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Abstract

The k principal points of a random vector X are defined as a set of points which minimize
the expected squared distance between X and the nearest point in the set. They are thoroughly
studied in Flury ([2], [3]), Tarpey [13] and Tarpey, Li and Flury [20]. For their treatment,
the examination is usually restricted to the family of elliptical distributions. In this paper, we
present an extension of the previous results to the functional case, i.e., when dealing with random
elements over a separable Hilbert space H. Principal points for gaussian processes were defined
in Tarpey and Kinateder [19]. In this paper, we generalize the concepts of principal points,
self-consistent points and elliptical distributions so as to fit them in this functional framework.
Results linking self-consistency and the eigenvectors of the covariance operator are re-obtained
in this new setting as well as an explicit formula for the k = 2 case so as to include elliptically
distributed random elements in H.
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1 Introduction

1.1 Motivation

Inside statistics there exists lots of situations where the collected data may not be represented
with classic schemes like numbers or numeric vectors and so, sometimes a functional representation
is more appropriate. For example, consider results of an electrocardiogram (EGC) or the study
of the temperature in a weather station, which lend themselves to this new framework (see, for
instance, Ramsay and Silverman [10] for more examples). A classical discretization of the data as
a sequence of numbers may loose some functional characteristics like smoothness and continuity.
For this reason, in the last decades different methods appeared to handle this new kind of data.
In an informal way, we may say that a functional datum is a random variable (element would be a
better word) that takes its values in a functional space, instead of a finite dimensional one. In this
paper, we will study some fundamental concepts of this development, which in a way will result
in a mixture between statistics and functional analysis over Hilbert spaces. The main idea is to
mix together, in a very general family of distributions, some notions of principal components and
principal points. In a multivariate setting, those developments were mainly done by Flury and
Tarpey ([2] to [6], [12] to [17], [18] and [20]) at the beginning of the 90’s. The idea here is to adapt
the results obtained therein to the functional case.

Maybe the final conclusion of this work is not only the theoretical result obtained. Rather, as it
was done previously, our results show about the possibility of doing, with some technical difficulties
but not critical ones, an interesting generalization of the classical results from multivariate analysis
to a more general framework, so as to gain a better comprehension of the phenomenon, as it often
tends to happen when abstraction or generalization of a mathematical concept is made.

In section 2, we will define the notion of elliptical families. We will first remind their definition
in the multivariate case and later we will extend this definition to the functional case. The definition
of self-consistent points and principal points as well as some of their properties are stated in section
3 where we extend the results given in Flury ([2], [3]), Tarpey [13] and Tarpey and Flury [18] to
the case of random elements lying in a separable Hilbert space. We also provide a characterization
that, under an hypothesis of ellipticity, allows us to make an important link between principal
components and self-consistent points. We conclude with some results that allow to compute
principal points in a somewhat specific case.

2 Elliptical families

2.1 Review on some finite-dimensional results

For the sake of completeness and to fix our notation we will remind some results regarding elliptical
families before extending them to the functional setting. They can be found in Muirhead [9], Seber
[11] and also in Frahm [7].

Let X € R? be a random vector. We will say that X has an elliptical distribution, and we
will denote it as X ~ g4(p, 3, ¢), if there exists a vector p € R?, a positive semidefinite matrix



> € R¥™9 and a function ¢ : R, — R such that the characteristic function of X — p is given by
ox—p(t) = #(tTSt), for all t € RZ In some situations, for the sake of simplicity, we will omit the
symbol ¢ and will denote X ~ g4(p, 3).

As it is well known, if X ~ g4(p, X, ¢) and E(X) exists, then E(X) = p. Moreover, if the
second order moments exist X is up to a constant the covariance matrix of X, i.e., Var(X) = aX.
Even more, it is easy to see that the constant a equals to —2¢(0), where ¢’ stands for the derivative
of ¢.

The following theorem is a well known result and will also be extended in the sequel to adapt
for functional random elements.

Theorem 2.1. Let X ~ e(p, 2, ¢) with u € R? and 3 € R4 g semidefinite positive matriz with
rank(X) =r. Let p = (uf,pud)" and X = (XT, X with Xy the vector of the first k coordinates
of X (k < r) such that ¥11 is not singular. Denote by

Y1 X2 ) dxd
S =AAT = e R
< o1 XYoo

with submatrizes 311 € Rka, 91 € R(d_k)Xk, Y9 = E;ﬂ € RF*(d=FK) gnd 39y € REF)x(r=k)
Then,

a) X 2 w4+ RAUT)  where Y R Z means that the two random vectors Y and Z have the same
distribution, U") is uniformly distributed over ™' = {y e R" : |ly|| =1} and R and U™
are independent.

b) Assume that the conditional random vector Xo|Xy = x1 ewists, then Xo|X; = x1 has an
elliptical distribution eq_(p*, X*, ¢*) where

*

o= py+ Sn B (xa — )
TF = g - B T,

and ¢* corresponds to the characteristic generator of R*UT—K) with
* D -
R* B RVT=5 |(RVB UM = Ct 1 — py)).

Here Cy1 stands for the Cholesky square root of 311, U®) is uniformly distributed in SF=1,
B~ Beta(%, ’;k) and R, B, U®) and UK gre mutually independent.

2.2 Functional case

In this section, we will extend the definition of elliptical distributions to the case of random elements
on a separable Hilbert space. The definition will be based on the one given for the multivariate
case.



Definition 2.1. Let V be a random element in a separable Hilbert space H. We will say that V
has an elliptical distribution of parameters p € H and I" : H — H, with I" a self-adjoint, positive
semidefinite and compact operator, and we will denote V ~ £(u, T), if for any lineal and bounded

operator A : H — IR? (that is, such that sup ||Az| < co) we have that AV has a multivariate
[[el=1
elliptical distribution of parameters Ay and ¥ = AT A*, i.e., AV ~ g4(Au, ¥) where A* : RP — H

stands for the adjoint operator of A.

The following result shows that elliptical families in Hilbert spaces are closed through linear
and bounded transformations.

Lemma 2.1. Let V ~ &(u,T') an elliptical random element in Hy of parameters p and T' and
A : Hy — Hs linear and bounded. Then AV is an elliptical random element Ho of parameters Ap
and AT'A*.

Lemma 2.2 shows that both parameters, u y I', that characterizes the element V' are respectively
the expectation and the covariance operator, provide they exist. Its proof can be found in the
Appendix.

Lemma 2.2. Let V be a random element in a separable Hilbert space H such that V ~ E(u,T).
a) If E(V) exists, then, E(V) = pu.
b) If the covariance operator, Ty, exists then, 'y = a T, for some a € R.

Based on the finite dimensional results, one way of obtaining random elliptical elements is
through the following transformation. Let V; be a gaussian element in H with zero mean and
covariance operator I'y,, and let Z be a random variable with distribution G' independent of V;.
Given 1 € H, define V. = pu+ ZVi. Then, V has an elliptical distribution and if E(Z?) exists
Ty = E(Z?)Ty,.

We are interested in obtaining some properties concerning the conditional distribution of el-
liptical families similar to those existing in the multivariate setting. Let V be a random element
belonging to an elliptical family of parameter u and T' and let us consider in H the orthonormal
basis, {¢n }nez (Z countable or finite) constructed using the eigenfunctions of the operator I related
to the eigenvalues A\ > A9 > .... Given d € 7 fixed, define the closed subspaces (and so Hilbert
spaces)

Hl:<¢17"'7¢d> H2:<¢17"'7¢d>J—

Define over these spaces the truncating projections, that is, Py = Py, : H — Hj and Py, : H — Ho>
such that

s i=1,2,....d i > d
Pm(%)Z{% ' P> d PHz(¢i):{¢0 Z'zlz,;,...,d ' M)



We will make a composition of P; with the natural operator that identifies H; with R?. That is,
we will consider the operator T; : H — R% defined as

e, i=1,2,....,d

Tali) = { 0 i>n ’ 2)

with eq,...,eq the vectors of the canonical base of R¢. Then, for any x € H we have that
Ty(z) = Z?:l < z,¢; > e;. We will use T; instead of P; as a projector in many situations,
because its image is R? and we will call each of them truncating projectors.

Based on these projections we can construct Vi = Py, V € Hy, Wi = T,V € R? and V, =
Py, V € Hy random elements, both of them elliptical by Lemma 2.1.

We have essentially split the random element in two parts, one of them being finite dimensional

which will allow us to define a conditional distribution V5|V; following the guidelines previously
established.

Theorem 2.2. Let 'H be a separable Hilbert space. Let' V' be a random element in H with distribution
E(u,T') with finite second moments. Without loss of generality, we can assume that T' is the
covariance operator. Assume that T' is Hilbert-Schmidt so that Y ;21 \; < 0o. Let d € T fized and
consider Vi = Py, V., Wi =T,V y Vo = Py, V with Py, y Py, defined in (1) and Ty defined in
(2). Let Ay > Ay > ... be the eigenvalues of T' and assume that A\q > 0. Then,

a) the covariance matriz of Wy given by Xw, = TyI'T; = diag (A1, ..., Aa) is non-singular
b) E(Va|Wh) = pi2 + Ty, Sy, (W — py),

where Ty, w, is the covariance operator between Vo and Wi, py = E(W1) and pg = E(V3).

3 Self—consistent points and principal points

As mentioned in the Introduction self—consistent and principal points were studied by Flury ([2],
[3]), Tarpey [13] and Tarpey and Flury [18] in the multivariate setting. Later on, Tarpey and
Kinateder [19] extended their definition and properties for gaussian processes while Tarpey et al.
[21] applied principal points to estimate a set of representative longitudinal response curves from
a clinical trial. The aim of this section is to extend some of the properties previously obtained to
include elliptical families.

For the sake of completeness, we remind the definition of self—consistency and principal points.

Definition 3.1. Let W = {y1,...,yx} with y; € H, 1 <1i < k we define the minimun distance of
V to the set W as d(V,{y1,...,yx}) = mini<j< |V — y;]|.

The set W induce a partition of the space ‘H determined by the domains of attraction.



Definition 3.2. Given W = {yi,...,yx}, the domain of attraction D; of y; consists in all the
elements of H that have y; as the closest point of W, that is, D; = {x € H : |z — y;|| <
e —yell,  £#J}.
For points x € H with equal distance to two or several y;, we assign them arbitrarily to the set
with lower index j.

Definition 3.3. Let V be a random element in H with expectation E(V). A set W = {y1,...,yr}
is said to be self-consistent for V' if E(V|V € D;) = y;.
A random element W is called self-consistent for V' if E(V|W) = W.

Definition 3.4. Let V be a random element in H with finite second moment. The elements
&1, ..., & are called principal points of V' if

Dy (k) = BV, {61, &})) = min E@(V.{yr.-...ue)

Lemma 3 in Tarpey and Kinateder [19] establishes for L?(Z) functions, with Z a real bounded
interval, the well-known result in multivariate analysis that the mean of a distribution lies in the
convex hull of any set of self-consistent points. Moreover, Flury [3] established that principal points
of a random vector in RP are self—consistent points. This result was generalized to random funcions
in L?(Z) by Tarpey and Kinateder [19]. The same arguments allow to establish these results for
any separable Hilber space H, we state them without proof.

Lemma 3.1. Let V be a random element of a separable Hilbert space H such that E(V') exists.
Then,

a) if {y1,...,yx} is a self-consistent set, then E(V') is a convex combination of y1,...,Yk.

b) Moreover, if V has finite second moments and the set W = {&1,...,&} is a set of principal
points for V, then it is self-consistent.

As a consequence of Lemma 3.1, if K = 1 and V is a random element with self-consistent set
{y1}, then y; = E(V). Moreover, we will have self-consistent points whenever we have principal
points.

The following result will allows us to assume, in the sequel, that the random element V has
expectation 0. It also generalizes Lemma 2.2 in Tarpey et al. [20], to the infinite-dimensional
setting. Its proof is given in the Appendix.

Lemma 3.2. Let V' be a random element of a separable Hilbert space H and define Vo = v+ p UV
with v € H, p a scalar and U : H — 'H a unitary operator, i.e., surjective and isometric. Then, we
have that



a) IfW ={y1,...,yr} is a set of k self-consistent points of V', then Wo ={v+p Uy1,..., v+
p Uyr} is a set of k self-consistent points of Vs.

b) If W ={y1,...,yr} is a set of k principal points of V', then Wo = {v+p Uyr,...,v+p Uyr}
is a set of k principal points of Vo and E(d*(Va, Ws)) = p? E(d*(V,W)).

Lemma 3.3 is analogous to Lemma 2.3 in Tarpey et al. [20].

Lemma 3.3. Let V' be a random element with expectation 0. Let {y1,...,yx} be a set of k
self-consistent points of V' spanning a subspace M of dimension q, with an orthonormal basis
{e1,...,eq}. Then, the random vector of RY defined by X = (X1,...,X,)T with X; =< ¢;,V >
will have W = {w; hi<j<i with wj = (w1, ... ,wqj)T and w;; =< €;,y; > as self-consistent set.

The notion of best k—point approximation has been considered by Tarpey et al. [20] for finite—
dimensional random elements. It extends immediately to elements on a Hilbert space.

Definition 3.5. Let W € H be a discrete random element, jointly distributed with the random
element V € H and denote S(W) the support of W. The random element W is a best k—point
approximation to V if S(W) contains exactly k different elements yy,...,yx and E(||[V — W|?) <
E(||[V — Z||?) for any random element Z € H whose support has at most k points, i.e., #S(Z) < k.

The following result is the infinite-dimensional counterpart of Lemma 2.4 in Tarpey et al. [20].

Lemma 3.4. Let W be a best k—point approximation to V and denote by yi1,...,yr a set of k
different elements in S(W) and by D; the domain of attraction of y;. Then,

a) If V € D; then W equals y; with probability 1. That is, W = Zle yillp, (V).
b) |V —W| < ||V —yj| as. forally; € S(W).
c) E(VIW)=W a.s., i.e., W is self-consistent for V.

It is worth noticing that given a self-consistent set {y1,...,yx} of V, as in the finite-dimensional
case, we can define in a natural way a random variable Y = Zle yillyep, with support {y1,...,yx}
and so, P(Y = y;) = P(V € Dj). Since {y1,...,yr} is a self-consistent set, we will have that
E(V]Y) =Y, with probability 1. As in the finite-dimensional setting, ¥~ will not be necessarily a
best approximation, unless the set {y1,...,yr} is a set of k principal points.

As mentioned above, if V' is a random element with a self-consistent set of k = 1 elements {y; }
then E(V') = y; and so that if we assume E(V') = 0, we have y; = 0. The forthcoming results try
to characterize the subspace spanned by the self—consistent points when k£ > 1. They generalize
the results obtained in the finite-dimensional case by Tarpey et al. [20] and extended to gaussian
processes by Tarpey and Kinateder [19]. They also justify the use of the k—means algorithm not
only for gaussian processes but also for elliptical processes with finite second moments.



Theorem 3.1. Let V' be a random element in a separable Hilbert space H, with finite second
moment and assume that E(V) = 0. Let W = {y1,...,yx} be a set of k self-consistent points for
V. Then, y; € Ker(Ty)*, for all j, where T'y denotes the covariance operator of V.

In particular, if W denotes the linear space spanned by the k self-consistent points, we have
get easily that Ker(I'y) N W = {0}. Moreover, it will also hold that I'y, (W) N W+ = {0}. This
last fact will follow from the properties of semidefinite and diagonalizable operators.

Corollary 3.1. Let V be a random element in a separable Hilbert space H, with finite second
moment and compact covariance operator T'y, such that E(V) =0. Let W = {y1,...,yr} be a set
with k self-consistent points for V and denote W the subspace spanned by them. Then,

a) Ker(Ty)NW = {0}.

b) Denote by W be the subspace spanned by the set {yi,...,yx} of k > 1 self-consistent points.
Then, TyW N W+ = {0}.

The following Theorems provide the desired result relating, for elliptical elements, self-consistency
and principal components.

Theorem 3.2. Let V be a random elliptical element with E(V) = 0 and compact covariance
operator T'y. Let W the subspace spanned by the set {y1,...,yr} of k > 1 self-consistent points.
Then, W is spanned by a set of eigenfunctions of T'y .

Theorem 3.3. Let V be a random elliptical element with E(V) = 0 and compact covariance
operator T'y. If k principal points of V generate a subspace W of dimension q, then this subspace
will also be spanned by the q eigenfunctions of 'y related to the q largest eigenvalues.

3.1 Properties of principal points and resolution for the case k£ = 2

As mentioned above, when k = 1 the principal point equals the mean of the distribution. The
goal of this section is to obtain, as in the finite-dimensional setting, an explicit expression for the
principal points when k = 2. As is well known, even when dealing with finite-dimensional data, no
general result is known for any value of k. The following theorem will be very useful in the sequel
and it generalizes a result given, for the finite-dimensional case, by Flury [2]. It is worth noticing
that Theorem 3.4 do not require to the random element to have an elliptical distribution.

Theorem 3.4. Let H be a separable Hilbert space and V : Q — H a random element with mean
woand with k principal points &1, ...,& € H. Then, the dimension of the linear space spanned by
&1 — py . & — pois strictly lower than k.

In particular, when k£ = 1 we get that the mean is a 1—principal point. We will now focuss our
attention of the case k = 2 and the results will be derived for elliptical distributions.

Theorem 3.5 generalizes Theorem 2 in Flury [2] which states an analogous property for the
finite dimensional vectors. As in euclidean spaces, the result assumes the existence of self-principal
points for real variables, conditions under which this holds are given in Theorem 1 of Flury [2].



Theorem 3.5. Let V' be an elliptical random element of a separable Hilbert space H with mean u
and covariance operator I' with finite trace. Denote by ¢1 € H an eigenfunction of T' with norm 1,
related its largest eigenvalue \1. Assume that the real random variable Y =< v,V — pu > has two
principal points for any v € H and let vy, 2 the two principal points of the real random variable
< 1,V —u>. Then, V has two principal points y1 = p+ v1¢1 and yo = i+ Yya01.

A Appendix

PROOF OF LEMMA 2.1 Let B : Hy — R? linear and bounded, let us show that BAV is an elliptical
multivariate random vectorof mean BAp and covariance matrix BAT' A* B*.

Let Bo A : H; — R the composition. Then, B o A is linear and bounded, therefore BAV =
(B o A)(V) is elliptical with parameters B o A(u) = BAp and (B o A)T'(B o A)* = BAT A*B*,
finishing the proof. [

PROOF OF LEMMA 2.2. a) Denote by H* the dual space of H, i.e., H* is the set of all linear and
continuous functions f : H — R. Let f € H*, then E(|f(V)|) < oo and since f : H — R is linear
and continuous it is linear and bounded. Then, f(V') has an elliptical distribution with parameters
f(u) and fT'f*. The existence of E(V) entails that E(f(V)) exists and that E(f(V)) = f(E(V)).
Since E(f(V)) = f(u), by uniqueness we get that E(V) = p.

The proof of b) will follow from the properties of the covariance operator and Lemma 2.1 using
the uniqueness of the covariance.

For that purpose, it will be convenient to have defined a series of special operators. Since H
is separable, it admits an orthonormal countable base, that is, there exists {¢, },en (eventually
finite if the space is of finite dimension) orthonormal generating H. We will choose as basis of H
the basis of eigenfunctions of T related to the eigenvalues A\; > Ay > .... Without loss of generality
we can assume that A\ > 0, otherwise P(V = E(V')) = 1 and the conclusion would be trivial.

Define P, = Py, . 4,>, the orthogonal projection onto the subspace H; spanned by ¢1,..., ¢,
and T, as in (2).

We want to show that I'yy = aT, i.e., that

< alu,v >n=ay(u,v) = Cov(< v,V >n, < v,V >y)

for any u,v € ‘H , where we have explicitly written the space where the internal product is taken
for clarity.

Let d € IN fixed. Using that V has an elliptical distribution, we get that T4V ~ eq(Tyu, TqT'Ty).
On the other hand, since V has finite second moment, the same holds for T;V which implies that
E(T4V') = Ty and the covariance matrix of TV, denoted X4, is proportional to T4I'T);. Therefore,
it exists ay € R such that X3 = aT;T'T}.

We begin by showing thet «y does not depend on d. It is easy to see that

d
T,I'u = Z)\’ < (bi,u >H €.
=1



Therefore, using that < ¢;, T7x >y=< Ty¢i, X >pa=< €;,X >pa= x; for all x € R?, we obtain
that

TdI“Tglk = diag (/\1, ce ,/\d) . (Al)
)T —

Let k < d and 7, : R? — RF be the usual projection 7(x) = 7y, ((a;l, . ,xp)T) = (z1,...,2
Apx, where Ay = < I(;g g
T,V is given by X} = AkEdAg and so, oy, TR, I'T} = adAk(TdI‘T;)AE which together with (A.1),
implies that ap = ay.

Hence, there exists a € R such that for all d € IN the covariance matrix 3, of T,V is equal to
oTyI'Ty, implying that

>. The fact that m,TyV = T3V implies that the covariance matrix of

< alTTyx,y >pa= Cov(< x, T4V >pa, <y, TqV >pa).

Using the definition of adjoint of Ty, we have that < TyI'Tx,y >pa=< I'T;x,T]y >3, meanwhile
the right member of the equality can be written as

Cov(< x,TqV >pa, <y, TaV >pa) = Cov(< Tyx,V >u, < Tgy,V >x) .
Then, we have that for all d € IN, x, y € R?,
< al'Tix,Tjy >y= Cov(< Tjx,V >4, < Tjy,V >x) = av(Tjx,T]y).

Given u,v € H, define ug = Pyu, vg = Pyv, x = Tgu = Tyqug and y = Tyv = Tyvy. We have that
limg_oo [|u — ugl| = 0 and limg_. ||v — vg|| = 0. Then, using that uq = T;x, vg = T);y we get

< aTug,vg >y=< oI'T;x,Tjy >n= ayv(T;x,T]y) = av(ug,vq).

The continuity of ay entails that limg_.. ay(ug,v4) = ay(u,v). On the other hand, using that
T is a self-adjoint, compact operator, we obtain that limy_ . < Tug,vq >x=< I'u,v >4, which
concludes the proof. [J

PROOF OF THEOREM 2.2. The proof of a) follows inmediately since Ay > 0.

b) It is enough to show that E(| f(Va|W1)|) < oo and E(f(Va)[W1) = f(u2 + Tvaw, Sy, (W1 — ),
for any f € H*. Let W = (W1, f(V2)) = TV. Using that with 7" is a bounded and linear operator,
we get that W is elliptical of parameters (g, f(u2))T and

. Sw, Cov(W1, f(V2))
= < Coo(Wh, f(Va))T  fTf* > ‘

Using Theorem 2.1, we get that f(V5)|W; has also an elliptical distribution with expectation given
by pp = f(p2) + Cov(f(Vg),Wl)ngll(Wl — pq). On the other hand, Cov(f(V2), W1) = fTv,w,
which implies that
E(f(V2)[Wh) = f(u2) + Cov(f(Va), W) S5} (W — py)
= flu2) + fTvm 5t (Wi — py) = fu2 + Tvaw, By (W1 — )

10



and so, we conclude the proof. [

PRrROOF OF LEMMA 3.2. a) Using that W is self-consistent for V', we get that E(V|V € D;) = y;.
Let us notice that, since U is a unitary operator, V € D; if and only if Vo = v+ p UV € Dj.
Therefore, D; is the domain of attraction of v + p Uy, which implies that v+ p UD; C D;. Hence,

E(WValVa €D;) = E(+pUV|Va€ D;)=v+pUE(V|v+pUV € v+ pUD;)
= v+ pUEV|V € Dj) =v+ pUy;.
b) Let &,...,& be any set of points in H and denote by Aj,..., A; their respective domains of

attraction. We have to prove that E(d?(Va, Ws)) < E(d*(Va, {&1,...,&k})).
Let z; such that {; = v + p Uz;, then

E(d*(Va, {&r,- &) = B(min [[Va— &%) = E(min [lv+p UV - &)
<i<k

1<j<k
= F . UV — v — p Uz, 2 —E . UV — p Uz 9
(min flv+p v—pUz|") = E( min | p Uz?)

2 : _ 12y — 2 . 2
= pE(oin [UV = Uz[") = p"E( min, [V = z]]%)

where the last inequality holds from the fact that U is an isometry. On the other hand, using that
W is a set of principal points of V, we get that {y1,...,yx} = argmin,, . E(minj<j< |V —2]?).
Threfore, we have that

2 _ 2 . 2y > 2 : o l2) — . 2
E(d(Vo, {81, -0 &) = p B min [V = 2[) 2 p"E(min, [V = y;) = E(min, [V2 = £o;l)

where £ ; = v + pUy;, which means W, are principal points of V,. Besides, we also obtain that
E(d*(Va,Wa)) = p*E(d*(V,WV)). O

PROOF OF LEMMA 3.3. Let us define A : H — R? as A(v) = v = (v1,...,v,) " with v; =<
ei,v >. We want to show that X = AV € RY has as a self-consistent set W = {wy,..., Wi} =
{Ay1,...,Ayr}. Denote by 5; the domain of attraction of Ay; and by D; that of y;. Then, by
extending the orthonormal basis {eq,...,eq} of M to an orthonormal basis {es, £ > 1} of H, and

using that < y;,e; >= 0 for £ > ¢, it is easy to see that V € D; if and only if AV € f)vj, which
implies that

E(AV|AV € D;) = AE(V|AV € D;) = AE(V|V € D;) = Ay; = w; ,
concluding the proof. O

PrROOF OF LEMMA 3.4. a) We will always suppose that the probability of V' being found in the
frontier of two domains of attractions (D; N D;) is 0.
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Let us suppose that the result is false and denote by 2 the common probability space. That is,
let us assume that the set A = {w : V(w) € D;} N {W(w) = y,} has probability strictly positive,
with » # j and define a new element Z(w) that is equal to W(w) if w ¢ A and is equal to y; if
w € A. We will show that Z is a better approximation of V' than W.

BV =ZI*) = BV - Z|’Lx) + E(|V - Z|*L4)
= B(|V = W|Lae) + E(IV — y;][*La)

However, since for any w € A, we have that V(w) € Dj, we get that ||V — y;||2Ia < ||V —
yr||?I4 = ||V — W||?I4. Therefore, using that A is a set with positive probability, we obtain that
E(IV — y;]”1a) < E(|V — W|’L) and so

E(|V = WIPLie) + B(IV = y;1°La) < E(IV = W[*Lae) + B(|V = W[*La) = E(|V = W|*) ,

which entails that E(||V —Z||?) < E(||V —W]||?) implying that Z is a better k—point approximation
than W, concluding the proof of a).

b) If V(w) € D; then, using a) we get that, except for a zero probability set, W (w) = y;. Then,
IV = Wil(w) = [V(w) = y;ll < [IV(w) = will for any y; since V(w) € D;.

c) E(V|W) is a measurable function g(W¥) that minimizes the expected squared distance between
V and any measurable function h(W). Using a) we have that, any function h(WW) has a support
containing at most k points. Then, by the definition of best approximation, we have that W is a
better approximation than h(W) for any measurable function h, with the expected squared distance
criteria. Then, the function g(W) = E(V|W) equals W. O

In order to prove Theorem 3.2 we will need some technical Lemmas. In particular, these lemmas
will allow to derive that the matrix I'yy;, w, defined therein is not singular, which is a fundamental
step in order to get the desired conclusion.

Lemma A.1. Let V be a random element in a separable Hilbert space H, with finite second moment
and assume that E(V) = 0.

a) If h € Ker(T'y) then < h,V >=0€R as.

b) Denote by Hy = Ker(T'y), the kernel of the covariance operator and Hy = Ker(T'y)* its
orthogonal. Then, P(Py,V =0)=1 and P (Py,V =V) =1, i.e, P(V € Ker(Ty)*) = 1.

PRrROOF. The proof of a) follows easily noticing that E(< h,V >) =< h, E(V) >= 0 and Var(<
h,V >)=Cov(< h,V >, < h,V >) =<Tyh,h >=0, since h € Ker(Ty).

b) Note that the separability of H entails that V' = Py, V + Py, V, since Ker(I'y) is a closed
subspace. Thus, it will be enough to show that Py, V = 0 with probability 1. For the sake
of simplicity, we will assume that both H; and Hs are infinite dimensional spaces. Otherwise,
the same calculations hold but using a finite index set as the only significant change. Denote by
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{e1,eq,...} an orthonormal basis of H; and extend it to a basis of H so that, {fi, f2,...} will
denote the orthonormal basis of Hy. Then, Var(Py,V) = E (|Pr,V — E (P, V) |?) = 32, <
I‘lev €i,€6; >= Zfil < I'y e;,e; > and each summand equals zero since e; € Ker(I'y). On the
other hand, E(Py, V) = Py, E(V) = 0, therefore E (||Py, V|*) = 0, which implies that Py, V =0
a.s., concluding the proof. [

Corollary A.1. If AN Ker(Ty)*+ =0 then P(V € A) = 0.

The proof is inmediately since P(V € Ker(T'y)* = 1.

PROOF OF THEOREM 3.1. Note that Ker(I'y)* is a closed subspace and therefore a convex set.
For each point y;, its domain of attraction D; is also a convex set, therefore, K er(Ty)t N D; is
also convex. By Lemma A.1, the support of the random element V is included in K er(l"v)l, thus

y; = BE(V|V € D;) = E(VIV € D;,V € Ker(Ty)') = E(V|V € D; N Ker(Ty)4b).

Now the proof follows easily by noticing that the expectation of a random element taking values in
a convex set C will also be in C, i.e., y; € Dj N Ker(Ty)+ C Ker(Ty)t. O

PROOF OF COROLLARY 3.1. a) follows immediately from Theorem 3.1. We have only to prove b).
Let z € Ty (W) N W, then 2z = T'yw with w € W. We want to show that z = 0. Let {¢;};en be
an orthonormal base of eigenfunctions of I'y related to the eigenvalues pu; > ... > pu; > ... Then,
w = Z;‘;l < w,p; > ¢; which entails that z = Z‘;il <w,@; > p;¢;. Using that z € W, we get
that < z,w >=0and so 0 =< z,w >= Z;‘;l i < w, ¢j >2. The fact that t; are non-negative,
implies that < w,¢; >= 0 if p; > 0 and so T'yw = 0, which entails that w € Ker(T'y) and 2 =0
concluding the proof. O

PrROOF OF THEOREM 3.2. For the sake of simplicity, we will avoid the index V in I'y and will
denote I' the covariance operator.
Let ¢ be the dimension of W and {v1,...,v,} an orthonormal basis of W. Let us denote by
{vi,...,04,Vg41, ..., } the extension to an orthonormal basis of H. Define A; : H — R% as A;(h) =
7 | <w;,h > e;, with e; the canonical basis of R?. Then, A} : R? — H, equals Ajx = > "7 | z;v;
with x = (z1,... ,a;q)T, that is, the image of A% is W. We also define Ay : H — Hoo C RN as

< Vgt1,h >
Ag(h) = < Ug+2, h >

To ensure the continuity of the second operator, we consider as norm in H,, the norm given by
the square root of the sum of squares of the elements of the sequence and as inner product, the
one generating this norm. Using Parseval’s identity we have that for any h € H, ||h]|? = D52, <
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h, v, >2 which implies that As is continuous and with norm equal to 1 since

[A2(W)[IP = > < hoop >2< > < hy >2=[|h]?,
k=q+1 k=1

with equality for any h € W+, Moreover, define A : H — Hyo, as A(h) = (Al(h)T,Ag(h)T)T and
W =AV) = (Al(V)T,Ag(V)T)T = (W, WQT)T with W) finite-dimensional. Notice that W is
an elliptical element in Hs, with null expectation and covariance operator I" 4y = AT'yy A*. Thus,
if Ty, w, is non-singular, using Theorem 2.2, we get that

E(A2(V)|AL(V)) = E(W2[W1) = Dwaw, (T w)~ Ax(V) (A.2)

where 1_‘1/1/27{/[/1 = AQFAT and I‘Wl,Wl = AlI‘AT.

Using that Ker(Ty)NW = {0} and that Ty W N W+ = {0}, we will show that Ty, w, is non—
singular. Since I'yy, w, is an endomorphism between finite dimensional vector spaces, we only have
to prove that it is a monomorphism and we will automatically have that it is an isomorphism. Let us
see the injectivity of this operator. Let us assume that for some h € R?, we have that A;T’A7h = 0.
We want to show that h = 0. Using that A;TAjh = 0, we get that TAth € Ker(4;) = W+, On
the other hand, Ath € W and so, TAth € T(W)N W+ which implies T A7h = 0 by Corollary 3.1.
Hence, Ath € Ker(I') N W = {0} by Corollary 3.1 and so, Ajh = 0. The fact that A7 is injective,
lead to h = 0 and therefore, 'y, 1, is non-singular and (A.2) holds.

Define now a random element Y such that P(Y = y;) = P(V € D;), with D; the domain of
attraction of y;, that is, Y = Zle yillyep;. Using that Aj is linear and continuous, and that y; is
an element on the self—consistent set, we get that

E(AQV‘Y = yj) = E(AQV‘V S Dj) = AQE(V’V S Dj) = Agyj =0

where the last equality holds since y; € W, that is the kernel of As. Therefore, P(E(AJV|Y) =
0) =1 and so, 0 = E(AV|Y) = E(E(A2V|A1V)|Y) with probability 1. Then, using (A.2), we get

0= E(A2V|Y) = E(FWQ,Wl (FW1,W1)_1A1(V)|Y) = 1-‘VVz,WH (FW1,W1)_1A1 E(V|Y)
= AQI‘AT(AlFAT)_lAl Y a.s.

where the last equality follows using Lemma 3.4.

Using that the support of Y spans W, we get that the support of A1Y spans R?. Then, using
that (4;TA})~" is non-singular, the fact that P (A;TAj(A41TA})"14;Y =0) = 1 implies that
AT AT (A TAN) YA y; = 0, for 1 < j < k, and so, TW N W+ = {0}. Therefore, ¥x € RY,
AsT'A7x = 0, or equivalently, AsT'A] : RY — H is the null operator and the same will be true for
ATAS : Hoo — RY.

Define the projection operators Py = AjA; : H — W (the projection over W) and Py =
A3Ay © H — WP (the projection over Wt). Then, P, . TPy = 0 and PyI'Py,. = 0 and so,
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'Ww C W and I‘Wl) C W+ which implies that W and W+ are I'—invariant, i.e., W decomposes
T.

Then, the restriction of the covariance operator I'|yy : W — W will be well defined. T is
compact and self-adjoint and so, diagonalizable. Besides, I' restricted to W will also be compact
and self-adjoint and thus, it will be diagonalizable with the same eigenfunctions. We will then have
that W, the domain of I'|)y is spanned by a set of eigenfunctions of I'. Using that W has dimension
q, we get that VW is spanned by ¢ eigenfunctions of I' concluding the proof. O

PrROOF OF THEOREM 3.3. As in the proof of Theorem 3.2, we will avoid the index V in T'y.
Let Ay > Ao ... the ordered eigenvalues of I', with its corresponding eigenfunctions ¢1, ¢o,.... Let
{y1,...,yx} be a set of k principal points that span W. Theorem 3.2 entails that W is spanned by
q eigenfunctions of T'. Let r be an integer such that {¢1,..., ¢, } contains the ¢ eigenfunctions that
generate W.

Denote, for each principal point y;, aj; =< ¢;,y; >, so that, aj; = 0 for j > r and y; =
Z::l ajiqﬁi. Define a; = (ajl, . ,ajT)T and X = (< o1,V >, .., < ¢,V >)T.

The eigenfunctions will conform an orthonormal basis, then, we have that

T o0
IV =yl> = I (<6 V>—ap)eil® +1 Y <6V >l
i=1 i=r+1
r [e.e] [e.e]
= Z(< ¢i,V > —aji)z + Z < ¢,V >2: ||X — asz + Z < ¢,V >2 ,
i=1 1=r+1 1=r+1
where || - ||, is the euclidean norm in R". Note that the k principal points are the k points that

minimize MSE(V,{&, ..., xix}) E(mini<j<k |V — &%) over the sets of k points. Besides,

_ E(min [V — ) = E( min X — a2 |
MSEV, {y1,....y}) = E(min, [V —y;[*) = E(min |X a]Hr)+i_;lM

and so, MSE(X,{ay,...,ar}) = MSE(V,{y1,...,yr}) = >ieri1 Ni-

Using that {yi,...,yx} minimize MSE(V,-), it is easy to obtain that {ai,...,a;} minimize
MSE(X,{by,...,bx}), over the sets of k points in R” which entails that {ai,...,a;}) is a set of k
principal points for X. On the other hand, X has an elliptical distribution since V' has an elliptical
distribution. Thus, using the result in Tarpey, Li and Flury [20], we obtain that the k principal
points of X lie in the linear space related to the ¢ largest eigenvalues of the covariance, 3x, of X.

Define A: H — R” as A(v) = (< ¢1,v >,...,< ¢p,v >)T. Ais a linear and bounded operator.
Denote by A* : R" — H the adjoint operator, i.e., A*(x) = > 7_; x;¢;. Noticing that X = AV and
that a; = Ay;, we get easily that 3x = AT'A*. Therefore, the ¢ largest eigenvalues of Xx will be
equal to the q largest eigenvalues of I'. Moreover, the eigenvectors of Xx can be written as Ag;.

In conclusion, {aj,...,ax} = {Ay1,...,Ayr} are the k principal points of X = AV and that
the linear space spanned by them is spanned by A¢; with i« = 1,...,q. By restricting A to the
space linear space M spanned by {¢1,...,¢,} we have a surjective isometry and so, if we define
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A: M — R as the restriction of A to the subspace M, its inverse will be given by A* : R" — M
which is essentially equal to A* except for the codomain. The proof follows now easily by noticing
that since y; € M, {Ay1,..., Ayr} = {flyl, e ,flyk} C M with M the linear space spanned by
{Agy, ... ,fl(bq}. Hence, spplying A" = A*, we get that {y1,...,y} is included in the linear space
spanned by {¢1,...,¢4}. O

PrOOF OF THEOREM 3.4. Without loss of generality we can assume that V has mean pu = 0.
Let ¢q,...,c; € H be arbitrary elements and define b; = ¢; — ¢, 1 <i < k—1. Denote by m < k—1
the dimension of the linear space My spanned by by,...,b;_1 and by My = ./\/llL Let aq,...,am
be an orthonormal basis of M; so that, Mg will be spanned by @41, @m+2, ..., being {a;}i>1 an
orthonormal basis of H.

As in (2), define Ay : H — Hoo C RN as

€; 1=1,2,...,m

and Ay : H — Hoo C RN as

0 1=1,2,....m
Az(as) = { (&) gy i>m

Furthermore, let A : H — Hoo C RN be A(h) = Aj(h) + Az(h). Notice that A(a;) = e; so that A
is a surjective isometry and so, since it is an unitary application, its inverse will be its adjoint, the
A* : Hoo — H such that A*(e;) = a;. Define d; = Ac; = Ajc; + Asc; = dgl) + d§2). Then, using
that ¢; — ¢; = b; — b; € My, we get that d§2) — d§2) = Agc; — Ascj = As(c; — ¢j) = 0, that is, all
(2
d; = dl(-l) +d®, with both terms orthogonal between themselves.

Define W7 = A1V, Wy = AV, W = Wi + Wy = AV and Wi and W5 are orthogonal. Using

that A is unitary, we get that

the values d;”7, 1 <4 < k, are equal to a value that we will denote by d® . Moreover, we have that

E(d*(V,{c1,...,cx})) = E(d*(AV,{Acy, ..., Ac})) = E(d*(W,{dy, ... dy)})). (A.3)
Then, |W —d;|? = |[W1 — all(-l)H2 + ||[Wy — d@||?, and so that (A.3) can be written as
E(P(V,{cr, ... cx})) = B(d Wy, {d" ... d"V) + B(@®(Wa, {d@, ... dP})).

The second term on the right hand side equals E(d?(W3, {d®})) which is minimized when d(?) =
E(W3) = Asp = 0. Therefore,

E(d*(V,{cy,...,cx})) = B(@Wh, {d", ..., d"}) + E(>(Wa, {0,...,0}),
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reaching the equality when d?) = 0. Define ¢! = A’{dl(l) = ATA1c; = Ppmyc, Vi = AW, and

Vo = ASWs (V = Vi + Va), then

E(E(V,{c1,...,cx}) > E(@Wy,{d",...,d"}) + BE(>(W,,{0,...,0}))
(AW, {ATdY, ., ATd)) + B(d* (4304, {0, ..., 0})
(@, {ArdY, .., ATdY)) + B(P(Va, {0, .., 0}))
(d%(
(d*(

[ |
SRSy

(Vi {ATAjcy,. .. AT Arer))) + E(d*(Va, {0,...,0}))
= FE d2 v, {ATAlcl +0,... ,ATAle + O})) = E(d2(v7 {CT, <o 762})) :

where the last equality follows from the orthogonality of the decomposition. Summarizing
E(d*(V,{c},...,ct})) < E(d*(V,{c1,...,ck})), where the equality holds if ¢; = A}A1c; = Puy ¢
At the principal points we will get the equality since by definition principal points minimize
E(d*(V,{c1,...,c})), hence, if ¢; correspond to the principal points &;, then ¢; € M;. Using
that M1 has dimension lower or equal than k — 1, we obtain the desired result. O

The following result, which we state for completeness, can be found in Flury [2].

Lemma A.2. Let Y7 e Yy be two real random variables such that Yo has the same distribution as
pY1 for some value of p. Then,

l)y1 (k;)/Var(Yl) = Dy2 (k;)/Var(Yg) .

PrOOF OoF THEOREM 3.5 Without loss of generality, we sill assume that 4 = 0. So as to reduce
notation burden, define Dy (c1,c2) = E(d?(V, {c1,c2})).

We will first show that Dy, is minimized if the two elements ¢, co € H lie on a straight line with
direction ¢o — ¢;. Theorem 3.4 allows us to do this. Effectively, in the proof of Theorem 3.4, we
derived that each principal point (assuming existence) y; belongs to the linear space M spanned
by y2 — y1. That is, both elements lie in a straight line with direction a1 = (y2 — y1)/|ly2 — v1l-

Take c1,¢0 € H, ¢1 # c2 and let M; the linear space of dimension 1 spanned by a; = (¢3 —
c1)/|lca — c1|| and Mgy = M7 with orthonormal base {a; : j > 2}. So, using the same notation
as in Theorem 3.4, we consider A; : H — Hoo defined as Ai(aj) = 0if j > 2y Aj(a1) = &1
with e; the element of H, with its j coordinate equal to 1 and all the others equal to 0, and
As : H — Heo defined as Ag(ay) = 0, As(a;) = e; if @ > 1. Let W7 = A1V =< a1,V > e,
Wy = AV, W = W7 + Wy, Using that M is a one dimensional subspace, we get that W; has
the same distribution as the random variable Y; =< a1,V >, which is elliptic and so symmetric
around 0, since V is elliptic. Let us remember that if d; = Ac; = Ai¢; + Asc; = dl(-l) + d§2), then
d? = d) = d® and

E(d(V,{c1,e2})) = B(d(W,{d1,do})) = B(@(Wy, {d", d5"})) + E(d?(Wa, {d®,d®)}))
> E(d2(Wy, {d",d"1) + E(d2(Ws, {0,0})).
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Then, for fixed ¢; y c2, E(d*(Wh, {dgl),dg)})) can be minimized taking dgl) y dgl) as the principal
points of Y1 =< a;,V >. Let & and & be the principal points of Yj. Define dj = &je1, d5 = &aey.
It follows that E(d*(W,{d},d3})) < E(d*(W,{dy,ds})), with equality if d; = d} y do = d3.

Using thta W = AV, we get V = A*W and so,

¢ =A'dy = A"Grer = §1ATer = §1a1 = &i(c2 — 1) /[lez — e |-
Analogously, ¢ = &a(ca — ¢1)/||ca — c1|. Hence,
E(d*(V, {&101, &a1})) = E((V, {c},3})) < E(*(V, {c1,2})) -

Given a € H such that ||a|| = 1, for each pair ¢;, ¢ such that ¢y — ¢; is proportional to the element
a, we will have that E(d?(V,{&1a,&2a})) = E(d*(V,{c},c5})) < E(d*(V,{c1,ca})), therefore it is
possible to determine the principal points of V' by considering those of W7 = AV, defining ¢} = &1a
and c3 = &»2a and then minimizing over a.

Therefore, it only remains to obtain a € H. Remember that the operator A; depends on that
element a, since it is defined using the normalization of ¢s — ¢y which is equal to a. To make explicit
the dependence, we will denote it as Aga), and also Wla) = Aga)V =<a,V >e = 1(a)el. Note
that Eyl(a) =Var(<a,V >) =<a,Ta >. Since the principal points will lie in a straight line with
normalized direction a, which we are trying to find, they can be written as Aa, with A € R.

Using Lemma A.2, we get that Dyl(a)(2) =< a,T'a > D)\Yl(a)(2)/Var()\Y1(a)). On the other
hand, we have that

D w(2) = min E <min {\)\Yl(“) — 2 A - n2\2}> < E(AYY?) = Var (AYla))

(a) ;
AY; n1,m2€R i=1,2

which implies that D (2)/ Var(/\Yl(a)) < 1. Note that by Lemma A.2 we have that

)‘Yl(a)

D)\Yl(a) (2) . DYl(a) (2)
Var (/\Yl(a) ) Var(Yl(a) )

and so the ratio does not depend on A. Furthermore, we will show that it does not depend on a.
Using that V is elliptic, we get that for any linear and bounded operator B: H — RP, Y = BV
has an elliptical distribution with parameters By = 0 and 3 = BT'B*. So, its characteristic function
can be written as ¢y (y) = ¢(y ' Zy) with ¢ independent of B. In particular, for any a € H, we
have that goyl(a)(b) =¢(b? < a,Ta>) = ¢(b2Var(Y1(a))) which implies that Z, = Yl(a)/ Var(Yl(a))
has the same distribution for any element a € H. Therefore,
. . (a) . 2 (a) . 2
Dy (2) ,min E(min{[Y;™ —m [, Y77 = n2[})
Var(Y; @) ) Var(Yl(a) )
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2 2

(a) _ (@) _
= min_ F(min M —ml ) M —ml )
mmeR Var(Yl(a)) Var(Yl(a))
= mmin E(min{\Za—?ﬁP,’Za—W§’2})

nymsER

does not depend on a. Hence, we can write D (2)/ Var()\Yl(a)) = g < 1 with ¢ independent of

(2) =g <a,Ta>.

)‘Yl(a)

a and so D_ (a)
Yl

Note that V = Yl(a) a+ (V- Yl(a) a) = P<q>V + P_,. 1 V. Then, denoting by & the principal

)

points of Yl(a and using that that ||a|| = 1, we obtain

V=& al? = Y\ a=¢* a+ (V=Y @) |* = la-({” —E)+ P VII* = (V=61 + | Py VI
Taking minimum for ¢ = 1,2 and then applying expectation, we obtain

BV, {e" a8 a})) = E(min |V =€ a|?) = D, (2) + E(| Py V|?)

i=1,2 v

= g<a,Ta>+E(|P V).

Denote Z = P_,. 1V and let ¢; be the orthonormal base of H obtained by the eigenfunctions of "
related to the eigenvalues Ay > Ao > ..., then,

E(|Pos V) = E(1Z)?) = E(IVI]?) — B(|P<as VI?) = Var(V) — Var(y{?)

= Z < I‘¢m On > —Var(Yl(“)) = Z )\j _ Var(y'l(a))

n=1 j>1

= tr(T)— Var(Yl(a)) =tr(I')— <a,Ta>.
Therefore, we obtain
E(d*(V,{a-&,a-€5)) =g <a,Ta> +tr(T)— < a,Ta >=tr(T) — (1 —g) < a,Ta > .

To minimize the left hand side of the above equality it is enough to maximize < a,T'a > over the
elements a € H with norm equal to 1. Using the compactness of the covariance operator I', we
obtain the maximum is reached if we choose a as the eigenfunction related to the largest eigenvalue
of I, concluding the proof. O

References

[1] Conway J. B. (1990) A Course in Functional Analysis, Springer Graduate Texts in Mathematics

[2] Flury, B.A. (1990). Principal Points, Biometrika, 77, 33-41.

19



[18]

[19]
[20]

[21]

Flury B.A. (1993) Estimation of Principal Points, Appl. Statist., 42, 139-151.

Flury, B. y Tarpey, T. (1993). Representing a Large Collection of Curves: A Case for Principal Points.
The American Statistician, 47, 304-306.

Flury, B. y Tarpey, T. (1998). Principal Points. In: Encyclopedia of Statistical Science, Update Volume
2, Kotz, S., Read, C., and Banks, D. Eds. Wiley: New York, pp. 545-548.

Flury, B. y Tarpey, T. (1999). Self-Consistency (Update). In: Encyclopedia of Statistical Science,
Update Volume 3, Kotz, S., Read, C., and Banks, D. Eds. Wiley: New York, 655-659.

Frahm, G. (2004). Generalized Elliptical Distributions: Theory and Applications. Tesis doctoral de la
Universidad de Colonia, Alemania.

Kelker, D. (1970). Distribution Theory of Spherical Distributions and a Location—Scale Parameter
Generalization. Sankhya A, 32, 419-430.

Muirhead R. J. (1982). Aspects of Multivariate Statistical Theory, John Wiley and Sons Canada.
Ramsay, J.O. and Silverman, B.W. (1997) Functional Data Analysis, Springer-Verlag.
Seber G.A.F. (1984). Multivariate Observations, John Wiley and Sons.

Tarpey, T. (1994). Two Principal Points of Symmetric, Strongly Unimodal Distributions. Statistics and
Probability Letters, 20, 253-257.

Tarpey, T. (1995). Principal Points and Self-Consistent Points of Symmetric Multivariate Distributions.
Journal of Multivariate Analysis, 53, 39-51.

Tarpey, T. (1997). Estimating Principal Points of Univariate Distributions. Journal of Applied Statistics,
24, 483-496.

Tarpey, T. (1998). Self-Consistent Patterns for Symmetric Multivariate Distributions. The Journal of
Classification, 15, 57-79.

Tarpey, T. (1999). Self-Counsistency and Principal Component Analysis. Journal of the American Sta-
tistical Association, 94, 456-467.

Tarpey, T. (1999). Self-Consistency Algorithms. Journal of Computational and Graphical Statistics, 8,
889-905.

Tarpey T. and Flury B. (1996). Self-Consistency: A Fundamental Concept in Statistics, Statistical
Science, 11, 229-243.

Tarpey T. and Kinateder K. (2003). Clustering Functional Data, Journal of Classification, 20, 93-114.

Tarpey T., Li L. and Flury B. (1995) Principal Points and Self-Consistent Points of Elliptical Distrib-
utions. The Annals of Statistics, 23, 103-112.

Tarpey, T., Petkova, E., and Ogden, R. T. (2003). Profiling placebo responders by self-consistent
partitions of functional data. Journal of the American Statistical Association, 98, 850-858.

20



