we will denote by Pi,ni
the empirical

measure under Pi, i.e.,

Pi,ni
(A) =

1

ni

ni∑

j=1

IA(Xi,j).

while Pi,ni
[α] will be the empirical measure of the real random variables {〈Xi,1, α〉, . . . , 〈Xi,ni

, α〉}.
Denote by G the set of all univariate distributions and σr : G → [0,+∞) a scale functional,

that is, a functional over the set of univariate distributions which is location invariant and scale
equivariant, i.e., ifGa,b stands for the distribution of aY +b when Y ∼ G, then, σr(Ga,b) = |a|σr(G),
for all real numbers a and b. We refer to Bali et al. (2011) for a discussion on scale functionals in
the context of functional principal components.

Given a probability measure P and a scale functional σr, robust functional principal components
operators were defined in Bali et al. (2011) as





φr,1(P ) = argmax
‖α‖=1

σr (P [α])

φr,m(P ) = argmax
‖α‖=1,α∈Bm

σr (P [α]) 2 ≤ m ,
(2)

where Bm = {α ∈ H : 〈α, φr,j(P )〉 = 0, 1 ≤ j ≤ m − 1}. These authors also define the robust
eigenvalue operators as λr,i(P ) = σ2

r(P [φr,i(P )]). If σr is the standard deviation, the usual defini-
tion of principal components is obtained. As mentioned in Bali et al. (2011), if the scale functional
σr is (weakly) continuous, the maximum above is attained.

Assume now that we are dealing with several populations with finite second moment, i.e.,
E‖Xi,1‖2 < ∞, and that the scale functional is the standard deviation. Then, σ2

r (Pi[α]) = 〈α,Γiα〉
with Γi the covariance operator of the i−th population. Then, under a fcpc model, (1) holds, so
φr,j(Pi) = φj for all j ≥ 1 and 1 ≤ i ≤ k. This property allows to extend the definition of a fcpc

model to the situation in which the covariance operator does not exist, as follows.

Definition 2.1.

• We will say that P1, . . . , Pk are weakly–fcpc for the scale functional σr if φr,j(Pi) = φr,j(Pm)
(except for a sign change) for all j ≥ 1 and 1 ≤ i,m ≤ k.

• We will say that P1, . . . , Pk are strongly–fcpc if there exist constants ci > 0 and self–
adjoint, positive semidefinite and compact operators Γi such that for any α ∈ H, σ2

r(Pi[α]) =
ci〈α,Γiα〉, where Γi satisfies (1), with λi,1 ≥ λi,2 ≥ · · · ≥ λi,j ≥ λi,j+1 · · ·, for 1 ≤ i ≤ k.
Hence, Γi have the same eigenfunctions and the order among eigenvalues is preserved along
populations.

Clearly, strong–fcpc implies weak–fcpc. Moreover, if second moment exists and σ2
r is the

variance, P1, . . . , Pk are strongly–fcpc when the covariance operators satisfy (1).
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Elliptical distributions were defined in defined in Bali and Boente (2009). For the sake of
completeness, we recall their definition. Let X be a random element in a separable Hilbert space
H and µ ∈ H. Let Γ : H → H be a self–adjoint, positive semidefinite and compact operator. We
will say that X has an elliptical distribution with parameters (µ,Γ), denoted as X ∼ E(µ,Γ), if for
any linear and bounded operator A : H → R

d, AX has a multivariate elliptical distribution with
parameters Aµ and AΓA∗, i.e., AX ∼ Ed(Aµ,AΓA∗), where A∗ : Rp → H stands for the adjoint
operator of A. As in the finite–dimensional setting, if the covariance operator, ΓX , of X exists
then, ΓX = a Γ, for some a ∈ R. Elliptical distributions in H include the Gaussian distributions,
while other elliptical distributions can be obtained as mixtures of Gaussian processes.

Recall that if X ∼ P = E(µ,Γ), then σ2
r(P [α]) = c〈α,Γα〉 for any scale functional. Thus,

when the different samples Xi,1 are elliptically distributed, i.e., Xi,1 ∼ Ed(µi,Γi) with dispersion
operators Γi satisfying (1), we have that P1, . . . , Pk are strongly–fcpc.

The principal directions can be estimated applying a sample version of (2) to each population.
However, in most cases, the estimators obtained in such a way will not be equal over populations,
even if a fcpc model holds. Hence, a unified approach is needed. Let us define σi : H → [0,+∞)
as σi(α) = σr (Pi[α]). Note that if c ∈ R, then using that σr is a scale functional we get that
σ2
i (cα) = c2σ2

i (α). As in Boente et al. (2006), let f : R>0 → R≥0 be a general increasing score

function and define ςf (α) =
∑k

i=1 τif(σ
2
i (α)). Moreover, let P stand for the product measure

P = P1 × . . .× Pk.

It is clear that when P1, . . . , Pk are weakly–fcpc under σr, then, for any 1 ≤ i ≤ k, φr,1(Pi)

will maximize
∑k

i=1 τiσ
2
r (Pi[α]) over S1 = {α ∈ H : ‖α‖ = 1}. More generally, it will maximize

ςf (α) over S1. This motivates to define the common directions projection–pursuit functional as





φf,1(P ) = argmax
‖α‖=1

ςf (α) = argmax
‖α‖=1

k∑

i=1

τif(σ
2
r (Pi[α]))

φf,m(P ) = argmax
‖α‖=1,α∈Bf,m

ςf (α) = argmax
‖α‖=1,α∈Bf,m

k∑

i=1

τif(σ
2
r (Pi[α])) 2 ≤ m ,

(3)

where Bf,m = {α ∈ H : 〈α, φf,j(P )〉 = 0, 1 ≤ j ≤ m − 1}. We also define the robust principal
values functionals as

λf,i,m(P ) = σ2
r(Pi[φf,m(P )]) = σ2

i (φf,m(P )) . (4)

Among others, the identity function id or the log can be chosen as score functions f . When
f = id and σ2

r is the variance, the functionals defined in (3) correspond to the eigenfunctions of
the pooled covariance operator whose sample version was studied in Boente et al. (2010). On the
other hand, the function f = log leads, in the multivariate setting, to the maximum likelihood
estimators when considering the sample variance. When considering robust scale estimators, the
choice f = log was recommended in Boente et al. (2006) for multivariate observations, based on
their simulation results and on the fact that, under a proportional model, the related estimators
maximize the asymptotic variance of the common principal directions over the class of strictly
increasing twice continuously differentiable score functions f , for a given choice of σr.

The following two lemmas justify the definition given in (3) since they show that these func-
tionals are properly defined.

Lemma 2.1. If f : [0,∞] → R is a continuous function and σi is weakly continuous, then
sup‖α‖=1 ςf (α) is reached for some α ∈ S1 and so the functional will be well defined.
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Similar arguments to those considered in the proof of Lemma 2.1 allow to show that the con-
clusion of Lemma 2.1 still holds when considering sup‖α‖=1,α∈Bf,m

ςf (α).

The following Lemma ensures the existence of φf,1(P ) when f = log.

Lemma 2.2. If f = log, σi is a weakly-continuous function and there exists α0 such that σi(α0) > 0
for all i, then sup‖α‖=1 ςf (α) will be reached for some α ∈ S1 and so the functional is well defined.

As above, the same ideas used in the proof can be considered to obtain that sup‖α‖=1,α∈Bf,m
ςf (α)

is attained if there exists α ∈ Bf,m such that σi(α) > 0 for all i.

2.2 Fisher-Consistency

The following Lemma show that, if P1, . . . , Pk are weakly–fcpc, the weights τi and the score
function f do not play a major role when defining the functional φf,j(P ).

Lemma 2.3. Assume that τi ≥ 0,
∑k

i=1 τi = 1, f : R → R is an strictly increasing function and
that P1, . . . , Pk are weakly–fcpc under σr. Then, φf,j(P ) = φr,j(P1).

It is worth noting that the above result does not ensure uniqueness of the solution of (3) which
will be a condition needed to ensure consistency of the estimators to be defined below. As in the
one–population setting, one important issue is what the functions φf,m represent, at least in some
particular situations. Lemma 2.4 below shows that, for functional elliptical families, the functionals
φf,m(P ) and λf,i,m(P ) are well defined, that is, the solution of (3) is unique, and have a simple
interpretation. In particular, our result holds if all the populations have an elliptical distribution,
but is not restricted to them. Fisher-consistency of the functionals defined through (3) will be
obtained under the following assumption

A1. There exists a constant ci > 0 and a self–adjoint, positive semidefinite and compact operator
Γi,0, such that for any α, we have σ2

i (α) = ci〈α,Γi,0α〉.

Note that A1 entails that the function σi : H → R defined as σi(α) = σr(Pi[α]) is weakly continu-
ous.

Lemma 2.4. Let φf,m and λf,i,m be the functionals defined in (2) and (4), respectively. Let
Xi,1 ∼ Pi be random elements such that A1 holds. Assume that Γi,0 have the same eigenfunctions
for any i. Moreover, assume that Γi,0 satisfies (1). Denote by λi,j the eigenvalue of Γi,0 related to
the eigenfunction φj , such that λi,1 ≥ λi,2 ≥ . . .. Assume that for some 1 ≤ i0 ≤ k there exists
q ≥ 2 such that for all 1 ≤ j ≤ q, λi0,1 > λi0,2 > . . . > λi0,q > λi,q+1. Then, if f is an strictly
increasing function and τi0 > 0, we have that, for all 1 ≤ j ≤ q, φf,j(P ) = φj and λf,j(P ) = ciλi,j.

If Γi,0 in A1 is the covariance operator of Pi, then the eigenfunctions functionals φf,m are the
common principal components. Besides, we also have that λf,j = σ2

i (φf,j) = ciλi,j where λi,j is the
j−eigenvalue of the covariance operator of i−th population, that is, the traditional principal value
in the classical approach. Therefore, the robust eigenvalue functional will be Fisher-consistent
except by multiplying factor ci that can be chosen to be equal to 1 for all populations under a
common central Gaussian model to ensure Fisher-consistency of the robust eigenvalue functionals.
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3 The estimators

Let Xi,1, · · · ,Xi,ni
in H be independent observations from k independent populations, that is, Xi,j

are independent and such that Xi,j ∼ Pi. Denote N =
∑k

i=1 ni and τ̂i = ni/N . We will assume

that τ̂i → τi with 0 < τi < 1, for 1 ≤ i ≤ k, and
∑k

i=1 τi = 1.

To define the estimators of the common functional principal directions, define the empirical
version of σ2

i , s
2
i,ni

: H → R as s2i,ni
(α) = σ2

r(Pi,ni
[α]) and the estimators of ςf (α), ς̂ : H → R, as

ς̂(α) =
∑k

i=1 τ̂if(s
2
i,ni

(α)) with τ̂i = ni/N .

3.1 General robust raw projection-pursuit estimators

As in Boente et al. (2006), the general raw projection–pursuit functional common direction esti-
mators are defined as





φ̂1 = argmax
‖α‖=1

k∑

i=1

τ̂if(s
2
i,ni

(α)) = argmax
‖α‖=1

ς̂(α)

φ̂m = argmax
‖α‖=1,α∈B̂f,m

k∑

i=1

τ̂if(s
2
i,ni

(α)) = argmax
‖α‖=1,α∈B̂f,m

ς̂(α) 2 ≤ m ,

(5)

where B̂m = {α ∈ H : 〈α, φ̂j〉 = 0, 1 ≤ j ≤ m − 1} while the estimators of their size in the i−th

population are defined as λ̂i,m = s2i,ni
(φ̂m).

3.2 Smoothed robust common principal direction estimators

As discussed in Bali et al. (2011), sometimes the practiser is interested in smoothed common
principal directions. When considering just one–population, the advantages of smoothed functional
PCA are well documented, see for instance, Rice and Silverman (1991) and Ramsay and Silverman
(2005). The same arguments apply to the case of several populations. For the one–population
setting, Rice and Silverman (1991) and Silverman (1996) proposed two smoothing approaches by
penalizing the variance and the norm, respectively. These approaches will be extended here to
several populations. In this sense, our results will cover not only a robust approach to estimate
the common principal directions, but they also provide results for the classical common principal
component estimators obtained through a penalization approach, which have not been considered
up to now.

We will state the definition in a separable Hilbert space H keeping in mind that the main
applications correspond to H = L2(I) with I ⊂ R a finite interval. Let us consider Hs ⊂ H
the subset of “smooth elements”of H. In order to obtain consistency results, we will need that
φr,j(P ) ∈ Hs. Let D : Hs → H, a linear operator that we will call the “differentiator”. Using D, we
will define the symmetric positive semidefinite bilinear form d·, ·e : Hs×Hs → R, dα, βe = 〈Dα,Dβ〉.
The “penalization operator”is then defined as Ψ : Hs → R, Ψ(α) = dα,αe. Moreover, define as
above, the penalized inner product 〈α, β〉ν = 〈α, β〉 + νdα, βe. Then, ‖α‖2ν = ‖α‖2 + νΨ(α). As in
Pezzulli and Silverman (1993), we will assume that the bilinear form is closable.

The smoothed general robust functional common principal components estimators are defined
either
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a) by penalizing the pooled transformed scales as




φ̂s,1 = argmax
‖α‖=1

{
k∑

i=1

τ̂if(s
2
i,ni

(α)) − ρdα,αe
}

= argmax
‖α‖=1

ς̂(α) − ρΨ(α)

φ̂s,m = argmax
α∈B̂s,m

{
k∑

i=1

τ̂if(s
2
i,ni

(α)) − ρdα,αe
}

= argmax
α∈B̂s,m

ς̂(α) − ρΨ(α) 2 ≤ m

(6)

where B̂s,m = {α ∈ H : ‖α‖ = 1, 〈α, φ̂s,j〉 = 0 , ∀ 1 ≤ j ≤ m− 1}.

b) or by penalizing the norm as




φ̂pn,1 = argmax
‖α‖ν=1

k∑

i=1

τ̂if(s
2
i,ni

(α)) = argmax
‖α‖ν=1

ς̂(α)

φ̂pn,m = argmax
α∈B̂pn,m,ν

k∑

i=1

τ̂if(s
2
i,ni

(α)) = argmax
α∈B̂pn,m,ν

ς̂(α) 2 ≤ m

(7)

where B̂pn,m,ν = {α ∈ H : ‖α‖ν = 1, 〈α, φ̂pn,j〉ν = 0 , ∀ 1 ≤ j ≤ m− 1}.

The eigenvalue estimators are thus defined as

λ̂s,i,m = s2i,ni
(φ̂s,m) , (8)

λ̂pn,i,m = s2i,ni
(φ̂pn,m) . (9)

To help formulate a unified approach to the different estimators considered in sections 3.1 and
3.2, let the products ρΨ(α) or νΨ(α) be defined as 0 when ρ = 0 or ν = 0 respectively, even when
α /∈ Hs for which case Ψ(α) = ∞. All the projection pursuit estimators considered can be viewed
as special cases of the following general class of estimators.





φ̂f,1 = argmax
‖α‖ν=1

{ς̂(α)− ρΨ(α)}

φ̂f,m = argmax
α∈B̂f,m,ν

{ς̂(α)− ρΨ(α)} 2 ≤ m,
(10)

where B̂f,m,ν = {α ∈ H : ‖α‖ν = 1, 〈α, φ̂f,j〉ν = 0 , ∀ 1 ≤ j ≤ m− 1}.

With this definition the raw estimators are obtained when ρ = ν = 0, while φ̂pn,m and φ̂ps,m
correspond to ρ = 0 and ν = 0, respectively.

4 Consistency

As mentioned above, in the finite–dimensional case, if dispersion operators are proportional, that is,
under the second level of hierarchy defined by Flury (1984), the score function f = log minimizes
the asymptotic variance over a family of functions, we refer to Boente et al. (2006) for details.
The main disadvantage of log is that ςf (α) and ς̂(α) are not defined when α = 0. Moreover, they
will not be weakly continuous in H due to the singularity at α = 0. For that reason, most of
the statements and proofs are given separately considering on one side, the case of a continuous
function f : [0,∞) → R and on the other one, the logarithm.

To derive consistency results for the estimators defined in Section 3, we will consider the fol-
lowing set of assumptions.
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C0. For some q ≥ 2 and 1 ≤ j ≤ q , φf,j(P ) are unique up to a sign change where P = P1×. . .×Pk.

C1. σi : H → R is a weakly continuous function, i.e., continuous with respect to the weak topology
in H.

C2. f : [0,+∞) → R is an strictly increasing and continuous function.

C3. sup‖α‖=1

∣∣∣s2i,ni
(α) − σ2

i (α)
∣∣∣ a.s.−→ 0, for any 1 ≤ i ≤ k.

C4. τ̂i −→ τi.

C5. sup‖α‖=1 |ς̂(α)− ςf (α)| a.s.−→ 0.

It is clear that C0 holds if for some 1 ≤ i ≤ k, λf,i,1 > λf,i,2 > . . . > λf,i,q > λf,i,q+1. On
the other hand, if C0 holds then, for any 1 ≤ ` ≤ q, there exists 1 ≤ i = i` ≤ k such that
λf,i,` > λf,i,`+1.

Remark 4.1 It is worth noticing that C1 and C2 imply that ςf : H → R is a weakly continuous
function. Note also that C1 hold if the univariate scale functional σr is qualitatively robust, that
is, continuous with respect to the weak topology on the space of probability measures, which is
induced by the Prohorov distance. Nevertheless, this is not strictly necessary. For instance, if
the scale functional satisfies A1, as is the case when σr is the standard deviation, we also obtain
weak continuity of σi. Assumption C1 also imply that the functional σ2

i is weakly uniformly
continuous in the unit sphere S1. Besides, assumption C3 follows from the consistency of the
sample covariance operators (see Dauxois et al., 1982), if σr equals the standard deviation, while
for any scale functional σr continuous with respect to the weak topology, C3 follows from Theorem
6.2 in Bali et al. (2011). Finally, C2 to C4 imply C5.

For the sake of simplicity denote by ς̂i,ni
(α) = f(s2i,ni

(α)) and ςf,i(α) = f(σ2
i (α)). Moreover,

from now on let oa.s.(1) stand for a term converging to 0 almost surely.

The following lemma will be useful for deriving consistency of the general eigenfunction estima-
tors.

Lemma 4.1. Let P = P1 × . . . × Pk, φf,m = φf,m(P ) and λf,i,m = λf,i,m(P ) be defined as in (3)

and (4) and let φ̂m ∈ V1 be such that φ̂m 6= 0, ‖φ̂m‖ a.s.−→ 1 and 〈φ̂m, φ̂j〉 a.s.−→ 0. Assume that C0 to
C2 hold. We have that

a) If ςf (φ̂1)
a.s.−→ ςf (φf,1), then, 〈φ̂1, φf,1〉2 a.s.−→ 1.

b) Given 2 ≤ m ≤ q, if ςf (φ̂m)
a.s.−→ ςf (φf,m), φ̂s

a.s.−→ φf,s for 1 ≤ s ≤ m−1, then 〈φ̂m, φf,m〉2 a.s.−→
1 and so we can choose the sign of φ̂m so that φ̂m

a.s.−→ φf,m.

Similarly, the following lemma will be useful for deriving consistency of the general eigenfunction
estimators when using the logarithm as score function. An extra condition on the principal values
λf,i,j is needed to avoid singularities.

Lemma 4.2. Let P = P1×. . .×Pk, φf,m = φf,m(P ) and λf,i,m = λf,i,m(P ) be defined as in (3) and

(4), respectively, with f = log and φ̂m ∈ V1 be such that φ̂m 6= 0, ‖φ̂m‖ a.s.−→ 1 and 〈φ̂m, φ̂j〉 a.s.−→ 0.
Assume that C0 and C1 hold and that, for any 1 ≤ i ≤ k, λf,i,1 > λf,i,2 > . . . > λf,i,q > λf,i,q+1.
We have that
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a) If ςf (φ̂1)
a.s.−→ ςf (φf,1), then, 〈φ̂1, φf,1〉2 a.s.−→ 1.

b) Given 2 ≤ m ≤ q, if ςf (φ̂m)
a.s.−→ ςf (φf,m), φ̂s

a.s.−→ φf,s for 1 ≤ s ≤ m−1, then 〈φ̂m, φf,m〉2 a.s.−→
1 and so we can choose the sign of φ̂m so that φ̂m

a.s.−→ φf,m.

Theorems 4.1 and 4.2 below establish the continuity of the functionals defined in (3) and (4),
for general continuous score functions defined at 0 and for f = log, respectively, and hence the
asymptotic robustness of the estimators derived from them, as defined in Hampel (1971). This can
be seen just by replacing almost sure convergence by convergence in its statement and by taking
Pi,ni

, 1 ≤ i ≤ k, fixed sequences of probability measures instead of random ones. From Theorem
6.2 in Bali et al. (2011), the uniform convergence required in assumption ii) in Theorem 4.2 below
holds if σr is a continuous scale functional when Pi,ni

ω−→ Pi.

Theorem 4.1. Let Pi,ni
, 1 ≤ i ≤ k, be random sequences of probability measures, N =

∑k
i=1 ni,

τ̂i,ni
be random variables such that τ̂i,ni

a.s.−→ τi with 0 < τi < 1,
∑k

i=1 τi = 1. Let ν = νN ≥ 0,
ρ = ρN ≥ 0 be random smoothing parameters. Denote by σ2

i,ni
(α) = σ2

r(Pi,ni
[α]) and ςN (α) =

∑k
i=1 τ̂if

(
σ2
i,ni

(α)
)
with f : [0,+∞) → R. Define λ̂i,m = σ2

i,ni
(φ̂m) with





φ̂1 = argmax
‖α‖ν=1

{ςN (α) − ρΨ(α)}

φ̂m = argmax
α∈B̂m,ν

{ςN (α) − ρΨ(α)} 2 ≤ m,

where B̂m,ν = {α ∈ H : ‖α‖ν = 1, 〈α, φ̂j〉ν = 0 , ∀ 1 ≤ j ≤ m − 1}. Let P = P1 × . . . × Pk be a
probability measure satisfying C0 and φf,m = φf,m(P ) and λf,i,m = λf,i,m(P ) be defined as in (3)
and (4), respectively. Assume that

i) C1 and C2 hold.

ii) sup‖α‖=1

∣∣∣σ2
i,ni

(α)− σ2
i (α)

∣∣∣ a.s.−→ 0.

iii) νN
a.s.−→ 0 and ρN

a.s.−→ 0.

iv) Moreover, if νN > 0 or ρN > 0, for all N ≥ N0, assume that φf,j ∈ Hs, i.e., Ψ(φf,j) < ∞, for
all 1 ≤ j ≤ q.

Then,

a) ςN (φ̂1)
a.s.−→ ςf (φf,1) and ςf (φ̂1)

a.s.−→ ςf (φf,1). Moreover, ρΨ(φ̂1)
a.s.−→ 0 and νdφ̂1, φ̂1e a.s.−→ 0,

and so, ‖φ̂1‖ a.s.−→ 1.

b) 〈φ̂1, φf,1〉2 a.s.−→ 1 and λ̂i,1
a.s.−→ λf,i,1.

c) For any 2 ≤ m ≤ q, if φ̂`
a.s.−→ φf,`, νΨ(φ̂`)

a.s.−→ 0 and ρΨ(φ̂`)
a.s.−→ 0 for 1 ≤ ` ≤ m− 1, then,

ςN (φ̂m)
a.s.−→ ςf (φf,m) and ςf (φ̂m)

a.s.−→ ςf (φf,m). Moreover, ρΨ(φ̂m)
a.s.−→ 0, νΨ(φ̂m)

a.s.−→ 0 and

so, ‖φ̂m‖ a.s.−→ 1.

d) For 1 ≤ m ≤ q, 〈φ̂m, φf,m〉2 a.s.−→ 1 and λ̂i,m
a.s.−→ σ2

i (φf,m).

10



Note that assumption ii) corresponds to C3 when Pi,ni
is the empirical probability measure of the

i−th population. On the other hand, when σr(·) is a continuous scale functional, Theorem 6.2
in Bali et al. (2011) implies that ii) holds whenever dpr(Pi,ni

, Pi)
a.s.−→ 0. Moreover, if σr(·) is a

continuous scale functional and Pi satisfy C0, Theorem 4.1 entails the continuity of the functionals
φf,j(·) and λf,i,j(·) at Pi, for 1 ≤ j ≤ q, and so the proposed estimators are qualitatively robust
and consistent. In particular, the estimators are robust if the populations are independent each
with an elliptical distribution E(µ1,Γ1) × . . . × E(µk,Γk), as defined in Section 2.2, such that, for
some 1 ≤ i ≤ k, the q largest eigenvalues of the operators Γi are all distinct.

From Theorem 4.1, we get that the raw estimators of the principal components are consistent,
under C0 to C5 by taking ρ = ν = 0. Moreover, the smooth estimators (6) and (7) are also
consistent if φf,j ∈ Hs, 1 ≤ j ≤ q.

The following Theorem states an analogous result when using the logarithm as score function.

Theorem 4.2. Let Pi,ni
, 1 ≤ i ≤ k, be sequences of probability measures, N =

∑k
i=1 ni, τ̂i,ni

be

random variables such that τ̂i,ni

a.s.−→ τi with 0 < τi < 1,
∑k

i=1 τi = 1. Let ν = νN ≥ 0, ρ = ρN ≥ 0 be

random smoothing parameters. Denote by σ2
i,ni

(α) = σ2
r(Pi,ni

[α]) and ςN (α) =
∑k

i=1 τ̂if
(
σ2
i,ni

(α)
)

with f = log and define λ̂i,m = σ2
i,ni

(φ̂m) with





φ̂1 = argmax
‖α‖ν=1

{ςN (α) − ρΨ(α)}

φ̂m = argmax
α∈B̂m,ν

{ςN (α) − ρΨ(α)} 2 ≤ m,

where B̂m,ν = {α ∈ H : ‖α‖ν = 1, 〈α, φ̂j〉ν = 0 , ∀ 1 ≤ j ≤ m − 1}. Let P = P1 × . . . × Pk be
a probability measure satisfying C0 and φf,m = φf,m(P ) and λf,i,m = λf,i,m(P ) be defined as in
(3) and (4), respectively, with f = log and assume that, for any 1 ≤ i ≤ k, λf,i,1 > λf,i,2 > . . . >
λf,i,q > λf,i,q+1. Moreover, assume that

i) C1 holds.

ii) sup‖α‖=1

∣∣∣σ2
i,ni

(α)− σ2
i (α)

∣∣∣ a.s.−→ 0.

iii) νN
a.s.−→ 0 and ρN

a.s.−→ 0.

iv) Moreover, if νN > 0 or ρN > 0, for all N ≥ N0, assume that φf,j ∈ Hs, i.e., Ψ(φf,j) < ∞, for
all 1 ≤ j ≤ q.

Then,

a) ςN (φ̂1)
a.s.−→ ςf (φf,1) and ςf (φ̂1)

a.s.−→ ςf (φf,1). Moreover, ρΨ(φ̂1)
a.s.−→ 0 and νdφ̂1, φ̂1e a.s.−→ 0,

and so, ‖φ̂1‖ a.s.−→ 1.

b) 〈φ̂1, φf,1〉2 a.s.−→ 1 and λ̂i,1
a.s.−→ λf,i,1.

c) For any 2 ≤ m ≤ q, if φ̂`
a.s.−→ φf,`, νΨ(φ̂`)

a.s.−→ 0 and ρΨ(φ̂`)
a.s.−→ 0 for 1 ≤ ` ≤ m− 1, then,

ςN (φ̂m)
a.s.−→ ςf (φf,m) and ςf (φ̂m)

a.s.−→ ςf (φf,m). Moreover, ρΨ(φ̂m)
a.s.−→ 0, νΨ(φ̂m)

a.s.−→ 0 and

so, ‖φ̂m‖ a.s.−→ 1.

d) For 1 ≤ m ≤ q, 〈φ̂m, φf,m〉2 a.s.−→ 1 and λ̂i,m
a.s.−→ σ2

i (φf,m).
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5 A robust cross–validation procedure

As it is well known, the selection of the smoothing parameters is an important practical issue.
Usually, L2 cross–validation is considered to address this problem. However, it has been extensively
pointed out that procedures based on L2 cross–validation methods are sensitive to outliers even if
they are combined with a robust estimation method. When considering just one population, Bali
et al. (2011) describe a robust cross–validation procedure to choose the penalization parameters
when estimating the principal directions using a penalized projection–pursuit method.

In this section, we consider a modified procedure which allows for different degrees of penaliza-
tion as the common principal directions are obtained. For the sake of simplicity, we describe the
procedure only for the robust estimators obtained through (6), that is, those penalizing the pooled
transformed scales. In our procedure,once the parameters ρ̂1, . . . , ρ̂m−1 are selected, the estimators
of the first m − 1 common principal directions are kept fixed, that is, we do not recompute the
estimators of those directions.

To compute ρ̂1, the value of the penalizing parameter ρ used to estimate the first common
principal direction, we consider the following procedure:

RCV0. Take Yi,j = Xi,j and set m = 1.

RCV1. Center the data Yi,j, that is, define Ỹi,j = Yi,j − µ̂i, where µ̂i is a robust location estimator of
the observations {Yi,j, 1 ≤ j ≤ ni} from the i−th population.

RCV2. Randomly partition the centered data {Ỹi,j} of each population inK subsets of approximately

the same size, with the `-th subset of the population i with size ni,` ≥ 2,
∑K

`=1 ni,` = ni.

Let {Ỹ (`)
i,j }1≤j≤ni,`

the elements of the `−th subset, while {Ỹ (−`)
i,j }1≤j≤n−ni,`

correspond to the

elements in the complement of the `-th subset. The set {Ỹ (−`)
i,j }1≤j≤n−ni,`

is the training set

and {Ỹ (`)
i,j }1≤j≤ni,`

is the validation one.

RCV3. For each value of ρ in the range of consideration, compute the estimator of the m−th direction

using only the elements of the training set {Ỹ (−`)
i,j }1≤j≤n−ni,`

. Denote φ̂
(−`)
ρ,m this estimator.

RCV4. Using the validation set, define Y
(`)⊥
i,j (ρ) = Ỹ

(`)
i,j −π

L̂
(−`)
m

(Ỹ
(`)
i,j ), 1 ≤ j ≤ ni,`, where L̂(−`)

m is the

subspace spanned by {φ̂ρ̂1,1, . . . , φ̂ρ̂m−1,m−1, φ̂
(−`)
ρ,m } and πL : H → L stands for the orthogonal

projection onto the closed linear space L.

RCV5. Given a robust scale estimator around zero σn, the robust K−th fold cross–validation proce-
dure selects the smoothing parameter as the value ρ̂m that minimizes

RCV`,kcv(ρ) =

K∑

`=1

k∑

i=1

σ2
n(‖X(`)⊥

i,1 (ρ)‖, . . . , ‖X(`)⊥
i,ni,`

(ρ)‖) .

RCV6. Using the value ρ̂m, the estimator φ̂ρ̂m,m is obtained as

φ̂ρ̂m,m = argmax
‖α‖=1,B̂s,m

ς̂(α) − ρ̂mΨ(α) .

where B̂s,m = {α ∈ H : ‖α‖ = 1, 〈α, φ̂ρ̂j ,j〉 = 0 , ∀ 1 ≤ j ≤ m− 1}.
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Once, the parameters ρ̂1, . . . , ρ̂m−1 are selected, to select the smoothing parameter for the
estimator of the m−th common principal direction, as mentioned above, we fix the first m − 1
estimators of the common principal directions φ̂ρ̂1,1, . . . , φ̂ρ̂m−1,m−1 and we project the data over the

orthogonal linear space L̂m−1 spanned by φ̂ρ̂1,1, . . . , φ̂ρ̂m−1,m−1. That is, define Yi,j = πL̂m−1
(Xi,j)

and repeat RCV1 to RCV6. Note that since Yi,j = πL̂m−1
(Xi,j), in RCV4 we only have to project

over φ̂
(−`)
ρ,m .

By a robust measure of scale about zero, we mean that no location estimator is applied to center
the data. For instance, in the classical setting, one takes σ2

n(z1, . . . , zn) = (1/n)
∑n

i=1 z
2
i , while in

the robust situation, one might choose σn(z1, . . . , zn) = median(|z1|, . . . , |zn|) (see Bali et al., 2011,
for details).

6 Monte Carlo study

The algorithm to be used to compute the estimators considered in this paper is a modification of the
algorithm proposed by Croux and Ruiz–Gazen (1996) for the computation of principal components
using projection-pursuit adapted to the situation of several populations as in Boente et al. (2006).
We refer to Bali el al. (2011) for details on the the algorithm for the one–population case. In our
case, the so–called index ξn corresponds to ς̂ when considering the raw estimators or those obtained
penalizing the norm. On the other hand, when penalizing the objective function the index is ς̂−ρΨ.
As in Bali et al. (2011), in the simulation study, to apply the algorithm to functional data, we
discretize the domain of the observed function X ∈ L2(I), over m = 50 equally spaced points in I.
As in Bali et al. (2011), the algorithm is adapted to allow for smoothed principal components.

Corresponding to non–resistant and robust estimators of the principal common directions, three
scale functions are considered, the classical standard deviation (sd), the Median Absolute Deviation
(mad) and an M−estimator of scale (M−scale). The latter two are robust scale statistics. For the

M−estimator, we used as score function χc(y) = min
(
3 (y/c)2 − 3 (y/c)4 + (y/c)6 , 1

)
, introduced

by Beaton and Tukey (1974), with tuning constant c = 1.56 and breakdown point 1/2. To compute
the M−scale, the initial estimator of scale was the mad.

For the different procedures to be considered, smooth or raw, the maximization in (5) is per-
formed over a set of candidates which correspond to the observations at hand, centered and nor-
malized to the unit ball. To be more precise, when j = 1, the set of candidates correspond to
A = {(Xi,j − µ̂i)/‖Xi,j − µ̂i‖} where µ̂i is taken as the point–to–point mean of each population
when the scale equals the sd, while for the robust procedures, µ̂i equals the L1 or spatial median
of each population.

For both the classical and robust procedures a penalization depending on the L2 norm of the
second derivative is included, multiplied by a smoothing factor, that is, Ψ(α) =

∫
I(α

′ ′(s))2ds. Note
that when ρ or ν = 0, the raw estimators are obtained. We considered fixed penalization parameters
and also, when penalizing the pooled transformed scales, data–driven parameters obtained through
the robust K−fold cross–validation described in Section 5.

In all Figures and Tables, the estimators corresponding to each scale choice are labelled as
sd, mad, M−scale. For each scale, we considered three estimators, the raw estimators where
no smoothing is used, the estimators obtained by penalizing the function ς̂ and those obtained by
penalizing the norm. In all Tables, as in Section 3.2, the jth principal direction estimators related
to each method are labelled as φ̂raw,j , φ̂ps,j and φ̂pn,j, respectively.
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Several models were considered in our simulation study, including a finite range model, which
is the several population counterpart of the model studied in Bali et al. (2011), and an infinite
dimensional range model. Also, different relations among populations including a proportional
model are studied in the infinite–dimensional case. In all cases, when the smoothing parameter
is fixed we performed 1000 replications, while when the penalizing parameter is chosen using the
cross–validation procedure described in Section 5, only 100 replications are performed due to the
expensive computation time.

For each situation, we compute the estimators of the first three principal directions and the
square distance between the true and the estimated direction (normalized to have L2 norm 1), that
is,

Dj =

∥∥∥∥∥
φ̂j

‖φ̂j‖
− φj

∥∥∥∥∥

2

.

Note that all the estimators except those penalizing the norm, are such that ‖φ̂j‖ = 1. Mean values
over replications, which hereafter is referred to as mean square error, are reported in the Tables
summarizing the results.

6.1 Finite–range study

6.1.1 Description of the model and contaminations

As mentioned above, this model is the three population counterpart of the situation considered in
Bali et al. (2011). We consider observations from k = 3 populations such that Xi,` = Zi1,`φ1 +
Zi2,`φ2 + Zi3,`φ3, 1 ≤ ` ≤ ni, 1 ≤ i ≤ 3, with Zij,` independent of each other. The functions
φi : [−1, 1] → R are given by φ1(x) = sin(4πx), φ2(x) = cos(7πx) and φ3(x) = cos(15πx). For all
the populations, the sample sizes considered are ni = 100, 1 ≤ i ≤ k = 3, for a total sample size of
n = 300.

Under the central model, labelled C0, for 1 ≤ i ≤ 3, Zi = (Zi,1, Zi,2, Zi,3)
t ∼ N(0,Σi), where

Σi = diag(λi,1, λi,2, λi,3) and λi = (λi,1, λi,2, λi,3)
t are given by λ1 = (16, 4, 1)t, λ2 = (36, 9, 1)t ,

λ3 = (4, 1, 1/4)t .

Several contaminations are considered. In all cases, the contaminated observations are defined

as X
(c)
i,` = Z

(c)
i1,`φ1 +Z

(c)
i2,`φ2 +Z

(c)
i3,`φ3, 1 ≤ ` ≤, 1 ≤ i ≤ 3, where Z

(c)
ij,` are independent of each other.

The different contaminations correspond to different choices for the distribution of Z
(c)
ij,`.

• C2,ε corresponds to contamination on the second component. In this case, Z
(c)
i1,` ∼ Zi1,`,

Z
(c)
i3,` ∼ Zi3,` and Z

(c)
i2,j ∼ (1 − ε)N(0, σ2

i2) + εN(µi,2, (σ
(c)
i2 )2) where σ

(c)
i2 = 0.1, µ1,2 = 10,

µ2,2 = 15 and µ3,2 = 5. We denote by PC2,ε the joint probability measure of (X
(c)
1,1 ,X

(c)
2,1,X

(c)
3,1)

under C2,ε.

The main effect of this contamination is that the directions φ1 and φ2 will be exchanged,
when considering the standard deviation, either with f = id or f = log.

• Two contaminations are considered in the third component.

? The first one, labelled C3,a,ε, is a strong contamination on the third component and

corresponds to generating Z
(c)
i1,` ∼ Zi1,`, Z

(c)
i2,` ∼ Zi2,` and Z

(c)
i3,j ∼ (1 − ε)N(0, σ2

i3) +
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εN(µi,3, (σ
(c)
i3 )2) with σ

(c)
i3 = 0.1 and µ1,3 = 15, µ2,3 = 20 and µ3,3 = 7. PC3,a,ε stands for

the joint distribution of (X
(c)
1,1 ,X

(c)
2,1,X

(c)
3,1) under C3,a,ε.

? Under C3,b,ε, the observations are such that Z
(c)
i1,` ∼ Zi1,`, Z

(c)
i2,` ∼ Zi2,` and Z

(c)
i3,j ∼

(1− ε)N(0, σ2
i3)+ εN(µi,3, (σ

(c)
i3 )2) where σ

(c)
i32 = 0.1, µ1,3 = 6, µ2,3 = 10 and µ3,3 = 3. As

above, PC3,b,ε
stands for the joint distribution of (X

(c)
1,1,X

(c)
2,1 ,X

(c)
3,1) under C3,b,ε.

• C23,ε is a contamination both in the second and third component, according to the con-
tamination level all the directions are modified when using the standard deviation. In this

case, Z
(c)
i1,` ∼ Zi1,`, Z

(c)
i2,j ∼ (1 − ε)N(0, σ2

i2) + εN(µi2, (σ
(c)
i2 )2) and Z

(c)
i3,j ∼ (1 − ε)N(0, σ2

i3) +

εN(µi3, (σ
(c)
i3 )2) where σ

(c)
i2 = 0.1, σ

(c)
i3 = 0.1 and the mean values are µ1,2 = 10, µ2,2 = 15 and

µ3,2 = 5 for the second component and µ1,3 = 15, µ2,3 = 20 and µ3,3 = 7 for the third one.

PC23,ε is the joint distribution of (X
(c)
1,1,X

(c)
2,1 ,X

(c)
3,1) under C23,ε.

Two contamination percentages are considered ε = 0.1 and 0.2.

When f = id and f = log and the standard deviation is taken as scale functional, the values
of ςf (φj) obtained under C0 and the different contaminations, are reported in Bali (2012). As
described therein, under C2,0.1, φf,1(PC2,0.1) = φ1, φf,21(PC2,0.1) = φ2 and φf,3(PC2,0.1) = φ3.
Hence, this amount of contamination may not affect the classical estimator, so the results obtained
for C2,0.1 are not reported. On the other hand, under PC23,ε , when f = log, the values of the
objective function ςf at φj , 1 ≤ j ≤ 3, are very close to each other making difficult the estimation
of the directions which may not distinguish between them. The same happens when considering
C3,b,0.1.

Besides, a penalized functional ςf,ρ(α) =
∑3

i=1(1/3)f(var(Pi[α])))−ρΨ(α) is introduced to have
an insight of the effect that penalizing the pooled transformed scales may have on the estimators,
when contaminating the samples. It is clear that under C0 for any value of ρ, ςf,ρ((φ1) > ςf,ρ((φ2) >
ςf,ρ((φ3), since Ψ(φ1) < Ψ(φ2) < Ψ(φ3).

If we include now the penalization and consider contaminated samples, we need to ensure that
the penalization amount ρ is such that the order observed when ρ = 0 among the functional common
principal directions, φf,j is preserved, to observe an effect on the estimation procedure based on the
sd, under contamination. Since a high value of ρ may produce that the dominating term is Ψ(α),
maximum values for the penalizing amount were computed in Bali (2012) leading to the values
reported in Table 1. Hence, values of ρ smaller than ρmax should be considered.

f = id f = log f = id f = log
C2,0.1 C23,0.1

— — 4.54∗10−7 3.07∗10−8

C3,a,0.1 C3,b,0.1

4.54∗10−7 3.07∗10−8 7.65∗10−8 1.17∗10−8

C2,0.2 C23,0.2

1.79∗10−5 8.74∗10−7 3.01∗10−6 1.12∗10−7

C3,a,0.2 C3,b,0.2

3.64∗10−6 1.44∗10−7 7.81∗10−7 1.15∗10−7

Table 1: Values of ρmax under C2,ε, C3,a,ε, C3,b,ε and C23,ε for ε = 0.1 and 0.2.
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6.1.2 Simulation results

When using the penalized estimators, several values for the penalizing parameters ρ and ν were
chosen. Since large values of the smoothing parameters make the penalizing term to be the dominant
component independently of the amount of contamination considered, we choose in this study ρ
and ν equal to aN−α for α = 2, 3 and 4 and a equal to 0.1 to 5.5.

Tables 6 to 9, in the supplementary file, report the results obtained for the different estimators
when f = id while Table 10, in the supplementary file, report the results when f = log. Due
to the fact that the trajectories are smooth, smoothing does not improve the performance of the
estimators. Since our conclusions are similar to those given in the one–population case, we refer to
Bali et al. (2011) for a deeper discussion.

On the other hand, as reported in the one population case in Bali et al. (2011), the robust
estimators have a behavior similar to that of the robust ones, while a larger efficiency loss is observed
when using the mad, as in the one–population case.

Tables 11 and 12, in the supplementary file, summarize the behavior of the estimators for the
different contaminations considered when f = id or f = log, respectively. The results for the
raw estimators, as well as that of the penalized estimators, when the penalization equals 3n−3 are
reported. As expected, the robust estimators behave much better than the classical ones. Moreover,
the simulation study confirms the expected inadequate behavior of the classical estimators in the
presence of outliers since they do not estimate the target directions very accurately. The robust
estimators of the first common principal direction are not heavily affected by the contaminations
considered, except for contamination C23,0.2 where the large amount of outliers seems to affect all the
robust directions estimators, although much less than when using the classical methods. Probably,
this amount of contamination is close to the breakdown point of the proposed estimators. Under
C3,a,ε or C3,b,ε, the projection–pursuit estimators based on the mad seem to be more affected
than those based on the M−scale by this type of contamination, in particular, when ε = 0.2.
Contamination C2,0.2 affects more the first direction robust estimators than C3,a,0.2. It is worth
noting that, when using f = log, an advantage is observed when some smoothing is introduced.
Moreover, even if we are not considering a proportional model, f = log leads to smaller mean
square errors under C0 for all the scale estimators than f = id except for the third direction when
penalizing the norm. Tables 11 and 12 also reveal the high loss of efficiency for the mad, in our
functional setting even when using f = log the mean square errors are almost ten times larger than
those of the classical procedure based on the sd.

For the procedure which penalizes the function ς̂, the smoothing parameters ρ̂1, ρ̂2, ρ̂3 were
selected sequentially using the procedure described in Section 5 with K = 5 and f = id. As
mentioned above, we have only performed 100 replications. The simulation results are reported in
Table 2. For the contaminations schemes defined above, we only consider ε = 0.2 which corresponds
to the worst situation. As when fixing the penalization parameter, no major differences are observed
between the penalized and the raw estimators. This fact can be explained by the fact that the
trajectories are smooth.

6.2 Infinite–range case

In this case, two situations are considered, a model with three populations and a proportional
model with two populations. The latter is considered to see if some advantage is observed when
using f = log.

16



Model Scale Estimator φ̂raw,j φ̂ps,j
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0.0033 0.0039 0.0037 0.0031 0.0040 0.0038
C0 mad 0.0436 0.0634 0.0368 0.0524 0.0667 0.0339

M -scale 0.0108 0.0141 0.0077 0.0122 0.0152 0.0074

SD 1.4496 1.4496 0.0023 1.5410 1.5410 0.0020
C2,0.2 mad 0.3780 0.3903 0.0271 0.3880 0.3972 0.0266

M -scale 0.4347 0.4354 0.0058 0.4591 0.4604 0.0062

SD 1.8275 1.9238 1.9405 1.8253 1.9180 1.9367
C3,a,0.2 mad 0.2598 0.7858 0.8071 0.2742 0.7945 0.8090

M -scale 0.2997 1.0419 1.0977 0.2997 1.1054 1.1594

SD 0.0140 1.7596 1.7905 0.0145 1.7478 1.7745
C3,b,0.2 mad 0.0874 0.5092 0.5013 0.0855 0.5329 0.5262

M -scale 0.0427 0.4782 0.4966 0.0384 0.4378 0.4631

SD 1.8303 0.1930 1.8255 1.8196 0.1684 1.8113
C23,0.2 mad 0.9350 1.0709 0.6005 0.9081 1.0608 0.5985

M -scale 1.0599 1.2001 0.7009 1.0753 1.1905 0.6969

Table 2: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2 when f = id and the smoothing parameter is selected using a
K−fold cross–validation procedure.

6.2.1 Three population model

As in the previous section, we considered N =
∑k

i=1 ni observations in L2([0, 1]) from k = 3
populations, with ni = 100, 1 ≤ i ≤ 3. Under the central model, labelled C0, all the populations
are Gaussian with distribution as follows

• For the first population, X1,` ∼ P1 where P1 corresponds to a Brownian motion in the
interval [0, 1] with covariance kernel γ1(s, t) = 10min(s, t). This choice of the covariance
operator leads to principal directions φn(t) =

√
2 sin ((2n− 1)πt/2) with related principal

values λ1,n = 10 (2/{(2n − 1)π})2.

• The second population is also a Gaussian process but with covariance kernel proportional to
the previous one. To be more precise, we choose γ2(s, t) = 2γ1(s, t).

• The third population is a finite–range one, generate as X3,` = Z1,`φ1+Z2,`φ2+Z3,`φ3, where
φn(t) =

√
2 sin ((2n − 1)πt/2), Zk,` ∼ N(0, σ2

k), with σ1 = 3, σ2 = 1 and σ3 = 1/2. Thus,
λ3,1 = σ2

1 = 9, λ3,2 = σ2
2 = 1 and λ3,3 = σ2

3 = 1/4 and λ3,j = 0 for j ≥ 4.

Note that the first two populations have continuous but rough trajectories while the third one has
smooth trajectories. Hence, among the candidates to be considered in our maximization procedure,
we have smooth candidates to approximate the true common principal direction estimators.

Each of the three populations is contaminated with a contaminating distribution highly con-
centrated on the fourth principal direction. Let us denote C4,ε this contamination, where ε corre-

sponds to the contamination level. The contaminated observations denoted X
(c)
i,j are generated as

X
(c)
i,j = (1 − Vi,j)Xi,j + Vi,jWi,j, where Vi,j ∼ Bi(1, ε) and Wi,j ∼ N(µi, σc)φ4 independent of Xi,j

with σc = 0.1, µ1 = 10, µ2 = 15 and µ3 = 20. Denote P
(c)
ε the joint distribution of (X

(c)
1,1,X

(c)
2,1 ,X

(c)
3,1).

Two values for the proportion of atypical data are considered ε = 0.1 and ε = 0.2.

In Bali (2012), a detailed description on the effect that contamination has on the functional,
when considering the standard deviation, is given to justify the selected values of µi. In particular,
if σr is the standard deviation, for the contaminated data we will get that ς(φ4) > ς(φ1) and so,
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the functional φf,1(P
(c)
ε ) is no longer φ1. Moreover, to evaluate the effect that the penalization

may have on the estimators, when penalizing ς̂, a penalized functional is considered and the effect
of ρ is studied. The goal is to guarantee that the value of the penalizing parameter will not be
chosen so large that its effect on the objective function will make the penalization to dominate over
the pooled transformed scale, leading to a smaller value of the objective function at φ4 than at φ1

under P
(c)
ε . This leads to maximum values for ρ, ρmax, equal to 0.0023 and 0.00013, when f = id

and f = log, respectively. Taking values of ρ smaller than ρmax ensure that the contamination will
effectively have an effect when using the standard deviation.

Simulation results

Table 3 summarize the results of the simulation. The fact that the robust estimators, based on
the mad and M−scale, are more resistant under the presence of the contamination model than
the classical estimator based on the standard deviation is again confirmed. It is worth noticing
that the robust methods are sensitive to 20% of contamination, especially when considering the
third direction. Evidently, for this contamination level, we are getting close to the breakdown
point of the estimator due to the closeness of the eigenvalues. An approach to the computation
of the breakdown point, in the finite–dimensional case, was given by Boente and Orellana (2001).
Nevertheless, in the case of functional data the problem is more complex and is beyond the scope
of the paper. However, in the one–population setting, it is well known that the sensitivity of
the robust estimators is related to the relative size of the eigenvalues. On the other hand, when
dealing with several populations and f = id, the sensitivity of the robust estimators to a given
contamination is related to the relative size of the eigenvalues of the pooled covariance operator∑3

i=1 τiΓi. When considering f = log, in the finite–dimensional case, Boente et al. (2006) showed
that the performance of the robust estimators is related to the closeness of the eigenvalues of the

matrix Σln = log

(
k∏

i=1

Σ
τi
i

)
, where Σi stands for the covariance matrix of the i−th population.

These eigenvalues are related to the relative size of ςf (φj) and for that reason, using f = log leads
to slightly better results. This closeness was also pointed out in Section 6.1, since in that case, the
estimation procedure has more trouble to identify the correct directions.

The results in Table 3 show that the function f plays a relevant role. It can be seen that,
in general, the performance of the estimator is better when we use f = log than when f = id
is considered. Besides, a small improvement is observed when penalizing either the norm or the
function ς̂, in particular, when using the mad as scale estimator. However, this improvement is
smaller than that obtained if the logarithm function is considered in the estimation procedure. As
mentioned above, the third population has smooth trajectories, so the inclusion of a penalization
term will tend to improve the performance of the estimators.

6.3 Proportional model

To analyse the effect of having smooth or rough trajectories on the algorithm leading to the esti-
mation procedure, we consider two different situations for a proportional model. For that purpose,
the uncontaminated observations correspond to Gaussian processes being either a Wiener or a
Ornstein–Uhlenbeck process. We generated N = n1 + n2 observations in L2([0, 1]) from k = 2
populations, with n1 = n2 = 100.

For the uncontaminated observations, labelled C0, the proportionality constant was equal to
10. To be more precise, we considered the models

18



Model Scale Estimator φraw,j φps,j (ρ = 10−7) φpn,j (ν = 10−7)

j = 1

f = id f = log f = id f = log f = id f = log

SD 0.0037 0.0036 0.0037 0.0037 0.0037 0.0037
C0 mad 0.0279 0.0279 0.0274 0.0268 0.0262 0.0268

M -scale 0.0061 0.0065 0.0061 0.0065 0.0061 0.0065

SD 1.9274 1.9050 1.9274 1.9058 1.9265 1.9058
C4,0.1 mad 0.0870 0.0845 0.0844 0.0726 0.0743 0.0727

M -scale 0.0934 0.0897 0.0896 0.0778 0.0790 0.0781

SD 1.9475 1.9418 1.9475 1.9406 1.9469 1.9406
C4,0.2 mad 0.1946 0.1864 0.1932 0.1780 0.1853 0.1782

M -scale 0.2108 0.2003 0.2096 0.1945 0.2031 0.1946

j = 2

SD 0.0043 0.0043 0.0043 0.0045 0.0045 0.0045
C0 mad 0.0585 0.0576 0.0551 0.0562 0.0550 0.0565

M -scale 0.0130 0.0130 0.0130 0.0131 0.0132 0.0131

SD 1.9298 1.9291 1.9284 1.9271 1.9252 1.9271
C4,0.1 mad 0.2588 0.2360 0.2105 0.1763 0.2317 0.2154

M -scale 0.2635 0.2292 0.2121 0.1768 0.2394 0.2181

SD 1.9308 1.9295 1.9292 1.9264 1.9260 1.9264
C4,0.2 mad 0.7966 0.7280 0.7551 0.6460 0.7761 0.7133

M -scale 0.9394 0.8511 0.8974 0.7649 0.9012 0.8259

j = 3

SD 0.0036 0.0036 0.0035 0.0036 0.0036 0.0036
C0 mad 0.0752 0.0672 0.0440 0.0460 0.0523 0.0520

M -scale 0.0109 0.0101 0.0103 0.0100 0.0105 0.0100

SD 1.9209 1.9251 1.9206 1.9239 1.9229 1.9242
C4,0.1 mad 0.8667 0.8521 0.7169 0.6329 0.7594 0.7443

M -scale 1.1009 1.0773 0.9432 0.8297 0.9607 0.9474

SD 1.9174 1.9222 1.9164 1.9230 1.9181 1.9231
C4,0.2 mad 1.5080 1.4755 1.4697 1.4103 1.4467 1.4362

M -scale 1.6430 1.6300 1.6229 1.5674 1.6009 1.5873

Table 3: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2 for the three population model with infinite range.

• Model 1: Corresponds to a Brownian motion. The observations Xi,j, 1 ≤ j ≤ ni correspond
to Gaussian processes with covariance kernels γ1(s, t) = 10min(s, t) and γ2(s, t) = 10γ1(s, t).
This model will be labelled bm in the Tables.

• Model 2: Corresponds to a Ornstein–Uhlenbeck process. In this case, the observations
Xi,j , 1 ≤ j ≤ ni are Gaussian with covariance kernels γ2(s, t) = (1/2)(1/2)0.9(s−t)2 and
γ2(s, t) = 10γ1(s, t). This model will be labelled ou in the Tables.

For each model, a contamination in the fourth eigenfunction was considered, as follows. Let φj

stand for the eigenfunctions of the covariance operator Γ1 related to the covariance kernel γ1(s, t).
As above, denote C4,ε this contamination, where ε corresponds to the contamination level. The

contaminated observations denoted X
(c)
i,j are generated as X

(c)
i,j = (1 − Vi,j)Xi,j + Vi,jWi,j, where

Vi,j ∼ Bi(1, ε) and Wi,j ∼ N(µi, σc)φ4 independent of Xi,j with σc = 0.1, µ1 = 10, µ2 = 30. Two
values for the proportion of atypical data are considered ε = 0.05 and ε = 0.1.

The results for the raw estimators of the first three common principal directions are reported
in Table 4. For the uncontaminated samples, the advantage of using f = log can be appreciated.
In the multivariate setting, the better performance of the estimators computed with the logarithm
function can be explained since, as mentioned above, when σr is the standard deviation, they lead
to the maximum likelihood estimators. Besides, for any fixed scale σr, estimators obtained using
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f = log maximize the asymptotic variance of the common principal directions over the class of
strictly increasing twice continuously differentiable score functions f (see Boente et al., 2006). Our
simulation results shows that the same improvement is obtained in the functional setting.

For contaminated samples, the procedures based on the standard deviation breakdown, espe-
cially when considering Model 2 or the second and third components. The robust procedures
are more stable, in particular, they lead to reliable results when estimating the first two common
principal directions. This performance is much better for Model 2 which has smooth trajectories,
since the estimators are smoother in this case. On the other hand, when ε = 0.1, the amount of
outliers affect the robust estimators of the third common principal direction, although much less
than when using the classical methods. It is worth noting that, when considering the robust scales,
even if the contaminated samples do not follow a proportional model, choosing f = log leads to
smaller mean square errors that those obtained with f = id in most cases. In this sense, using a
robust scale combined with the log seem to be the better choice.

Table 5 reports the results obtained when considering the penalized estimators φ̂ps,j obtained
penalizing ς̂ . The smoothing parameters ρ̂1, ρ̂2, ρ̂3 were selected using the K−th fold procedure
described in Section 5 with K = 5. Again, under Model 2, penalizing the trajectories do not
improve the behavior of the estimators under C0 since the data are already smooth. On the other
hand, a benefit is observed when using the robust scales, under Model 1. Note that the mean
square errors obtained , in particular under C4,0.1, suggest that some penalization combined with a
robust scale is the recommended option even if the trajectories are smooth, since a reduction with
respect to the mean square errors obtained for the raw estimators is obtained even when considering
the Ornstein process.

Scale φ̂raw,1 φ̂raw,2 φ̂raw,3

f = id f = log f = id f = log f = id f = log
bm

SD 0.0143 0.0138 0.0956 0.0914 0.2483 0.2329
C0 mad 0.0514 0.0407 0.2496 0.1929 0.5786 0.4619

M−scale 0.0188 0.0167 0.1254 0.1095 0.3207 0.2834
SD 0.9135 0.9303 1.9097 1.9045 1.7811 1.8049

C4,0.05 mad 0.0676 0.0588 0.3564 0.3011 0.8252 0.7757
M−scale 0.0441 0.0372 0.2486 0.2170 0.7857 0.7130

SD 1.7338 1.8015 1.9111 1.9172 1.7865 1.8020
C4,0.1 mad 0.1037 0.0941 0.5680 0.5092 1.1108 1.1202

M−scale 0.0919 0.0895 0.5684 0.5499 1.1866 1.2269
ou

SD 0.0013 0.0009 0.0017 0.0011 0.0012 0.0009
C0 mad 0.0281 0.0221 0.0511 0.0380 0.0528 0.0402

M−scale 0.0045 0.0029 0.0060 0.0039 0.0040 0.0026
SD 1.9263 1.9249 1.9439 1.9541 1.9655 1.9723

C4,0.05 mad 0.0421 0.0373 0.0974 0.0835 0.5355 0.5694
M−scale 0.0321 0.0296 0.0584 0.0500 0.7801 0.8243

SD 1.9587 1.9666 1.9448 1.9545 1.9646 1.9719
C4,0.1 mad 0.0615 0.0568 0.1624 0.1372 1.0835 1.1511

M−scale 0.0540 0.0528 0.1212 0.1094 1.3264 1.3317

Table 4: Mean values of ‖φ̂raw,j/‖φ̂raw,j‖ − φraw,j‖2, under a proportional model, with trajectories
generated from a Wiener process (bm) or from an Ornstein–Uhlenbeck process (ou).
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Scale φ̂ps,1 φ̂ps,2 φ̂ps,3
f = id f = log f = id f = log f = id f = log

bm

SD 0.0147 0.0143 0.0973 0.0931 0.2629 0.2321
C0 mad 0.0354 0.0295 0.1805 0.1507 0.4131 0.3869

M−scale 0.0173 0.0163 0.1158 0.1078 0.2917 0.2602

SD 0.9212 1.1136 1.9176 1.8961 1.7548 1.7496
C4,0.05 mad 0.0429 0.0338 0.2525 0.1911 0.9367 0.8867

M−scale 0.0250 0.0213 0.1677 0.1521 0.9885 0.8903

SD 1.7388 1.7780 1.9205 1.9048 1.7610 1.7524
C4,0.1 mad 0.0529 0.0336 0.3549 0.2115 1.4118 1.3775

M−scale 0.0311 0.0252 0.2259 0.1884 1.6285 1.6304

ou

SD 0.0013 0.0010 0.0016 0.0011 0.0013 0.0008
C0 mad 0.0313 0.0203 0.0507 0.0378 0.0329 0.0392

M−scale 0.0040 0.0027 0.0056 0.0037 0.0045 0.0036

SD 1.9311 1.9276 1.9413 1.9532 1.9642 1.9694
C4,0.05 mad 0.0391 0.0377 0.0937 0.0875 0.4484 0.5684

M−scale 0.0348 0.0361 0.0776 0.0615 0.7165 0.8350

SD 1.9574 1.9650 1.9460 1.9538 1.9625 1.9711
C4,0.1 mad 0.0565 0.0513 0.1692 0.1144 0.9961 1.0925

M−scale 0.0549 0.0538 0.0962 0.0999 1.2973 1.3025

Table 5: Mean values of ‖φ̂ps,1/‖φ̂ps,1‖ − φps,1‖2, under a proportional model, with trajectories generated
from a Wiener process (bm) or from an Ornstein–Uhlenbeck process (ou) using a K−fold procedure.
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7 Example: notch shape data

To illustrate the proposed procedures, we apply our estimators to notch shape data analyzed in
Ramsay and Silverman (2002) where a principal component analysis and a discrimination analysis
is considered. Our goal is to use the robust procedure to detect atypical or influential observations
in the sample.

The data represent the shape of the knees of different individuals which are classified as healthy
or suffering an arthritic condition. For each individual, we have information regarding the shape
of the joint. It has been suggested that osteoarthritis can alter this shape. In particular, the inter-
condylar notch is considered important by medical specialists. We refer to Ramsay and Silverman
(2002) for details. The data set consists of N = 96 notch outlines, on each of which we have
some concomitant information which provides evidence of arthritic bone damage. In the sample
considered, n1 = 21 femur belong to arthritic individuals and n2 = 75 to individuals showing no
signs of arthritic bone change. In this section, we perform a robust common functional principal
components analysis over these two groups to decide if the sample contains influential observations.
As in Ramsay and Silverman (2002), the data is parametrized by arc-length, leading to the plots
given in Figure 1.
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Figure 1: Notch shape of the 96 individuals.

The first four common principal directions are computed, using the standard deviation and an
M−scale estimator. Since choosing f = id or f = log, lead to similar results we only report the
conclusions obtained when f = id. On the other hand, when σr = sd and f = id, the raw estimators
of the common principal directions are easily obtained as the eigenfunctions of the pooled sample
covariance operator, instead of maximizing (5). The robust estimators are obtained maximizing
(5) over a set of candidates A as described in Section 6. However, to enlarge the set of candidates,
we also include the classical directions in A.

Figure 2 presents the parallel boxplots of the scores ŝi,j,` = 〈Xi,j− µ̂i, φ̂`〉 when φ̂` are the robust
estimators. The inner product is taken as the standard dot product in the space of functions from
[0, 1] to R × R. As is well known, due to a masking effect, the boxplots of the scores over the
classical estimators do not reveal any outlier and should not be used. On the other hand, when
using the robust projection–pursuit estimators the largest values of |ŝi,j,`| indicates the presence
of atypical observations which may influence the estimation of the common principal directions.
Figure 2 shows that, in the Arthritic group, one observation appears with a extremely small score
in the first direction and another one has a large score in the fourth one. In fact, in both cases, the
atypical score correspond to the observation labelled 11 and plotted with a thick line in Figure 3
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and corresponds to an observation with a plateau. On the other hand, in the Healthy group, four
atypical scores are detected which correspond to the observations plotted with thick lines in Figure
3. The observation with smallest score in the first direction is labelled as 22 and corresponds to
the curve with smallest values among the four thick ones in Figure 3. The two observations with
the largest values of ŝ2,j,2 are labelled as 62 and 63 in the Healthy data set and correspond to the
observations showing some torsion to the left. Finally, individual 11 in the Healthy group is the one
with the largest value in ŝ2,j,4 and is the one with the roundest behaviour among the four atypical
data.
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Figure 2: Boxplot of the scores.
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Figure 3: Notch shape of the 96 individuals, with atypical observations plotted in thick lines.

8 Concluding Remarks

In this paper, robust estimators of the common principal directions for functional data are defined
using a projection–pursuit approach. In this sense, the estimators in this paper can be seen as a
generalization of those defined in Bali et al (2011) to the case of k populations satisfying a fcpc

model, as well as an extension of the estimators defined by Boente et al. (2006), in the multivariate
setting. Besides, when considering as scale the standard deviation they provide a smooth alternative
to the proposal given in Boente et al. (2010).

The estimators defined combine a choice for the scale with a score function and a penalization
term, which penalizes the norm or the pooled scales of the projected data. A robust cross-validation
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procedure is defined to select sequentially the smoothing parameters which allows different penaliza-
tions according to the directions to be estimated. Consistency results are derived for the estimators
defined.

Finally, the simulation study confirms the expected inadequate behaviour of the classical esti-
mators in the presence of outliers, with the robust procedures performing significantly better. It
also shows that it may be preferable to choose the logarithm function to transform the scales instead
of maximizing the pooled squared scales of the projected data. In particular, we recommend using
an M−scale combined with f = log to improve the efficiency and still obtaining reliable estimators.

A Appendix A: Preliminary results

In this section, we state some preliminary results that will be used in the sequel. Remember that
dpr(P,Q) will stand for the Prohorov metric between the probability measures P and Q. Thus,
Pn

ω−→ P if and only if dpr(Pn, P ) → 0.

The following lemma, which generalizes the requirement in assumption C3 to deal with general
score functions and sequences of weights τ̂i converging to τi, shows that assumption C5 holds for
general continuous score functions defined at 0. It excludes, however, the logarithm which will be
treated separately.

Lemma A.1. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly
increasing function such that f : [0,+∞) → R is a continuous function.

a) Let {Pn}n∈N and P be probability measures defined on a separable Hilbert space H, such
that dpr(Pn, P ) → 0. Then, sup‖α‖=1 |f(σ2

r(Pn[α])) − f(σ2
r(P [α]))| −→ 0.

b) Let {Pi,ni
}ni∈N and Pi, 1 ≤ i ≤ k, be probability measures defined on a separable Hilbert

space H, such that dpr(Pi,ni
, Pi) → 0 and let τi,ni

be such that 0 ≤ τi,ni
and τi,ni

→ τi with

0 ≤ τi ≤ 1,
∑k

i=1 τi = 1. Then, sup‖α‖=1 |
∑k

i=1 τi,ni
f(σ2

r(Pi,ni
[α]))−∑k

i=1 τif(σ
2
r(Pi[α]))| −→

0.

Proof. a) Note that there exists a metric d generating the weak topology in H, the closed ball
Vr = {α : ‖α‖ ≤ r} is weakly compact and so, compact with respect to d. On the other hand,
σ(α) = σr(P [α]) is a weakly continuous function of α in H, hence continuous with respect to d.
These facts entail that the set A = {σ2(α) : ‖α‖ ≤ 1} is compact in [0,+∞), so bounded. Let us
assume that A ⊂ [0, A] ⊂ R. The fact that f is continuous in [0,∞) implies that it is uniformly
continuous in [0, A+1]. Hence, for any ε > 0 there exists δ > 0 such that u, v ∈ [0, A+1], |u−v| ≤ δ
entail |f(u)− f(v)| < ε.

Theorem 6.2 in Bali et al. (2011) implies that sup‖α‖=1 |σr(Pn[α])−σr(P [α])| −→ 0, thus there
exist no ∈ N such that, for any n ≥ no, sup‖α‖=1 |σr(Pn[α]) − σr(P [α])| ≤ min(δ/(2(A + 1)), η),

where η ≤ min(1/
√
A, 1)/4. Thus, using that σr(P [α]) ∈ [0,

√
A], for any α ∈ S1, we get that, for

any α ∈ S1, un = σ2
r(Pn[α]) ∈ [0, A + 1], v = σ2

r(P [α]) ∈ [0, A + 1] and |un − v| ≤ δ, which entails
that |f

(
σ2
r(Pn[α])

)
− f

(
σ2
r(P [α])

)
| < ε, for any α ∈ S1, concluding the proof.

b) Using a) we get easily that sup‖α‖=1 |
∑k

i=1 τi,ni

(
f(σ2

r(Pi,ni
[α])) − f(σ2

r(Pi[α]))
)
| −→ 0, since

τi,ni
≤ 2, for ni large enough. It remains to show that sup‖α‖=1 |

∑k
i=1 (τi,ni

− τi) f(σ
2
r(Pi[α]))| −→

0. Noting again that the closed ball V1 = {α : ‖α‖ ≤ 1} is weakly compact and gi(α) = f(σ2
i (α)) =
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f(σ2
r(Pi[α])) are weakly continuous functions of α in H, we get that the sets Bi = {f(σ2

i (α)) :
‖α‖ ≤ 1} are compact sets, so bounded which together with the fact that τi,ni

→ τi concludes the
proof of b).

Using Lemma A.1, we get the following result

Corollary A.1. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly
increasing function such that f : [0,+∞) → R is a continuous function.

a) Given P be a probability measure in a separable Hilbert space H and Pn be the empirical
measure of a random sample X1, . . . ,Xn with Xi ∼ P , we have that sup‖α‖=1 |f(σ2

r(Pn[α]))−
f(σ2

r(P [α]))| a.s.−→ 0

b) Given Pi, 1 ≤ i ≤ k, probability measures defined on a separable Hilbert space H and
{Pi,ni

}ni∈N the empirical measures of independent random samples Xi,1, . . . ,Xi,ni
with Xi,1 ∼

Pi, we have that sup‖α‖=1 |
∑k

i=1 τi,ni
f(σ2

r(Pi,ni
[α])) −∑k

i=1 τif(σ
2
r(Pi[α]))| a.s.−→ 0, for any

sequence τi,ni
such that 0 ≤ τi,ni

and τi,ni

a.s.−→ τi with 0 ≤ τi ≤ 1,
∑k

i=1 τi = 1.

The following lemma will be used to derive the results stated in Section 4 when considering
general continuous score functions defined at 0. Its proof is omitted since it follows using analogous
arguments to those considered in the proof of Lemma A.1.

Lemma A.2. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly
increasing function such that f : [0,+∞) → R is a continuous function. Let {Pi,ni

}ni∈N and
Pi, 1 ≤ i ≤ k, be probability measures defined on a separable Hilbert space H, such that
supα∈AN

∣∣σ2
r(Pi,ni

[α])− σ2
r(Pi[α])

∣∣ −→ 0, where AN ⊂ V1 = {α : ‖α‖ ≤ 1}, and let τi,ni
be such

that 0 ≤ τi,ni
and τi,ni

→ τi with 0 ≤ τi ≤ 1,
∑k

i=1 τi = 1. Then, supα∈AN
|∑k

i=1 τi,ni
f(σ2

r(Pi,ni
[α]))−∑k

i=1 τif(σ
2
r(Pi[α]))| −→ 0.

B Appendix B: Proofs

Proof of Lemma 2.1. Using that f is a continuous function and σi is weakly continuous, we
get easily that f ◦ σi : H → R and ςf : H → R are continuous functions with respect to the weak
topology in H. The result follows now from the fact that the unit ball {‖α‖ = 1} is weakly-compact,
since any continuous function reaches its maximum over a compact set.

Proof of Lemma 2.2. Let αn ∈ S1 be a sequence such that ςf (αn) → sup‖α‖=1 ςf (α).

Let us begin showing that lim infn→∞ σi(αn) = di > 0 for all 1 ≤ i ≤ k. Assume that this
assertion does not hold, i.e., that there exists an i and a subsequence αnj

such that σi(αnj
) → 0 as

nj → ∞. Then, ςf (αnj
) → ∑k

i=1 τif(σ
2
i (0)) = −∞ which implies that sup‖α‖=1 ςf (α) = −∞. On

the other hand, using that there exists α0 such that σi(α0) > 0 for all i, we get −∞ < ςf (α0/‖α0‖) ≤
sup‖α‖=1 ςf (α) leading to a contradiction.

Hence, lim infn→∞ σi(αn) = di > 0 for all i. Without loss of generality, assume that σi(αn) → di.
Therefore, there exists n0 such that for n ≥ n0, we have that σi(αn) > di/2 > 0. After relabelling
the sequence, we can assume that σi(αn) > A > 0 for all i and n.

25



Using that S1 is weakly compact we have that the exists a subsequence αnm converging to
β ∈ H and ‖β‖ ≤ 1. Let us show that ‖β‖ 6= 0. If β = 0, we have that σi(β) = 0. However,
the weak continuity of σi entails that σi(β) = limm σi(αnm) > A > 0 leading to a contradiction.
Hence ‖β‖ 6= 0. Then, αnm → β and σi(αnm) > A for all i and n. Since f = log : [A,∞] → R is a
continuous function, we get that ςf (αnm) → ςf (β). On the other hand, ςf (αnm) → sup‖α‖=1 ςf (α),
thus sup‖α‖=1 ςf (α) = ςf (β). It remains to show that ‖β‖ = 1. Assume that ‖β‖ < 1 and define γ =

β/‖β‖. We have that log(‖β‖2) < 0, so ςf (γ) = ςf (β)−
∑k

i=1 τi log(‖β‖2) > ςf (β) = sup‖α‖=1 ςf (α),
leading to a contradiction. Therefore, ‖β‖ = 1 and the supremum is reached at β.

Proof of Lemma 2.3. The fact that P1, . . . , Pk are weakly–fcpc under σr entails that φr,j(Pi) =
φr,j(Pm) = φr,j for all j ≥ 1 and 1 ≤ i,m ≤ k. So, for any α ∈ S1, we have that σ2

r(Pi[φr,1]) ≥
σ2
r(Pi[α]) which together with the fact that f is strictly increasing entails that f(σ2

r(Pi[φr,1])) ≥
f(σ2

r(Pi[α])). Hence, ςf (α) ≤ ςf (φr,1), which implies that φf,1 = φr,1.

The proof follows now by an induction argument. Assume that φf,j(P ) = φr,j(P1) for 1 ≤ j ≤
m, we want to show that φf,m+1(P ) = φr,m+1(P1). First note that Bm+1 = Bf,m+1, so for any
α ∈ S1 ∩ Bf,m+1, we have that σi(α) ≤ σi(φr,m+1), so ςf (α) ≤ ςf (φr,m+1), concluding the proof.

Proof of Lemma 2.4. Let us begin by showing the result for j = 1. Note that A1 implies that
P1, . . . , Pk are strongly–fcpc and so, weakly–fcpc under σr. Thus, for any α ∈ S1, we have that
σ2
r(Pi[φ1]) = σ2

i (φ1) = ciλi,1 ≥ ci〈α,Γ0α〉 = σ2
i (α) = σ2

r(Pi[α]) and the inequality is strict when
i = i0 and α 6= φ1. Hence, f(σ2

i (φ1)) ≥ f(σ2
i (α)) for any 1 ≤ i ≤ k and f(σ2

i0
(φ1)) > f(σ2

i0
(α))

since f is strictly increasing which together with the fact that τi ≥ 0 and τi0 > 0 imply that
ςf (φ1)) > ςf (α) for any α ∈ S1. Thus, φf,1(P ) = φ1.

The proof follows easily using an induction argument. Assume that φf,j(P ) = φj , for 1 ≤ j ≤
m− 1, m ≤ q, we want to show that φf,m(P ) = φm. Now the set Bf,m equals {α : 〈α, φj〉 = 0, 1 ≤
j ≤ m− 1}, hence, for any α ∈ S1∩Bf,m, we have that 〈α,Γi,0α〉 ≤ 〈φm,Γi,0φm〉 = λi,m with strict
inequality when i = i0 and α 6= φm. This implies that for any α ∈ S1 ∩Bf,m, we have f(σ2

i (φm)) =
f (ci〈φm,Γi,0φm〉) ≥ f (ci〈α,Γi,0α〉) = f(σ2

i (α)) for any 1 ≤ i ≤ k and f(σ2
i0
(φm)) > f(σ2

i0
(α))

which entails that ςf (φm)) > ςf (α), so φf,m(P ) = φm, concluding the proof.

The result regarding the eigenvalues follow easily since λf,i,j = σ2
r (Pi[φf,j ]) = σ2

i (φj) =
ci〈φj ,Γi,0φj〉 = ciλi,j.

Proof of Lemma 4.1. First of all, note that C1 and C2 imply that ςf : H → R is a weakly
continuous function. Hence, it is a weakly uniformly continuous function on V1 which is weakly
compact.

a) Let N = {ω : ςf (φ̂1(ω)) 6→ ςf (φf,1)} and fix ω /∈ N , then ςf (φ̂1(ω)) → ςf (φf,1). Using {‖α‖ ≤ 1}
is weakly compact, we have that for any subsequence γ` of the sequence φ̂1(ω) there exists a
subsequence γ`s such that γ`s → γ ∈ H such that that ‖γ‖ ≤ 1. Besides, using that ςf (φ̂1(ω)) →
ςf (φf,1), we get that ςf (γ`s) → ςf (φf,1) while on the other hand, the weak continuity of ςf entails
that ςf (γ`s) → ςf (γ), as s → ∞. Hence, ςf (γ) = ςf (φf,1) which entails that γ 6= 0. Effectively,
assume that γ = 0. Then, we have that σr(Pi[γ]) = σr(Pi[0]) = 0 which implies that ςf (γ) = f(0),

since
∑k

i=1 τi = 1. Therefore, ςf (φf,1) = f(0) and ςf (φf,1) =
∑k

i=1 τif(λf,i,1). Using that f is
strictly increasing and the fact that C0 implies that there exist i such that λf,i,1 > 0, we get that∑k

i=1 τif(λf,i,1) > f(0) leading to a contradiction. Hence, γ 6= 0.

Assume that ‖γ‖ < 1 and let γ̃ = γ/‖γ‖, then γ̃ ∈ S which implies that ςf (γ̃) ≤ ςf (φf,1). On
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the other hand, using that σr is a scale functional, ‖γ‖ < 1 and f is strictly increasing, we get

ςf (γ̃) =

k∑

i=1

τif
(
σ2
r (Pi [γ̃])

)
=

k∑

i=1

τif

(
σ2
r(Pi[γ])

‖γ‖2
)

>

k∑

i=1

τif
(
σ2
r(Pi[γ])

)
= ςf (γ) = ςf (φf,1)

which contradicts the fact that ςf (φf,1) = max‖α‖=1 ςf (α). Hence, ‖γ‖ = 1 and C0 implies that

γ = φf,1 except maybe for a sign change, that is, 〈γ, φf,1〉2 = 1. Thus, any subsequence of φ̂1(ω)
will have a limit converging either to φr,1 or −φr,1, concluding the proof of a).

b) Write φ̂m as φ̂m =
∑m−1

j=1 âjφf,j + γ̂m, with 〈γ̂m, φf,j〉 = 0, 1 ≤ j ≤ m − 1. To obtain

b) we only have to show that 〈γ̂m, φf,m〉2 a.s.−→ 1. Note that 〈φ̂m, φ̂j〉 a.s.−→ 0, for j 6= m, implies

that âj = 〈φ̂m, φf,j〉 = 〈φ̂m, φf,j − φ̂j〉 + 〈φ̂m, φ̂j〉 = 〈φ̂m, φf,j − φ̂j〉 + oa.s.(1). Thus, using that

φ̂j
a.s.−→ φf,j, 1 ≤ j ≤ m − 1, and ‖φ̂m‖ a.s.−→ 1, we get that âj

a.s.−→ 0 for 1 ≤ j ≤ m− 1. Therefore,

‖φ̂m − γ̂m‖2 a.s.−→ 0. Moreover, using that ‖φ̂m‖2 =∑m−1
j=1 â2j + ‖γ̂m‖2 and ‖φ̂m‖2 a.s.−→ 1, we get that

‖γ̂m‖2 ≤ 1 and ‖γ̂m‖2 a.s.−→ 1, which implies that ‖φ̂m − γ̃m‖ a.s.−→ 0, where γ̃m = γ̂m/‖γ̂m‖.
Using now that ςf (α) is a weakly uniformly continuous function of α in V1, we obtain that

ςf (γ̃m)−ςf (φ̂m)
a.s.−→ 0 which together with the fact that ςf (φ̂m)

a.s.−→ ςf (φf,m) implies that ςf (γ̃m)
a.s.−→

ςf (φf,m). The proof follows now as in a) using the fact that γ̃m ∈ Cm, with Cm = {α ∈ S : 〈α, φf,j〉 =
0, 1 ≤ j ≤ m− 1} and φf,m is the unique maximizer of ςf (α) over Cm.

Proof of Lemma 4.2. The proof is quite similar to that of Lemma 4.1 avoiding the problems
caused by the singularity at 0. Again, C1 imply that σi : H → R is a weakly uniformly continuous
function on V1 which is weakly compact.

a) As in Lemma 4.1, let N = {ω : ςf (φ̂1(ω)) 6→ ςf (φf,1)} and fix ω /∈ N , then ςf (φ̂1(ω)) → ςf (φf,1).

Using {‖α‖ ≤ 1} is weakly compact, we have that for any subsequence γ` of the sequence φ̂1(ω)
there exists a subsequence γ`s such that γ`s → γ ∈ H such that that ‖γ‖ ≤ 1. Besides, using that
ςf (φ̂1(ω)) → ςf (φf,1), we get that ςf (γ`s) → ςf (φf,1). On the other hand, the weak continuity of
σi entails that σi(γ`s) → σi(γ), as s → ∞, for 1 ≤ i ≤ k. If there exist 1 ≤ i ≤ k such that
σi(γ) = 0, (which includes the situation γ = 0), the fact that τi ≥ 0 implies that ςf (γ`s) → −∞
and so, ςf (φf,1) = −∞ which contradicts the fact that ςf (φf,1) =

∑k
i=1 τif(λf,i,1) and λf,i,1 > 0

for all 1 ≤ i ≤ k. Thus σi(γ) 6= 0, for all 1 ≤ i ≤ k, (which entails that γ 6= 0), the continuity of
f = log implies that ςf (γ`s) → ςf (γ) and so, ςf (γ) = ςf (φf,1). The proof follows now as in Lemma
4.1.

b) Write φ̂m as φ̂m =
∑m−1

j=1 âjφf,j + γ̂m, with 〈γ̂m, φf,j〉 = 0, 1 ≤ j ≤ m − 1. To obtain b)

we only have to show that 〈γ̂m, φf,m〉2 a.s.−→ 1. Note that 〈φ̂m, φ̂j〉 a.s.−→ 0, for j 6= m, implies

that âj = 〈φ̂m, φf,j〉 = 〈φ̂m, φf,j − φ̂j〉 + 〈φ̂m, φ̂j〉 = 〈φ̂m, φf,j − φ̂j〉 + oa.s.(1). Thus, using that

φ̂j
a.s.−→ φf,j, 1 ≤ j ≤ m − 1, and ‖φ̂m‖ a.s.−→ 1, we get that âj

a.s.−→ 0 for 1 ≤ j ≤ m− 1. Therefore,

‖φ̂m − γ̂m‖2 a.s.−→ 0. Moreover, using that ‖φ̂m‖2 =∑m−1
j=1 â2j + ‖γ̂m‖2 and ‖φ̂m‖2 a.s.−→ 1, we get that

‖γ̂m‖2 ≤ 1 and ‖γ̂m‖2 a.s.−→ 1, which implies that ‖φ̂m − γ̃m‖ a.s.−→ 0, where γ̃m = γ̂m/‖γ̂m‖.
Using now that, for all 1 ≤ i ≤ k, σ2

i (α) is a weakly uniformly continuous function of α in

V1, we obtain that σ2
i (γ̃m)− σ2

i (φ̂m)
a.s.−→ 0 which together with the fact that σ2

i (φ̂m)
a.s.−→ σ2

i (φf,m)

implies that σ2
i (γ̃m)

a.s.−→ σ2
i (φf,m). Therefore, noting that λf,i,m > 0 implies that σi(φf,m) > 0, for

all 1 ≤ i ≤ k, we get from the continuity of f = log on (0,∞) that ςf (γ̃m)
a.s.−→ ςf (φf,m).

The proof follows now as in a) using the fact that γ̃m ∈ Cm, with Cm = {α ∈ S : 〈α, φf,j〉 =
0, 1 ≤ j ≤ m− 1} and φf,m is the unique maximizer of ςf (α) over Cm.
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We will need first some auxiliary definitions. Denote by Lk the linear space spanned by
{φf,1, . . . , φf,k} and let L̂k be the linear space spanned by the first common principal directions

φ̂1, . . . φ̂k. For any linear space L, let πL : H → L be the orthogonal projection onto L, which is
well defined if L is a closed space, for instance, if L is a finite–dimensional linear space.

Denote by Tk = L⊥
k the linear space orthogonal to Lk and by πk = πTk the orthogonal projection

with respect to the inner product defined in H. On the other hand, let π̂ν,k be the projection onto

the linear space orthogonal to φ̂1, . . . , φ̂k in the space Hs in the inner product 〈·, ·〉ν . That is,
π̂τ,k(α) = α−∑k

j=1〈α, φ̂j〉ν φ̂j . Moreover, T̂ν,k will stand for the linear space orthogonal to L̂k with

the inner product 〈·, ·〉ν . Thus, π̂ν,k is the orthogonal projection onto T̂ν,k with respect to this inner
product.

Proof of Theorem 4.1. The proof uses similar arguments to those considered in the proof of
Theorem 4.1 in Bali et al. (2011).

First note that as in the proof of Lemma A.1, assumption ii), C2 and the fact that τi,ni

a.s.−→ τi
imply that

sup
‖α‖=1

|ςN (α) − ςf (α)| a.s.−→ 0 . (B.1)

Besides, the fact that σr is a scale functional entails that σi,ni
(α) = ‖α‖ σi,ni

(α/‖α‖). Thus, from
assumption ii) and the fact that ‖α‖ ≤ ‖α‖ν we get that

sup
‖α‖≤1

∣∣σ2
i,ni

(α)− σ2
i (α)

∣∣ a.s.−→ 0 and sup
‖α‖ν≤1

∣∣σ2
i,ni

(α) − σ2
i (α)

∣∣ a.s.−→ 0 . (B.2)

Hence using that the sets Bi = {σ2
i (α), ‖α‖ ≤ 1} are compact sets on [0,∞) and the fact that f is

a continuous function on [0,∞) and so, uniformly continuous on any closed neighbourhood of Bi,
we get easily from Lemma A.2 that

sup
‖α‖≤1

|ςN (α) − ςf (α)| a.s.−→ 0 and sup
‖α‖ν≤1

|ςN (α) − ςf (α)| a.s.−→ 0 . (B.3)

Note also that since f is defined at 0 we can assume without loss of generality that f(0) = 0
which entails that ςf (φf,m) > 0 for 1 ≤ m ≤ q.

a) To prove ςf (φ̂1)
a.s.−→ ςf (φf,1), using (B.3) and the fact that ‖φ̂1‖ ≤ ‖φ̂1‖ν = 1 , it suffices to show

that ςN (φ̂1)
a.s.−→ ςf (φf,1), that will follow if we show that

ςf (φf,1) ≥ ςN (φ̂1) + oa.s.(1) , (B.4)

ςf (φf,1) ≤ ςN (φ̂1) + oa.s.(1) . (B.5)

Using (B.3), we get that âN,1 = ςN (φ̂1) − ςf (φ̂1)
a.s.−→ 0, b̂N,1 = ςN (φf,1) − ςf (φf,1)

a.s.−→ 0 and

ĉN,1 = ςN (φf,1/‖φf,1‖ν) − ςf (φf,1/‖φf,1‖ν) a.s.−→ 0. Using that σr is a scale functional, f is strictly

increasing, ςf (φf,1) = supα∈S ςf (α) and the fact that ‖φ̂1‖ ≤ ‖φ̂1‖ν = 1, we obtain easily that

ςf (φf,1) ≥ ςf

(
φ̂1/‖φ̂1‖

)
≥ ςf (φ̂1) = ςN (φ̂1)− âN,1 = ςN (φ̂1)+oa.s.(1), concluding the proof of (B.4).

To derive (B.5), note that since φf,1 ∈ Hs, ‖φf,1‖ν < ∞ and ‖φf,1‖ν ≥ ‖φf,1‖ = 1. Then, using

that φ̂1 = argmax‖α‖ν=1 {ςN (α)− ρΨ(α)} and defining β1 = φf,1/‖φf,1‖ν , we have that ‖β1‖ν = 1
and

ςN (φ̂1) ≥ ςN (φ̂1)− ρΨ(φ̂1) ≥ ςN (β1)− ρΨ(β1) = ςN

(
φf,1

‖φf,1‖ν

)
− ρΨ

(
φf,1

‖φf,1‖ν

)
.
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Hence, using that Ψ(aα) = a2Ψ(α), for any a ∈ R, we get

ςN (φ̂1) ≥ ςN

(
φf,1

‖φf,1‖ν

)
− ρΨ

(
φf,1

‖φf,1‖ν

)
= ςN

(
φf,1

‖φf,1‖ν

)
− ρ

Ψ(φf,1)

‖φf,1‖2ν
≥ ςf

(
φf,1

‖φf,1‖ν

)
+ ĉN,1 − ρ

Ψ(φf,1)

‖φf,1‖2ν
.

When ρ = 0, we have defined ρΨ(φf,1) = 0 and similarly when ν = 0 in which case ‖φf,1‖ν =

‖φf,1‖ = 1. So from now on, we will assume that νN > 0 and ρN > 0. Since ν
a.s.−→ 0, we

have that and ‖φf,1‖ν a.s.−→ ‖φf,1‖ = 1. Using that ςf : H → R is weakly continuous, we get

that ςf (φf,1/‖φf,1‖ν) a.s.−→ ςf (φf,1), which together with the fact that ĉN,1 = oa.s.(1), ρ
a.s.−→ 0, so

ρΨ(φf,1)
a.s.−→ 0, entails that

ςN (φ̂1) ≥ ςf

(
φf,1

‖φf,1‖ν

)
+ ĉN,1 − ρ

Ψ(φf,1)

‖φf,1‖2ν
≥ ςf (φf,1) + oa.s.(1) ,

concluding the proof of (B.5). Thus, ςN (φ̂1)
a.s.−→ ςf (φf,1).

As mentioned above, from (B.3) and the fact that ‖φ̂1‖ ≤ 1, we obtain that ςN (φ̂1)−ςf (φ̂1)
a.s.−→ 0.

Therefore, using that ςN (φ̂1)
a.s.−→ ςf (φf,1), we get that

ςf (φ̂1)
a.s.−→ ςf (φf,1) . (B.6)

Moreover, the inequalities ςf (φf,1) ≥ ςf

(
φ̂1/‖φ̂1‖

)
≥ ςf (φ̂1) obtained above imply that

ςf

(
φ̂1

‖φ̂1‖

)
a.s.−→ ςf (φf,1) . (B.7)

We have to show that ρΨ(φ̂1)
a.s.−→ 0, which follows easily from the fact that ςN (φ̂1)

a.s.−→ ςf (φf,1),

‖φf,1‖ν a.s.−→ 1, ςf (φf,1/‖φf,1‖ν) a.s.−→ ςf (φf,1), ĉN,1
a.s.−→ 0 and ρ

a.s.−→ 0 since

ςN (φ̂1) ≥ ςN (φ̂1)− ρΨ(φ̂1) ≥ ςf

(
φf,1

‖φf,1‖ν

)
+ ĉN,1 − ρ

Ψ(φf,1)

‖φf,1‖2ν
.

It remains to show that νΨ(φ̂1)
a.s.−→ 0. Using that ‖φ̂1‖ν = 1, we get that νΨ(φ̂1) = 1− ‖φ̂1‖2.

Hence, we only have to show that ‖φ̂1‖ a.s.−→ 1. Note that 0 < ‖φ̂1‖ ≤ 1. Let N = {ςf (φ̂1) 6→
ςf (φf,1), ςf

(
φ̂1/‖φ̂1‖

)
6→ ςf (φf,1)} and fix ω /∈ N and denote γN = φ̂1(ω), so that 0 < yN =

‖γN‖ ≤ 1,
ςf (γN ) → ςf (φf,1) and ςf (γN/‖γN‖) → ςf (φf,1) . (B.8)

We want to show that yN → 1. Given any subsequence {yN ′}N ′∈N of {yN}N∈N, there exists a
subsequence {yN ′

`
}`∈N such that yN ′

`
→ y. Clearly, y 6= 0. Effectively, if y = 0, γN ′

`
→ 0 and from the

weak continuity of ςf , we obtain that ςf (γN ′

`
) → ςf (0). However, ςf (γN ) → ςf (φf,1) > ςf (0) since

f is strictly increasing and λf,i,1 > 0 for some i, leading to a contradiction. Thus, yN ′

`
→ y 6= 0.

Using that the unit ball V1 is weakly compact and that γN ′

`
∈ V1, there exists a subsequence

such that γN ′

`s
converges weakly to γ ∈ V1. Note that γ 6= 0, since the weak continuity of ςf

implies that ςf (γN ′

`s
) → ςf (γ) while on the other hand, ςf (γN ′

`s
) → ςf (φf,1) > ςf (0). On the other

hand, ‖γN ′

`s
‖ → y, so the weak continuity of ςf and the fact that γN ′

`s
/‖γN ′

`s
‖ converges weakly to

γ/y implies that ςf

(
γN ′

`s
/‖γN ′

`s
‖
)
→ ςf (γ/y) and ςf

(
γN ′

`s

)
→ ςf (γ). Using (B.8), we get that
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ςf (γ/y) = ςf (γ) = ςf (φf,1), which implies that y = 1 since f is strictly increasing, concluding the
proof of a).

b) The proof of 〈φ̂1, φf,1〉2 a.s.−→ 1 follows immediately from Lemma 4.1. Since both σ2
i,ni

and σ2
i are

invariant under sign changes, we can assume that φ̂1
a.s.−→ φf,1.

Using that ‖φ̂1‖ ≤ 1 and (B.2), we get that λ̂i,1 − σ2
i (φ̂1) = σ2

i,ni
(φ̂1) − σ2

i (φ̂1)
a.s.−→ 0. On

the other hand, the fact that φ̂1
a.s.−→ φf,1 together with the weak continuity of σi implies that

σ2
i (φ̂1)

a.s.−→ σ2
i (φf,1) = λf,i,1, concluding the proof of b).

c) The proof will be carried in several steps. We begin proving that ςf (φ̂m)
a.s.−→ ςf (φf,m) by proving

that

(i)
sup

‖α‖ν≤1
|ςf (πm−1α)− ςN (π̂ν,m−1α)| a.s.−→ 0. (B.9)

(ii)
ςf (φf,m) ≥ ςN (φ̂m) + oa.s.(1). (B.10)

(iii)
ςf (φf,m) ≤ ςN (φ̂m) + oa.s.(1). (B.11)

(i) We begin by showing (B.9). Note that

sup
‖α‖ν≤1

|ςf (πm−1α)−ςN (π̂ν,m−1α)| ≤ sup
‖α‖ν≤1

|ςf (πm−1α)−ςf (π̂ν,m−1α)|+ sup
‖α‖ν≤1

|ςN (π̂ν,m−1α)−ςf (π̂ν,m−1α)|.

Using (B.3) and the fact that ‖α‖ν ≤ 1 implies ‖π̂ν,m−1α‖ ≤ 1, we get that the second term on
the right hand side of the above inequality converges to zero almost surely. Hence, we only have
to prove that sup‖α‖ν≤1 |ςf (πm−1α)− ςf (π̂ν,m−1α)| a.s.−→ 0.

For any α ∈ Hs, we have that 〈α, φf,j〉φf,j = 〈α, φf,j〉(φf,j − φ̂j) + 〈α, φf,j〉φ̂j . Therefore, if
‖α‖2ν = ‖α‖2 + νΨ(α) ≤ 1, we get that

|〈α, φf,j〉φf,j − 〈α, φ̂j〉ν φ̂j | ≤ ‖α‖ ‖φf,j − φ̂j‖+ ‖φ̂j‖|〈α, φf,j〉 − 〈α, φ̂j〉ν |
≤ ‖φf,j − φ̂j‖+ |〈α, φf,j − φ̂j〉 − νdα, φ̂je|
≤ ‖φf,j − φ̂j‖+

{
‖φf,j − φ̂j‖+ (νΨ(α))

1
2 (νΨ(φ̂j))

1
2

}

≤ ‖φf,j − φ̂j‖+
{
‖φf,j − φ̂j‖+ (νΨ(φ̂j))

1
2

}
.

Using that for 1 ≤ j ≤ m− 1, φ̂j
a.s.−→ φf,j and νΨ(φ̂j)

a.s.−→ 0, we obtain that

sup
‖α‖ν≤1

‖〈α, φf,j〉φf,j − 〈α, φ̂j〉ν φ̂j‖ a.s.−→ 0 ,

which implies that
sup

‖α‖ν≤1
‖π̂ν,m−1α− πm−1α‖ a.s.−→ 0 . (B.12)

Thereafter, using that C1 and C2 entail that ςf is weakly uniformly continuous over V1, we

obtain that sup‖α‖ν≤1 |ςf (πm−1α)− ςf (π̂ν,m−1α)| a.s.−→ 0, concluding the proof of (B.9).
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(ii) As in a), we will now prove that (B.10) holds. Recall that ςf (φf,m) = supα∈S1∩Tm−1
ςf (α).

As in a), using that for any c ≥ 1 we have ςf (cα) ≥ ςf (α), we get that for any α ∈ H such
that ‖α‖ ≤ 1, we have ςf (α/‖α‖) ≥ ςf (α). Thus, supα∈S1∩Tm−1

ςf (α) = supα∈{‖α‖≤1}∩Tm−1
ςf (α).

Moreover, for any α ∈ V1, we have that ‖πm−1α‖ ≤ 1 and πm−1α ∈ Tm−1, so

sup
α∈{‖α‖≤1}∩Tm−1

ςf (α) ≥ sup
‖α‖≤1

ςf (πm−1α) ≥ sup
α∈S1

ςf (πm−1α) . (B.13)

Now using that φ̂m/‖φ̂m‖ ∈ S1, we get that

sup
α∈{‖α‖≤1}∩Tm−1

ςf (α) ≥ ςf

(
πm−1

(
φ̂m

‖φ̂m‖

))
≥ ςf

(
1

‖φ̂m‖
πm−1φ̂m

)
≥ ςf (πm−1φ̂m)

since ‖φ̂m‖ ≤ 1. Summing up together, we have that ςf (φf,m) ≥ ςf (πm−1φ̂m). Using (B.9) and

the fact that ‖φ̂m‖ν = 1, we obtain that bm = ςf (πm−1φ̂m) − ςN (π̂ν,m−1φ̂m)
a.s.−→ 0. Noticing that

π̂ν,m−1φ̂m = φ̂m, we get that

ςf (φf,m) ≥ ςf (πm−1φ̂m) = ςN (π̂ν,m−1φ̂m) + oa.s.(1) = ςN (φ̂m) + oa.s.(1) ,

concluding the proof of (B.10).

(iii) Let us derive (B.11). Since φf,m ∈ Hs, we have that 1 ≤ ‖φf,m‖ν < ∞ and using that

ν
a.s.−→ 0, we also have that ‖φf,m‖ν a.s.−→ ‖φf,m‖ = 1. Hence,

ςN (φ̂m) ≥ ςN (φ̂m)− ρΨ(φ̂m) = sup
‖α‖ν=1,α∈T̂ν,m−1

{ςN (α)− ρΨ(α)}

≥ ςN

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)
− ρΨ

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)
.

Using that ςN (cα) ≥ ςN (α) if c ≥ 1 and the fact that ‖π̂ν,m−1φf,m‖ν ≤ ‖φf,m‖ν , we easily obtain
that

ςN (φ̂m) ≥ ςN

(
π̂ν,m−1φf,m

‖φf,m‖ν

)
− ρΨ

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)

≥ ςN

(
π̂ν,m−1φf,m

‖φf,m‖ν

)
− ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
.

Note that (B.9) entail that cm = ςf (πm−1φf,m/‖φf,m‖ν)− ςN (π̂ν,m−1φf,m/‖φf,m‖ν) a.s.−→ 0, thus,

ςN (φ̂m) ≥ ςN

(
π̂ν,m−1φf,m

‖φf,m‖ν

)
− ρΨ

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)

≥ ςf

(
πm−1φf,m

‖φf,m‖ν

)
+ oa.s.(1) − ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
.

On the other hand, the weak continuity of ςf , the fact that ‖φf,m‖ν a.s.−→ ‖φf,m‖ = 1 and πm−1φf,m =
φf,m, imply that

ςN (φ̂m) ≥ ςf (φf,m) + oa.s.(1)−
ρΨ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
. (B.14)

Using that νΨ(φ̂j)
a.s.−→ 0 and ρΨ(φ̂j)

a.s.−→ 0, analogous arguments to those considered in Pezzulli
and Silverman (1993), allow to show that

ρΨ(π̂ν,m−1φf,m) = ρdπ̂ν,m−1φf,m, π̂ν,m−1φf,me a.s.−→ 0 , (B.15)

νΨ(π̂ν,m−1φf,m) = νdπ̂ν,m−1φf,m, π̂ν,m−1φf,me a.s.−→ 0 . (B.16)
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Besides, as in the proof of (B.12), we have that

‖〈φf,m, φf,j〉φf,j − 〈φf,m, φ̂j〉ν φ̂j‖ ≤ ‖φf,j − φ̂j‖+ ‖φ̂j‖|〈φf,m, φf,j〉 − 〈φf,m, φ̂j〉ν |‖
≤ ‖φf,j − φ̂j‖+ |〈φf,m, φf,j − φ̂j〉 − νdφf,m, φ̂je|
≤ ‖φf,j − φ̂j‖+

{
‖φf,j − φ̂j‖+ (νΨ(φf,m))

1
2 (νΨ(φ̂j))

1
2

}
.

Using that for 1 ≤ j ≤ m − 1, φ̂j
a.s.−→ φf,j , νΨ(φ̂j)

a.s.−→ 0 and νΨ(φf,m)
a.s.−→ 0, we obtain

that ‖〈φf,m, φf,j〉φf,j − 〈φf,m, φ̂j〉ν φ̂j‖ a.s.−→ 0. The fact that 〈φf,m, φf,j〉 = 0 for j < m and that

‖φf,m‖ = 1 entails that ‖π̂ν,m−1φf,m‖ = ‖φf,m −∑m−1
j=1 〈φf,m, φ̂j〉ν φ̂j‖ a.s.−→ 1, which together with

(B.16) implies ‖π̂ν,m−1φf,m‖2ν = ‖π̂ν,m−1φf,m‖2+νΨ(π̂ν,m−1φf,m)
a.s.−→ 1. Therefore, (B.14) together

with (B.15) entail that ςN (φ̂m) ≥ ςf (φf,m) + oa.s.(1), concluding the proof of (B.11).

Note that (B.10) and (B.11) imply that

ςN (φ̂m)
a.s.−→ ςf (φf,m), (B.17)

as desired. On the other hand, the fact that ‖φ̂m‖ ≤ 1 and (B.3) entail that ςN (φ̂m)−ςf (φ̂m)
a.s.−→ 0,

which together with (B.17) lead us to ςf (φ̂m)
a.s.−→ ςf (φf,m).

(iv) We will show that ρΨ(φ̂m)
a.s.−→ 0. Note that the above inequalities entail that

ςN (φ̂m) ≥ ςN (φ̂m)− ρΨ(φ̂m) ≥ ςf (φf,m) + oa.s.(1) .

Hence, (B.17) entail that 0 ≤ ρΨ(φ̂m) ≤ ςN (φ̂m)− ςf (φf,m) + oa.s.(1)
a.s.−→ 0, as desired.

(v) To conclude the proof of c) it remains to show that

νΨ(φ̂m)
a.s.−→ 0. (B.18)

Recall that as shown above

ςf (φf,m) ≥ ςf

(
πm−1φ̂m

‖φ̂m‖

)
≥ ςf

(
πm−1φ̂m

)
= ςN (φ̂m) + oa.s.(1) .

Hence,

ςf

(
πm−1φ̂m

‖φ̂m‖

)
a.s.−→ ςf (φf,m) and ςf

(
πm−1φ̂m

)
a.s.−→ ςf (φf,m) .

Now the proof follows as in a) taking γN = πm−1φ̂m(ω), yN = ‖φ̂m(ω)‖ ≤ 1 for ω /∈ N with N =

{ω ∈ Ω : ςf (φ̂m(ω)) 6→ ςf (φf,m), ςf

(
πm−1φ̂m(ω)/‖φ̂m(ω)‖

)
6→ ςf (φf,m) and ςf

(
πm−1φ̂m(ω)

)
6→

ςf (φf,m)} and using that the eigenvalues are ordered in a strictly decreasing order and λf,i,m > 0
for some i, since m < q and C0 holds.

d) We have already proved that when m = 1 the result holds. We proceed by induction and
assume that 〈φ̂`, φf,`〉2 → 1, νΨ(φ̂`)

a.s.−→ 0 and ρΨ(φ̂`)
a.s.−→ 0 for 1 ≤ ` ≤ m − 1, to show that

〈φ̂m, φf,m〉2 → 1. Without loss of generality, we can assume that φ̂`
a.s.−→ φf,`, for 1 ≤ ` ≤ m − 1.

Using c) we have that ςf (φ̂m)
a.s.−→ ςf (φr,m) and that ‖φ̂m‖ a.s.−→ 1 and so, from Lemma 4.1 we get

that 〈φ̂m, φf,m〉2 a.s.−→ 1. Without loss of generality we can assume that φ̂m
a.s.−→ φf,m, since σ2

i,ni
and

σ2
i are invariant under sign changes. Hence, as in b) using that ‖φ̂m‖ ≤ 1 and (B.2), we get that

λ̂i,m− σ2
i (φ̂m) = σ2

i,ni
(φ̂m)− σ2

i (φ̂m)
a.s.−→ 0. On the other hand, the fact that φ̂m

a.s.−→ φf,m together
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with the weak continuity of σi implies that σ2
i (φ̂m)

a.s.−→ σ2
i (φf,m) = λf,i,m, concluding the proof of

d).

Proof of Theorem 4.2. First note that as in Theorem 4.1 from assumption ii) and the fact that
‖α‖ ≤ ‖α‖ν we get that (B.2) holds.

a) As in Theorem 4.1, to prove that ςN (φ̂1)
a.s.−→ ςf (φf,1), it is enough to show

ςf (φf,1) ≥ ςN (φ̂1) + oa.s.(1) , (B.19)

ςf (φf,1) ≤ ςN (φ̂1) + oa.s.(1) . (B.20)

Using (B.2), we get that âN,i = σ2
i,ni

(φ̂1)−σ2
i (φ̂1)

a.s.−→ 0, b̂N,i = σ2
i,ni

(φf,1)−σ2
i (φf,1)

a.s.−→ 0. On the

other hand, using that σ2
i (φf,1) > 0 we get that log(σ2

i,ni
(φf,1))

a.s.−→ log
(
σ2
i (φf,1)

)
which implies

that ςN (φf,1)
a.s.−→ ςf (φf,1). Besides, using that ν

a.s.−→ 0 and ‖φf,1‖ν a.s.−→ 1 we get that

log

(
σ2
i,ni

(
φf,1

‖φf,1‖ν

))
= log

(
σ2
i,ni

(φf,1)

‖φf,1‖2ν

)
= log

(
σ2
i,ni

(φf,1)
)
− 2 log (‖φf,1‖ν) a.s.−→ log

(
σ2
i (φf,1)

)

so,

ςN

(
φf,1

‖φf,1‖ν

)
a.s.−→ ςf (φf,1) . (B.21)

To derive (B.20), note that since φf,1 ∈ Hs, ‖φf,1‖ν < ∞ and ‖φf,1‖ν ≥ ‖φf,1‖ = 1. Then, using

that φ̂1 = argmax‖α‖ν=1 {ςN (α)− ρΨ(α)} and defining β1 = φf,1/‖φf,1‖ν , we have that ‖β1‖ν = 1
and

ςN (φ̂1) ≥ ςN (φ̂1)− ρΨ(φ̂1) ≥ ςN (β1)− ρΨ(β1) = ςN

(
φf,1

‖φf,1‖ν

)
− ρΨ

(
φf,1

‖φf,1‖ν

)
.

Hence, using that Ψ(aα) = a2Ψ(α), for any a ∈ R, and (B.21), we get

ςN (φ̂1) ≥ ςN

(
φf,1

‖φf,1‖ν

)
− ρΨ

(
φf,1

‖φf,1‖ν

)
= ςN

(
φf,1

‖φf,1‖ν

)
− ρ

Ψ(φf,1)

‖φf,1‖2ν
≥ ςf (φf,1) + oa.s.(1)− ρ

Ψ(φf,1)

‖φf,1‖2ν
. (B.22)

When ρ = 0, we have defined ρΨ(φf,1) = 0 and similarly when ν = 0 in which case ‖φf,1‖ν =

‖φf,1‖ = 1. So from now on, we will assume that νN > 0 and ρN > 0. Since ν
a.s.−→ 0, we have that

and ‖φf,1‖ν a.s.−→ ‖φf,1‖ = 1. Hence, using that ρ
a.s.−→ 0, and so, ρΨ(φf,1)/‖φf,1‖2ν

a.s.−→ 0, we get
(B.20).

Let ω /∈ N whereN is the set of probability 0 where the almost sure convergences of assumptions
(ii) to (iv) do not hold and let us show first that, for any 1 ≤ i ≤ k, lim inf σ2

i (φ̂1(ω)) > 0.

Effectively, assume there exists i0 such that lim inf σ2
i0
(φ̂1(ω)) = 0. Then, there exists a subsequence

of γN = φ̂1(ω) such that σ2
i0
(γN`

) → 0, using that âN,i0 = σ2
i0,ni0

(φ̂1(ω)) − σ2
i0
(φ̂1(ω)) → 0, we get

that σ2
i0,τ̂i0N`

(γN`
) → 0 and so, ςN`

(γN`
) → −∞. Thus, using (B.22), we get that ςf (φf,1) = −∞

which contradicts the fact that λf,i,1 > 0. Hence, for any 1 ≤ i ≤ k, lim inf σ2
i (φ̂1(ω)) > 0, thus

there exists ε > 0 such that σ2
i (φ̂1(ω)) ∈ [ε,+∞). Moreover, using that σi is weakly continuous

and the unit ball is weakly compact, we have that {σi(α) : α ∈ V1} is a bounded set. Hence
there exists ε > 0 and A > 0 such that σ2

i (φ̂1(ω)) ∈ [ε,A], for any 1 ≤ i ≤ k. Using that
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âN,i(ω) = σ2
i,ni

(φ̂1(ω)) − σ2
i (φ̂1(ω)) → 0, we get that for N large enough, σ2

i,ni
(φ̂1(ω)) ∈ [ε/2, 2A]

which together with the uniform continuity of the logarithm on [ε/2, 2A] entails that

âN = ςN (φ̂1)− ςf (φ̂1)
a.s.−→ 0 . (B.23)

Using that σr is a scale functional, f is strictly increasing, ςf (φf,1) = supα∈S ςf (α) and the fact

that ‖φ̂1‖ ≤ ‖φ̂1‖ν = 1, we obtain easily that

ςf (φf,1) ≥ ςf

(
φ̂1

‖φ̂1‖

)
≥ ςf (φ̂1) = ςN (φ̂1)− âN = ςN (φ̂1) + oa.s.(1) ,

concluding the proof of (B.19) and so, ςN (φ̂1)
a.s.−→ ςf (φf,1).

As mentioned above, from (B.23), and using that ςN (φ̂1)
a.s.−→ ςf (φf,1), we get that

ςf (φ̂1)
a.s.−→ ςf (φf,1) . (B.24)

Moreover, the inequalities ςf (φf,1) ≥ ςf

(
φ̂1/‖φ̂1‖

)
≥ ςf (φ̂1), obtained above, imply that

ςf

(
φ̂1

‖φ̂1‖

)
a.s.−→ ςf (φf,1) . (B.25)

We have to show that ρΨ(φ̂1)
a.s.−→ 0, which follows as in the proof of Theorem 4.1.

It remains to show that νΨ(φ̂1)
a.s.−→ 0. Using that ‖φ̂1‖ν = 1, we get that νΨ(φ̂1) = 1− ‖φ̂1‖2.

Hence, we only have to show that ‖φ̂1‖ a.s.−→ 1. The fact that ςf

(
φ̂1/‖φ̂1‖

)
= ςf (φ̂1) − log(‖φ̂1‖2)

leads to ςf (φ̂1)−ςf

(
φ̂1/‖φ̂1‖

)
= log(‖φ̂1‖2). Using (B.24) and (B.25), we get that log(‖φ̂1‖2) a.s.−→ 0,

so ‖φ̂1‖2 a.s.−→ 1 concluding the proof of a).

b) The proof of 〈φ̂1, φf,1〉2 a.s.−→ 1 follows immediately from Lemma 4.2, while the fact that λ̂i,1
a.s.−→

λf,i,1 follows as in Theorem 4.1.

c) First note that as in the proof of Theorem 4.1, using that for 1 ≤ j ≤ m − 1, φ̂j
a.s.−→ φf,j and

νΨ(φ̂j)
a.s.−→ 0, we obtain that (B.12) holds.

Using (B.2), (B.12) and the fact that ‖φ̂m‖ν = 1 and ‖φf,m‖ = 1, we get that âN,i = σ2
i,ni

(φ̂m)−
σ2
i (φ̂m)

a.s.−→ 0, b̂N,i = σ2
i,ni

(πm−1φ̂m)− σ2
i (πm−1φ̂m)

a.s.−→ 0, ĉN,i = σ2
i,ni

(φf,m)− σ2
i (φf,m)

a.s.−→ 0 and

ÂN,i = σ2
i,ni

(π̂ν,m−1φf,m)− σ2
i (φf,m)

a.s.−→ 0. Moreover, using (B.12), we get that

‖πm−1φ̂m − φ̂m‖ = ‖πm−1φ̂m − π̂ν,m−1φ̂m‖ ≤ sup
‖α‖ν≤1

‖πm−1α− π̂ν,m−1α‖ a.s.−→ 0.

Thus, πm−1φ̂m− φ̂m
a.s.−→ 0. Using that πm−1φ̂m ∈ V1 and φ̂m ∈ V1 and the fact that σi is uniformly

weakly continuous in V1, we get that B̂N,i = σ2
i (πm−1φ̂m)− σ2

i (φ̂m)
a.s.−→ 0.

Arguing as in a), and using that, for all 1 ≤ i ≤ k, σ2
i (φf,m) > 0 we get that

âN = ςN (φ̂m)− ςf (φ̂m)
a.s.−→ 0 , (B.26)

ÂN = ςN (π̂ν,m−1φf,m)− ςf (φf,m)
a.s.−→ 0 , (B.27)

b̂N = ςN (πm−1φ̂m)− ςf (πm−1φ̂m)
a.s.−→ 0 , (B.28)

B̂N = ςf (πm−1φ̂m)− ςf (φ̂m)
a.s.−→ 0 . (B.29)
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Moreover, we also obtain that log(σ2
i,ni

(φf,m))
a.s.−→ log

(
σ2
i (φf,m)

)
which implies that ςN (φf,m)

a.s.−→
ςf (φf,m).

As in a) and as in Theorem 4.1, we will first show that

ςf (φf,m) ≥ ςN (φ̂m) + oa.s.(1) , (B.30)

ςf (φf,m) ≤ ςN (φ̂m) + oa.s.(1) , (B.31)

which ensures that ςN (φ̂m)
a.s.−→ ςf (φf,m), as desired.

Let us show (B.30). As in the proof of Theorem 4.1 (see (c ii)), we have that ςf (φf,m) =

supα∈S1∩Tm−1
ςf (α) = supα∈V1∩Tm−1

ςf (α). Therefore, using that ‖φ̂m‖ ≤ 1 and that f(t) = log(t)
is increasing, we get

ςf (φf,m) = sup
α∈V1∩Tm−1

ςf (α) ≥ ςf

(
πm−1

(
φ̂m

‖φ̂m‖

))
≥ ςf

(
1

‖φ̂m‖
πm−1φ̂m

)
≥ ςf (πm−1φ̂m) .

On the other hand, (B.26) and (B.29) entail that ςf (πm−1φ̂m) = ςN (φ̂m) − âN − B̂N = ςN (φ̂m) +
oa.s.(1) concluding the proof of (B.30).

We now proceed to prove (B.31). As in Theorem 4.1 (see (c iii)), we have that

ςN (φ̂m) ≥ ςN (φ̂m)− ρΨ(φ̂m) = sup
‖α‖ν=1,α∈T̂ν,m−1

{ςN (α)− ρΨ(α)}

≥ ςN

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)
− ρΨ

(
π̂ν,m−1φf,m

‖π̂ν,m−1φf,m‖ν

)

≥ ςN

(
π̂ν,m−1φf,m

‖φf,m‖ν

)
− ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
.

Note that ςN (π̂ν,m−1φf,m/‖φf,m‖ν) = ςN (π̂ν,m−1φf,m)−2 log (‖φf,m‖ν), so that (B.27) and the fact

that ‖φf,m‖ν a.s.−→ 1 entails that

ςN (φ̂m) ≥ ςN

(
π̂ν,m−1φf,m

‖φf,m‖ν

)
− ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
≥ ςf (φf,m)− ÂN − 2 log (‖φf,m‖ν)− ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
≥ ςf (φf,m) + oa.s.(1)− ρ

Ψ(π̂ν,m−1φf,m)

‖π̂ν,m−1φf,m‖2ν
.

Hence, the proof of (B.31) follows now as in Theorem 4.1 from (B.15), (B.16) and the fact that
‖π̂ν,m−1φf,m‖2ν

a.s.−→ 1.

From ςN (φ̂N )
a.s.−→ ςf (φf,m) and ςN (φ̂m)−ςf (φ̂m)

a.s.−→ 0, see (B.26), we easily get that ςf (φ̂m)
a.s.−→

ςf (φf,m).

It remains to show that ρΨ(φ̂m)
a.s.−→ 0 and νΨ(φ̂m)

a.s.−→ 0. The proof of ρΨ(φ̂m)
a.s.−→ 0 follows as

in (c iv) in the proof of Theorem 4.1, while that of νΨ(φ̂m)
a.s.−→ 0 follows using analogous arguments

to those considered in step 5 in the proof of Theorem 4.1

d) The proof follows as that of Theorem 4.1 using Lemma 4.2 instead of Lemma 4.1.
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Supplementary file

Scale estimator a φ̂ps,j φ̂pn,j

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.1 0.0032 0.0033 0.0033 0.0025 0.0035 0.0055
mad 0.1 0.0418 0.0494 0.0231 0.0291 0.0439 0.0664

M -scale 0.1 0.0103 0.0111 0.0051 0.0068 0.0096 0.0093

SD 0.5 0.0029 0.0029 0.0032 0.0017 0.0053 0.0220
mad 0.5 0.0384 0.0384 0.0110 0.0144 0.0475 0.1448

M -scale 0.5 0.0089 0.0088 0.0038 0.0033 0.0105 0.0275

SD 1 0.0027 0.0028 0.0032 0.0015 0.0085 0.0534
mad 1 0.0333 0.0326 0.0074 0.0091 0.0541 0.1986

M -scale 1 0.0079 0.0078 0.0043 0.0023 0.0137 0.0613

SD 1.5 0.0026 0.0026 0.0032 0.0014 0.0122 0.0863
mad 1.5 0.0307 0.0300 0.0060 0.0069 0.0605 0.2464

M -scale 1.5 0.0070 0.0070 0.0035 0.0021 0.0180 0.0939

SD 2 0.0024 0.0025 0.0032 0.0014 0.0158 0.1165
mad 2 0.0271 0.0265 0.0053 0.0057 0.0657 0.2738

M -scale 2 0.0064 0.0064 0.0034 0.0019 0.0221 0.1270

SD 2.5 0.0023 0.0024 0.0032 0.0014 0.0195 0.1447
mad 2.5 0.0255 0.0250 0.0049 0.0049 0.0701 0.3050

M -scale 2.5 0.0059 0.0059 0.0034 0.0018 0.0257 0.1576

SD 3 0.0022 0.0023 0.0032 0.0014 0.0230 0.1688
mad 3 0.0240 0.0235 0.0046 0.0046 0.0784 0.3341

M -scale 3 0.0053 0.0054 0.0034 0.0017 0.0290 0.1849

SD 3.5 0.0021 0.0022 0.0032 0.0013 0.0261 0.1921
mad 3.5 0.0222 0.0217 0.0044 0.0043 0.0832 0.3537

M -scale 3.5 0.0050 0.0051 0.0034 0.0017 0.0326 0.2061

SD 4 0.0020 0.0022 0.0032 0.0013 0.0293 0.2132
mad 4 0.0212 0.0208 0.0044 0.0039 0.0886 0.3784

M -scale 4 0.0046 0.0047 0.0034 0.0016 0.0366 0.2265

SD 4.5 0.0020 0.0021 0.0032 0.0013 0.0325 0.2326
mad 4.5 0.0201 0.0198 0.0042 0.0036 0.0949 0.3994

M -scale 4.5 0.0044 0.0045 0.0034 0.0016 0.0398 0.2430

SD 5 0.0019 0.0021 0.0032 0.0013 0.0362 0.2481
mad 5 0.0187 0.0184 0.0041 0.0035 0.1017 0.4205

M -scale 5 0.0042 0.0043 0.0034 0.0016 0.0428 0.2607

SD 5.5 0.0019 0.0020 0.0032 0.0013 0.0395 0.2630
mad 5.5 0.0173 0.0171 0.0040 0.0034 0.1028 0.4300

M -scale 5.5 0.0040 0.0041 0.0034 0.0016 0.0460 0.2759

Table 6: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2, under C0 when ρ or ν = aN−2 and f = id.
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Scale a φ̂ps,j φ̂pn,j

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.1 0.0033 0.0039 0.0037 0.0033 0.0038 0.0037
mad 0.1 0.0436 0.0634 0.0368 0.0436 0.0637 0.0377

M -scale 0.1 0.0108 0.0140 0.0077 0.0108 0.0140 0.0076

SD 0.15 0.0033 0.0039 0.0037 0.0033 0.0038 0.0037
mad 0.15 0.0436 0.0634 0.0368 0.0436 0.0635 0.0377

M -scale 0.15 0.0108 0.0140 0.0076 0.0107 0.0139 0.0076

SD 0.25 0.0033 0.0038 0.0037 0.0033 0.0038 0.0037
mad 0.25 0.0436 0.0633 0.0368 0.0434 0.0628 0.0376

M -scale 0.25 0.0108 0.0140 0.0076 0.0107 0.0138 0.0076

SD 0.5 0.0033 0.0038 0.0037 0.0032 0.0038 0.0037
mad 0.5 0.0436 0.0632 0.0367 0.0423 0.0611 0.0376

M -scale 0.5 0.0108 0.0140 0.0076 0.0106 0.0136 0.0076

SD 0.75 0.0033 0.0038 0.0037 0.0032 0.0037 0.0037
mad 0.75 0.0436 0.0629 0.0364 0.0419 0.0606 0.0381

M -scale 0.75 0.0108 0.0139 0.0075 0.0106 0.0134 0.0076

SD 1 0.0033 0.0038 0.0037 0.0032 0.0037 0.0037
mad 1 0.0436 0.0628 0.0363 0.0419 0.0603 0.0389

M -scale 1 0.0108 0.0139 0.0075 0.0104 0.0132 0.0076

SD 1.5 0.0033 0.0038 0.0036 0.0032 0.0037 0.0037
mad 1.5 0.0436 0.0624 0.0360 0.0417 0.0590 0.0390

M -scale 1.5 0.0108 0.0138 0.0074 0.0103 0.0129 0.0075

SD 2 0.0033 0.0038 0.0036 0.0032 0.0036 0.0037
mad 2 0.0436 0.0624 0.0360 0.0415 0.0581 0.0395

M -scale 2 0.0107 0.0136 0.0073 0.0102 0.0126 0.0075

SD 2.5 0.0033 0.0038 0.0036 0.0032 0.0036 0.0038
mad 2.5 0.0436 0.0620 0.0355 0.0410 0.0577 0.0406

M -scale 2.5 0.0107 0.0135 0.0072 0.0100 0.0123 0.0074

SD 3 0.0033 0.0038 0.0036 0.0031 0.0036 0.0038
mad 3 0.0435 0.0611 0.0345 0.0407 0.0566 0.0410

M -scale 3 0.0107 0.0135 0.0072 0.0099 0.0121 0.0073

SD 3.5 0.0033 0.0037 0.0036 0.0031 0.0035 0.0038
mad 3.5 0.0435 0.0609 0.0344 0.0406 0.0558 0.0416

M -scale 3.5 0.0107 0.0134 0.0071 0.0097 0.0118 0.0074

SD 4 0.0033 0.0037 0.0036 0.0031 0.0035 0.0038
mad 4 0.0435 0.0606 0.0340 0.0404 0.0552 0.0423

M -scale 4 0.0107 0.0133 0.0070 0.0096 0.0117 0.0074

SD 4.5 0.0033 0.0037 0.0036 0.0031 0.0035 0.0039
mad 4.5 0.0434 0.0602 0.0336 0.0403 0.0548 0.0432

M -scale 4.5 0.0107 0.0133 0.0069 0.0095 0.0116 0.0076

Table 7: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2, under C0 when ρ or ν = aN−3 and f = id.
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Scale a φ̂ps,j φ̂pn,j

SD 5 0.0033 0.0037 0.0036 0.0030 0.0034 0.0039
mad 5 0.0434 0.0596 0.0330 0.0399 0.0543 0.0440

M -scale 5 0.0107 0.0132 0.0069 0.0095 0.0115 0.0076

SD 5.5 0.0033 0.0037 0.0035 0.0030 0.0034 0.0039
mad 5.5 0.0432 0.0591 0.0326 0.0397 0.0536 0.0441

M -scale 5.5 0.0107 0.0131 0.0068 0.0094 0.0114 0.0076

SD 6 0.0032 0.0037 0.0035 0.0030 0.0034 0.0039
mad 6 0.0432 0.0587 0.0321 0.0394 0.0532 0.0449

M -scale 6 0.0107 0.0130 0.0068 0.0093 0.0113 0.0076

SD 6.5 0.0032 0.0036 0.0035 0.0030 0.0034 0.0040
mad 6.5 0.0432 0.0582 0.0317 0.0393 0.0530 0.0458

M -scale 6.5 0.0107 0.0130 0.0067 0.0092 0.0112 0.0077

SD 7 0.0032 0.0036 0.0035 0.0030 0.0034 0.0040
mad 7 0.0431 0.0575 0.0310 0.0391 0.0525 0.0457

M -scale 7 0.0107 0.0129 0.0067 0.0092 0.0111 0.0076

SD 7.5 0.0032 0.0036 0.0035 0.0030 0.0034 0.0040
mad 7.5 0.0428 0.0568 0.0306 0.0385 0.0517 0.0458

M -scale 7.5 0.0107 0.0128 0.0066 0.0091 0.0110 0.0076

SD 8 0.0032 0.0036 0.0035 0.0029 0.0034 0.0041
mad 8 0.0428 0.0566 0.0304 0.0382 0.0514 0.0465

M -scale 8 0.0106 0.0128 0.0065 0.0090 0.0110 0.0076

SD 8.5 0.0032 0.0036 0.0035 0.0029 0.0034 0.0041
mad 8.5 0.0427 0.0564 0.0303 0.0380 0.0510 0.0472

M -scale 8.5 0.0106 0.0127 0.0065 0.0090 0.0109 0.0075

Table 8: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2, under C0 when ρ or ν = aN−3 and f = id.
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Scale a φ̂ps,j φ̂pn,j

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.1 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0.1 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0.1 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.15 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0.15 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0.15 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.25 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0.25 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0.25 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.5 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0.5 0.0436 0.0634 0.0368 0.0436 0.0634 0.0368

M -scale 0.5 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 0.75 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 0.75 0.0436 0.0634 0.0368 0.0436 0.0634 0.0369

M -scale 0.75 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 1 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 1 0.0436 0.0634 0.0368 0.0436 0.0634 0.0369

M -scale 1 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 1.5 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 1.5 0.0436 0.0634 0.0368 0.0436 0.0634 0.0369

M -scale 1.5 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 2 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 2 0.0436 0.0634 0.0368 0.0436 0.0634 0.0369

M -scale 2 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

SD 2.5 0.0033 0.0039 0.0037 0.0033 0.0039 0.0037
mad 2.5 0.0436 0.0634 0.0368 0.0436 0.0634 0.0369

M -scale 2.5 0.0108 0.0141 0.0077 0.0108 0.0141 0.0077

Table 9: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2, under C0 when ρ or ν = aN−4 and f = id.
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Scale estimator a φ̂ps,j φ̂pn,j

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0 0.0026 0.0033 0.0041 0.0026 0.0033 0.0041
mad 0 0.0352 0.0528 0.0341 0.0352 0.0528 0.0341

M -scale 0 0.0078 0.0119 0.0088 0.0078 0.0119 0.0088

SD 0.1 0.0026 0.0032 0.0040 0.0026 0.0032 0.0041
mad 0.1 0.0351 0.0523 0.0334 0.0351 0.0526 0.0341

M -scale 0.1 0.0078 0.0117 0.0086 0.0078 0.0117 0.0087

SD 0.5 0.0025 0.0031 0.0040 0.0025 0.0031 0.0041
mad 0.5 0.0349 0.0515 0.0327 0.0349 0.0519 0.0353

M -scale 0.5 0.0077 0.0113 0.0082 0.0077 0.0114 0.0087

SD 1 0.0025 0.0031 0.0039 0.0025 0.0031 0.0041
mad 1 0.0347 0.0496 0.0306 0.0347 0.0508 0.0358

M -scale 1 0.0077 0.0110 0.0077 0.0077 0.0111 0.0086

SD 1.5 0.0025 0.0030 0.0038 0.0025 0.0030 0.0041
mad 1.5 0.0340 0.0480 0.0288 0.0340 0.0490 0.0358

M -scale 1.5 0.0076 0.0105 0.0073 0.0076 0.0106 0.0085

SD 2 0.0025 0.0029 0.0038 0.0025 0.0030 0.0041
mad 2 0.0338 0.0465 0.0271 0.0338 0.0480 0.0364

M -scale 2 0.0075 0.0102 0.0069 0.0075 0.0104 0.0084

SD 2.5 0.0024 0.0028 0.0037 0.0024 0.0029 0.0041
mad 2.5 0.0334 0.0458 0.0261 0.0334 0.0475 0.0372

M -scale 2.5 0.0074 0.0099 0.0066 0.0074 0.0101 0.0084

SD 3 0.0024 0.0028 0.0037 0.0024 0.0029 0.0041
mad 3 0.0331 0.0444 0.0244 0.0331 0.0466 0.0373

M -scale 3 0.0073 0.0096 0.0063 0.0073 0.0099 0.0084

SD 3.5 0.0024 0.0027 0.0036 0.0024 0.0028 0.0042
mad 3.5 0.0328 0.0435 0.0232 0.0328 0.0460 0.0378

M -scale 3.5 0.0072 0.0092 0.0060 0.0072 0.0096 0.0083

SD 4 0.0023 0.0027 0.0036 0.0023 0.0028 0.0042
mad 4 0.0323 0.0422 0.0220 0.0324 0.0450 0.0380

M -scale 4 0.0071 0.0090 0.0058 0.0072 0.0095 0.0084

SD 4.5 0.0023 0.0026 0.0035 0.0023 0.0027 0.0042
mad 4.5 0.0321 0.0413 0.0210 0.0321 0.0445 0.0387

M -scale 4.5 0.0070 0.0088 0.0056 0.0071 0.0093 0.0082

SD 5 0.0023 0.0026 0.0035 0.0023 0.0027 0.0042
mad 5 0.0318 0.0406 0.0204 0.0319 0.0441 0.0398

M -scale 5 0.0070 0.0086 0.0055 0.0070 0.0091 0.0083

SD 5.5 0.0023 0.0025 0.0035 0.0023 0.0027 0.0042
mad 5.5 0.0315 0.0396 0.0194 0.0315 0.0433 0.0398

M -scale 5.5 0.0069 0.0085 0.0053 0.0070 0.0090 0.0083

Table 10: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2, under C0 when ρ or ν = an−3 and f = log.
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Model Scale Estimator φ̂raw,j (a = 0) φ̂ps,j (a = 3) φ̂pn,j (a = 3)

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0.0033 0.0039 0.0037 0.0033 0.0038 0.0036 0.0031 0.0036 0.0038
C0 mad 0.0436 0.0634 0.0368 0.0435 0.0611 0.0345 0.0407 0.0566 0.0410

M -scale 0.0108 0.0141 0.0077 0.0107 0.0135 0.0072 0.0099 0.0121 0.0073

SD 1.4496 1.4496 0.0023 1.4470 1.4470 0.0022 1.3987 1.4060 0.0022
C2,0.2 mad 0.3780 0.3903 0.0271 0.3779 0.3899 0.0267 0.3678 0.3853 0.0306

M -scale 0.4347 0.4354 0.0058 0.4340 0.4347 0.0057 0.4225 0.4325 0.0061

SD 1.1438 1.9082 1.9172 1.1096 1.9059 1.9155 0.4586 1.8630 1.9160
C3,a,0.1 mad 0.0929 0.2257 0.2339 0.0919 0.2145 0.2229 0.0747 0.1976 0.2627

M -scale 0.0847 0.2123 0.2628 0.0832 0.2020 0.2528 0.0597 0.1778 0.2843

SD 0.0063 0.9221 0.9459 0.0061 0.7742 0.7973 0.0047 0.3208 0.4022
C3,b,0.1 mad 0.0545 0.1691 0.1547 0.0540 0.1581 0.1442 0.0469 0.1329 0.1599

M -scale 0.0200 0.1237 0.1294 0.0196 0.1106 0.1163 0.0154 0.0773 0.1132

SD 1.8275 1.9238 1.9405 1.8247 1.9239 1.9402 1.7071 1.9241 1.9437
C3,a,0.2 mad 0.2598 0.7858 0.8071 0.2572 0.7619 0.7855 0.2081 0.7528 0.8699

M -scale 0.2997 1.0419 1.0977 0.2960 1.0138 1.0722 0.2391 1.0190 1.1590

SD 0.0140 1.7596 1.7905 0.0136 1.7409 1.7725 0.0089 1.5634 1.6750
C3,b,0.2 mad 0.0874 0.5092 0.5013 0.0854 0.4850 0.4774 0.0651 0.4010 0.4910

M -scale 0.0427 0.4782 0.4966 0.0413 0.4513 0.4704 0.0253 0.3441 0.4699

SD 1.1762 1.3131 1.5685 1.1477 1.3071 1.5515 0.5761 1.1000 1.1980
C23,0.1 mad 0.1808 0.3205 0.2415 0.1785 0.3131 0.2349 0.1534 0.2877 0.2706

M -scale 0.1850 0.3601 0.2862 0.1834 0.3525 0.2795 0.1524 0.3156 0.3141

SD 1.8303 0.1930 1.8255 1.8295 0.1964 1.8233 1.7296 0.3014 1.7622
C23,0.2 mad 0.9350 1.0709 0.6005 0.9305 1.0663 0.5936 0.8700 1.0133 0.6702

M -scale 1.0599 1.2001 0.7009 1.0564 1.1928 0.6944 0.9940 1.0974 0.7602

Table 11: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2 when ρ or ν = an−3 for a = 0, 3 and f = id.

Model Scale Estimator φ̂raw,j φ̂ps,j φ̂pn,j

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

SD 0.0026 0.0033 0.0041 0.0024 0.0028 0.0037 0.0024 0.0029 0.0041
C0 mad 0.0352 0.0528 0.0341 0.0331 0.0444 0.0244 0.0331 0.0466 0.0373

M -scale 0.0078 0.0119 0.0088 0.0073 0.0096 0.0063 0.0073 0.0099 0.0084

SD 1.5317 1.5316 0.0023 1.4808 1.4808 0.0024 1.4828 1.4898 0.0024
C2,0.2 mad 0.3724 0.3820 0.0250 0.3596 0.3656 0.0189 0.3596 0.3768 0.0295

M -scale 0.4350 0.4359 0.0062 0.4193 0.4196 0.0050 0.4193 0.4295 0.0065

SD 1.2444 1.9202 1.9291 0.3998 1.8529 1.8860 0.4865 1.8703 1.9251
C3,a,0.1 mad 0.0858 0.2198 0.2400 0.0631 0.1417 0.1568 0.0636 0.1776 0.2533

M -scale 0.0838 0.2088 0.2630 0.0523 0.1285 0.1709 0.0531 0.1590 0.2713

SD 1.8608 1.9362 1.9453 1.7376 1.9369 1.9229 1.7766 1.9372 1.9495
C3,a,0.2 mad 0.2649 0.8389 0.8763 0.2111 0.5327 0.5904 0.2138 0.8055 0.9377

M -scale 0.3058 1.1085 1.1667 0.2429 0.6651 0.7634 0.2480 1.0856 1.2310

SD 0.0043 0.8526 0.8813 0.0036 0.1738 0.1894 0.0036 0.2166 0.2883
C3,b,0.1 mad 0.0425 0.1551 0.1491 0.0364 0.0993 0.0906 0.0364 0.1115 0.1421

M -scale 0.0135 0.1177 0.1267 0.0104 0.0662 0.0720 0.0104 0.0694 0.1070

SD 0.0096 1.7664 1.8026 0.0067 1.4635 1.5061 0.0067 1.5608 1.6813
C3,b,0.2 mad 0.0608 0.4761 0.4801 0.0444 0.3102 0.3156 0.0451 0.3543 0.4597

M -scale 0.0274 0.4591 0.4827 0.0159 0.3099 0.3316 0.0159 0.3351 0.4722

SD 1.2966 1.4357 1.6548 0.5249 1.1194 1.1114 0.6028 1.1933 1.3057
C23,0.1 mad 0.1664 0.3169 0.2501 0.1394 0.2471 0.1837 0.1398 0.2857 0.2830

M -scale 0.1688 0.3476 0.2947 0.1336 0.2605 0.2130 0.1342 0.2972 0.3210

SD 1.8585 0.1266 1.8542 1.7549 0.2603 1.7420 1.7857 0.1954 1.8153
C23,0.2 mad 0.9219 1.1274 0.5867 0.8667 1.0157 0.4736 0.8699 1.0779 0.6581

M -scale 1.0565 1.2364 0.6868 1.0028 1.1224 0.5483 1.0052 1.1709 0.7590

Table 12: Mean values of ‖φ̂j/‖φ̂j‖ − φj‖2 when ρ or ν = an−3 for a = 0, 3 and f = log.
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