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1 Introduction

1.1 Motivation

Inside statistics there exists lots of situations where the collected data may not be represented
with classic schemes like numbers or numeric vectors and so, sometimes a functional representation
is more appropriate. For example, consider results of an electrocardiogram (EGC) or the study
of the temperature in a weather station, which lend themselves to this new framework (see, for
instance, Ramsay and Silverman [10] for more examples). A classical discretization of the data as
a sequence of numbers may loose some functional characteristics like smoothness and continuity.
For this reason, in the last decades different methods appeared to handle this new kind of data.
In an informal way, we may say that a functional datum is a random variable (element would be a
better word) that takes its values in a functional space, instead of a finite dimensional one. In this
paper, we will study some fundamental concepts of this development, which in a way will result
in a mixture between statistics and functional analysis over Hilbert spaces. The main idea is to
mix together, in a very general family of distributions, some notions of principal components and
principal points. In a multivariate setting, those developments were mainly done by Flury and
Tarpey ([2] to [6], [12] to [17], [18] and [20]) at the beginning of the 90’s. The idea here is to adapt
the results obtained therein to the functional case.

Maybe the final conclusion of this work is not only the theoretical result obtained. Rather, as it
was done previously, our results show about the possibility of doing, with some technical difficulties
but not critical ones, an interesting generalization of the classical results from multivariate analysis
to a more general framework, so as to gain a better comprehension of the phenomenon, as it often
tends to happen when abstraction or generalization of a mathematical concept is made.

In section 2, we will define the notion of elliptical families. We will first remind their definition
in the multivariate case and later we will extend this definition to the functional case. The definition
of self–consistent points and principal points as well as some of their properties are stated in section
3 where we extend the results given in Flury ([2], [3]), Tarpey [13] and Tarpey and Flury [18] to
the case of random elements lying in a separable Hilbert space. We also provide a characterization
that, under an hypothesis of ellipticity, allows us to make an important link between principal
components and self–consistent points. We conclude with some results that allow to compute
principal points in a somewhat specific case.

2 Elliptical families

2.1 Review on some finite–dimensional results

For the sake of completeness and to fix our notation we will remind some results regarding elliptical
families before extending them to the functional setting. They can be found in Muirhead [9], Seber
[11] and also in Frahm [7].

Let X ∈ Rd be a random vector. We will say that X has an elliptical distribution, and we
will denote it as X ∼ εd(µ,Σ, φ), if there exists a vector µ ∈ Rd, a positive semidefinite matrix
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Σ ∈ Rd×d and a function φ : R+ → R such that the characteristic function of X − µ is given by
ϕX−µ(t) = φ(ttΣt), for all t ∈ Rd. In some situations, for the sake of simplicity, we will omit the
symbol φ and will denote X ∼ εd(µ,Σ).

As it is well known, if X ∼ εd(µ,Σ, φ) and E(X) exists, then E(X) = µ. Moreover, if the
second order moments exist Σ is up to a constant the covariance matrix of X, i.e., V ar(X) = αΣ.
Even more, it is easy to see that the constant α equals to −2φ′(0), where φ′ stands for the derivative
of φ.

The following theorem is a well known result and will also be extended in the sequel to adapt
for functional random elements.

Theorem 2.1. Let X ∼ ε(µ,Σ, φ) with µ ∈ Rd and Σ ∈ Rd×d a semidefinite positive matrix with
rank(Σ) = r. Let µ = (µt

1 ,µt
2 )t and X = (Xt

1 ,Xt
2 )t with X1 the vector of the first k coordinates

of X (k < r) such that Σ11 is not singular. Denote by

Σ = ΛΛt =
(

Σ11 Σ12

Σ21 Σ22

)
∈ Rd×d

with submatrixes Σ11 ∈ Rk×k, Σ21 ∈ R(d−k)×k, Σ12 = Σt
21 ∈ Rk×(d−k) and Σ22 ∈ R(d−k)×(r−k).

Then,

a) X D∼ µ +RΛU(r), where Y D∼ Z means that the two random vectors Y and Z have the same
distribution, U(r) is uniformly distributed over Sr−1 = {y ∈ Rr : ‖y‖ = 1} and R and U(r)

are independent.

b) Assume that the conditional random vector X2|X1 = x1 exists, then X2|X1 = x1 has an
elliptical distribution εd−k(µ∗,Σ∗, φ∗) where

µ∗ = µ2 + Σ21Σ−1
11 (x1 − µ1)

Σ∗ = Σ22 −Σ21Σ−1
11 Σ12,

and φ∗ corresponds to the characteristic generator of R∗U(r−k) with

R∗ D∼ R
√

1 − β
∣∣∣(R

√
β U(k) = C−1

11 (x1 − µ1)).

Here C11 stands for the Cholesky square root of Σ11, U(k) is uniformly distributed in Sk−1,
β ∼ Beta(k

2 , r−k
2 ) and R, β, U(k) and U(r−k) are mutually independent.

2.2 Functional case

In this section, we will extend the definition of elliptical distributions to the case of random elements
on a separable Hilbert space. The definition will be based on the one given for the multivariate
case.
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Definition 2.1. Let V be a random element in a separable Hilbert space H. We will say that V
has an elliptical distribution of parameters µ ∈ H and Γ : H → H, with Γ a self–adjoint, positive
semidefinite and compact operator, and we will denote V ∼ E(µ,Γ), if for any lineal and bounded
operator A : H → IRd (that is, such that sup

‖x‖=1
‖Ax‖ < ∞) we have that AV has a multivariate

elliptical distribution of parameters Aµ and Σ = AΓA∗, i.e., AV ∼ εd(Aµ,Σ) where A∗ : Rp → H
stands for the adjoint operator of A.

The following result shows that elliptical families in Hilbert spaces are closed through linear
and bounded transformations.

Lemma 2.1. Let V ∼ ε(µ,Γ) an elliptical random element in H1 of parameters µ and Γ and
A : H1 → H2 linear and bounded. Then AV is an elliptical random element H2 of parameters Aµ
and AΓA∗.

Lemma 2.2 shows that both parameters, µ y Γ, that characterizes the element V are respectively
the expectation and the covariance operator, provide they exist. Its proof can be found in the
Appendix.

Lemma 2.2. Let V be a random element in a separable Hilbert space H such that V ∼ E(µ,Γ).

a) If E(V ) exists, then, E(V ) = µ.

b) If the covariance operator, ΓV , exists then, ΓV = α Γ, for some α ∈ R.

Based on the finite dimensional results, one way of obtaining random elliptical elements is
through the following transformation. Let V1 be a gaussian element in H with zero mean and
covariance operator ΓV1 , and let Z be a random variable with distribution G independent of V1.
Given µ ∈ H, define V = µ + Z V1. Then, V has an elliptical distribution and if E(Z2) exists
ΓV = E(Z2)ΓV1 .

We are interested in obtaining some properties concerning the conditional distribution of el-
liptical families similar to those existing in the multivariate setting. Let V be a random element
belonging to an elliptical family of parameter µ and Γ and let us consider in H the orthonormal
basis, {φn}n∈I (I countable or finite) constructed using the eigenfunctions of the operator Γ related
to the eigenvalues λ1 ≥ λ2 ≥ . . .. Given d ∈ I fixed, define the closed subspaces (and so Hilbert
spaces)

H1 =< φ1, . . . , φd > H2 =< φ1, . . . , φd >⊥

Define over these spaces the truncating projections, that is, Pd = PH1 : H → H1 and PH2 : H → H2

such that

PH1(φi) =
{

φi i = 1, 2, . . . , d
0 i > d

PH2(φi) =
{

φi i > d
0 i = 1, 2, . . . , d

. (1)
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We will make a composition of Pd with the natural operator that identifies H1 with Rd. That is,
we will consider the operator Td : H → Rd defined as

Td(φi) =
{

ei i = 1, 2, . . . , d
0 i > n

, (2)

with e1, . . . , ed the vectors of the canonical base of Rd. Then, for any x ∈ H we have that
Td(x) =

∑d
j=1 < x, φj > ej. We will use Td instead of Pd as a projector in many situations,

because its image is Rd and we will call each of them truncating projectors.
Based on these projections we can construct V1 = PH1V ∈ H1, W1 = TdV ∈ Rd and V2 =

PH2V ∈ H2 random elements, both of them elliptical by Lemma 2.1.
We have essentially split the random element in two parts, one of them being finite dimensional

which will allow us to define a conditional distribution V2|V1 following the guidelines previously
established.

Theorem 2.2. Let H be a separable Hilbert space. Let V be a random element in H with distribution
E(µ,Γ) with finite second moments. Without loss of generality, we can assume that Γ is the
covariance operator. Assume that Γ is Hilbert–Schmidt so that

∑∞
i=1 λi < ∞. Let d ∈ I fixed and

consider V1 = PH1V , W1 = TdV y V2 = PH2V with PH1 y PH2 defined in (1) and Td defined in
(2). Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of Γ and assume that λd > 0. Then,

a) the covariance matrix of W1 given by ΣW1 = TdΓT ∗
d = diag (λ1, . . . , λd) is non–singular

b) E(V2|W1) = µ2 + ΓV2,W1Σ
−1
W1

(W1 − µ1),

where ΓV2,W1 is the covariance operator between V2 and W1, µ1 = E(W1) and µ2 = E(V2).

3 Self–consistent points and principal points

As mentioned in the Introduction self–consistent and principal points were studied by Flury ([2],
[3]), Tarpey [13] and Tarpey and Flury [18] in the multivariate setting. Later on, Tarpey and
Kinateder [19] extended their definition and properties for gaussian processes while Tarpey et al.
[21] applied principal points to estimate a set of representative longitudinal response curves from
a clinical trial. The aim of this section is to extend some of the properties previously obtained to
include elliptical families.

For the sake of completeness, we remind the definition of self–consistency and principal points.

Definition 3.1. Let W = {y1, . . . , yk} with yi ∈ H, 1 ≤ i ≤ k we define the minimun distance of
V to the set W as d(V, {y1, . . . , yk}) = min1≤j≤k ‖V − yj‖.

The set W induce a partition of the space H determined by the domains of attraction.
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Definition 3.2. Given W = {y1, . . . , yk}, the domain of attraction Dj of yj consists in all the
elements of H that have yj as the closest point of W, that is, Dj = {x ∈ H : ‖x − yj‖ <
‖x − y`‖ , ` 6= j}.
For points x ∈ H with equal distance to two or several yj, we assign them arbitrarily to the set
with lower index j.

Definition 3.3. Let V be a random element in H with expectation E(V ). A set W = {y1, . . . , yk}
is said to be self-consistent for V if E(V |V ∈ Dj) = yj.
A random element W is called self-consistent for V if E(V |W ) = W .

Definition 3.4. Let V be a random element in H with finite second moment. The elements
ξ1, . . . , ξk are called principal points of V if

DV (k) = E(d2(V, {ξ1, . . . , ξk})) = min
yj∈H

E(d2(V, {y1, . . . , yk}))

Lemma 3 in Tarpey and Kinateder [19] establishes for L2(I) functions, with I a real bounded
interval, the well–known result in multivariate analysis that the mean of a distribution lies in the
convex hull of any set of self–consistent points. Moreover, Flury [3] established that principal points
of a random vector in Rp are self–consistent points. This result was generalized to random funcions
in L2(I) by Tarpey and Kinateder [19]. The same arguments allow to establish these results for
any separable Hilber space H, we state them without proof.

Lemma 3.1. Let V be a random element of a separable Hilbert space H such that E(V ) exists.
Then,

a) if {y1, . . . , yk} is a self-consistent set, then E(V ) is a convex combination of y1, . . . , yk.

b) Moreover, if V has finite second moments and the set W = {ξ1, . . . , ξk} is a set of principal
points for V , then it is self-consistent.

As a consequence of Lemma 3.1, if k = 1 and V is a random element with self-consistent set
{y1}, then y1 = E(V ). Moreover, we will have self-consistent points whenever we have principal
points.

The following result will allows us to assume, in the sequel, that the random element V has
expectation 0. It also generalizes Lemma 2.2 in Tarpey et al. [20], to the infinite–dimensional
setting. Its proof is given in the Appendix.

Lemma 3.2. Let V be a random element of a separable Hilbert space H and define V2 = ν + ρ UV
with ν ∈ H, ρ a scalar and U : H → H a unitary operator, i.e., surjective and isometric. Then, we
have that
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a) If W = {y1, . . . , yk} is a set of k self-consistent points of V , then W2 = {ν + ρ Uy1, . . . , ν +
ρ Uyk} is a set of k self-consistent points of V2.

b) If W = {y1, . . . , yk} is a set of k principal points of V , then W2 = {ν +ρ Uy1, . . . , ν +ρ Uyk}
is a set of k principal points of V2 and E(d2(V2,W2)) = ρ2E(d2(V,W)).

Lemma 3.3 is analogous to Lemma 2.3 in Tarpey et al. [20].

Lemma 3.3. Let V be a random element with expectation 0. Let {y1, . . . , yk} be a set of k
self–consistent points of V spanning a subspace M of dimension q, with an orthonormal basis
{e1, . . . , eq}. Then, the random vector of Rq defined by X = (X1, . . . ,Xq)t with Xi =< ei, V >
will have W = {wj}1≤j≤k with wj = (w1j , . . . , wqj)t and wij =< ei, yj > as self–consistent set.

The notion of best k−point approximation has been considered by Tarpey et al. [20] for finite–
dimensional random elements. It extends immediately to elements on a Hilbert space.

Definition 3.5. Let W ∈ H be a discrete random element, jointly distributed with the random
element V ∈ H and denote S(W ) the support of W . The random element W is a best k−point
approximation to V if S(W ) contains exactly k different elements y1, . . . , yk and E(‖V − W‖2) ≤
E(‖V −Z‖2) for any random element Z ∈ H whose support has at most k points, i.e., #S(Z) ≤ k.

The following result is the infinite–dimensional counterpart of Lemma 2.4 in Tarpey et al. [20].

Lemma 3.4. Let W be a best k−point approximation to V and denote by y1, . . . , yk a set of k
different elements in S(W ) and by Dj the domain of attraction of yj. Then,

a) If V ∈ Dj then W equals yj with probability 1. That is, W =
∑k

i=1 yiIDj (V ).

b) ‖V − W‖ ≤ ‖V − yj‖ a.s. for all yj ∈ S(W ).

c) E(V |W ) = W a.s., i.e., W is self-consistent for V .

It is worth noticing that given a self-consistent set {y1, . . . , yk} of V , as in the finite–dimensional
case, we can define in a natural way a random variable Y =

∑k
i=1 yiIV ∈Di with support {y1, . . . , yk}

and so, P (Y = yj) = P (V ∈ Dj). Since {y1, . . . , yk} is a self-consistent set, we will have that
E(V |Y ) = Y , with probability 1. As in the finite–dimensional setting, Y will not be necessarily a
best approximation, unless the set {y1, . . . , yk} is a set of k principal points.

As mentioned above, if V is a random element with a self-consistent set of k = 1 elements {y1}
then E(V ) = y1 and so that if we assume E(V ) = 0, we have y1 = 0. The forthcoming results try
to characterize the subspace spanned by the self–consistent points when k > 1. They generalize
the results obtained in the finite–dimensional case by Tarpey et al. [20] and extended to gaussian
processes by Tarpey and Kinateder [19]. They also justify the use of the k−means algorithm not
only for gaussian processes but also for elliptical processes with finite second moments.

7



Theorem 3.1. Let V be a random element in a separable Hilbert space H, with finite second
moment and assume that E(V ) = 0. Let W = {y1, . . . , yk} be a set of k self–consistent points for
V . Then, yj ∈ Ker(ΓV )⊥, for all j, where ΓV denotes the covariance operator of V .

In particular, if W denotes the linear space spanned by the k self–consistent points, we have
get easily that Ker(ΓV ) ∩W = {0}. Moreover, it will also hold that ΓV (W) ∩W⊥ = {0}. This
last fact will follow from the properties of semidefinite and diagonalizable operators.

Corollary 3.1. Let V be a random element in a separable Hilbert space H, with finite second
moment and compact covariance operator ΓV , such that E(V ) = 0. Let W = {y1, . . . , yk} be a set
with k self–consistent points for V and denote W the subspace spanned by them. Then,

a) Ker(ΓV ) ∩W = {0}.

b) Denote by W be the subspace spanned by the set {y1, . . . , yk} of k > 1 self-consistent points.
Then, ΓV W ∩W⊥ = {0}.

The following Theorems provide the desired result relating, for elliptical elements, self–consistency
and principal components.

Theorem 3.2. Let V be a random elliptical element with E(V ) = 0 and compact covariance
operator ΓV . Let W the subspace spanned by the set {y1, . . . , yk} of k > 1 self-consistent points.
Then, W is spanned by a set of eigenfunctions of ΓV .

Theorem 3.3. Let V be a random elliptical element with E(V ) = 0 and compact covariance
operator ΓV . If k principal points of V generate a subspace W of dimension q, then this subspace
will also be spanned by the q eigenfunctions of ΓV related to the q largest eigenvalues.

3.1 Properties of principal points and resolution for the case k = 2

As mentioned above, when k = 1 the principal point equals the mean of the distribution. The
goal of this section is to obtain, as in the finite–dimensional setting, an explicit expression for the
principal points when k = 2. As is well known, even when dealing with finite–dimensional data, no
general result is known for any value of k. The following theorem will be very useful in the sequel
and it generalizes a result given, for the finite–dimensional case, by Flury [2]. It is worth noticing
that Theorem 3.4 do not require to the random element to have an elliptical distribution.

Theorem 3.4. Let H be a separable Hilbert space and V : Ω → H a random element with mean
µ and with k principal points ξ1, . . . , ξk ∈ H. Then, the dimension of the linear space spanned by
ξ1 − µ, . . . , ξk − µ is strictly lower than k.

In particular, when k = 1 we get that the mean is a 1−principal point. We will now focuss our
attention of the case k = 2 and the results will be derived for elliptical distributions.

Theorem 3.5 generalizes Theorem 2 in Flury [2] which states an analogous property for the
finite dimensional vectors. As in euclidean spaces, the result assumes the existence of self-principal
points for real variables, conditions under which this holds are given in Theorem 1 of Flury [2].

8



Theorem 3.5. Let V be an elliptical random element of a separable Hilbert space H with mean µ
and covariance operator Γ with finite trace. Denote by φ1 ∈ H an eigenfunction of Γ with norm 1,
related its largest eigenvalue λ1. Assume that the real random variable Y =< v, V − µ > has two
principal points for any v ∈ H and let γ1, γ2 the two principal points of the real random variable
< φ1, V − µ > . Then, V has two principal points y1 = µ + γ1φ1 and y2 = µ + γ2φ1.

A Appendix

Proof of Lemma 2.1 Let B : H2 → Rd linear and bounded, let us show that BAV is an elliptical
multivariate random vectorof mean BAµ and covariance matrix BAΓA∗B∗.

Let B ◦ A : H1 → Rd the composition. Then, B ◦ A is linear and bounded, therefore BAV =
(B ◦ A)(V ) is elliptical with parameters B ◦ A(µ) = BAµ and (B ◦ A)Γ(B ◦ A)∗ = BAΓA∗B∗,
finishing the proof.

Proof of Lemma 2.2. a) Denote by H∗ the dual space of H, i.e., H∗ is the set of all linear and
continuous functions f : H → R. Let f ∈ H∗, then E(|f(V )|) < ∞ and since f : H → R is linear
and continuous it is linear and bounded. Then, f(V ) has an elliptical distribution with parameters
f(µ) and fΓf∗. The existence of E(V ) entails that E(f(V )) exists and that E(f(V )) = f(E(V )).
Since E(f(V )) = f(µ), by uniqueness we get that E(V ) = µ.

The proof of b) will follow from the properties of the covariance operator and Lemma 2.1 using
the uniqueness of the covariance.

For that purpose, it will be convenient to have defined a series of special operators. Since H
is separable, it admits an orthonormal countable base, that is, there exists {φn}n∈IN (eventually
finite if the space is of finite dimension) orthonormal generating H. We will choose as basis of H
the basis of eigenfunctions of Γ related to the eigenvalues λ1 ≥ λ2 ≥ . . .. Without loss of generality
we can assume that λ1 > 0, otherwise P (V = E(V )) = 1 and the conclusion would be trivial.

Define Pn = P<φ1,...,φn>, the orthogonal projection onto the subspace H1 spanned by φ1, . . . , φn

and Tn as in (2).
We want to show that ΓV = αΓ, i.e., that

< αΓu, v >H= aV (u, v) = Cov(< v, V >H, < v, V >H)

for any u, v ∈ H , where we have explicitly written the space where the internal product is taken
for clarity.

Let d ∈ IN fixed. Using that V has an elliptical distribution, we get that TdV ∼ εd(Tdµ, TdΓT ∗
d ).

On the other hand, since V has finite second moment, the same holds for TdV which implies that
E(TdV ) = Tdµ and the covariance matrix of TdV , denoted Σd, is proportional to TdΓT ∗

d . Therefore,
it exists αd ∈ R such that Σd = αdTdΓT ∗

d .
We begin by showing thet αd does not depend on d. It is easy to see that

TdΓu =
d∑

i=1

λi < φi, u >H ei .
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Therefore, using that < φi, T
∗
d x >H=< Tdφi,x >Rd=< ei,x >Rd= xi for all x ∈ Rd, we obtain

that
TdΓT ∗

d = diag (λ1, . . . , λd) . (A.1)

Let k ≤ d and πk : Rd → Rk be the usual projection πk(x) = πk

(
(x1, . . . , xp)t

)
= (x1, . . . , xk)t =

Akx, where Ak =
(

Ik 0
0 0

)
. The fact that πkTdV = TkV implies that the covariance matrix of

TkV is given by Σk = AkΣdAt
k and so, αkTkΓT ∗

k = αdAk(TdΓT ∗
d )At

k which together with (A.1),
implies that αk = αd.

Hence, there exists α ∈ R such that for all d ∈ IN the covariance matrix Σd of TdV is equal to
αTdΓT ∗

d , implying that

< αTdΓT ∗
d x,y >Rd= Cov(< x, TdV >Rd , < y, TdV >Rd).

Using the definition of adjoint of Td, we have that < TdΓT ∗
d x,y >Rd=< ΓT ∗

d x, T ∗
d y >H, meanwhile

the right member of the equality can be written as

Cov(< x, TdV >Rd , < y, TdV >Rd) = Cov(< T ∗
d x, V >H, < T ∗

d y, V >H) .

Then, we have that for all d ∈ IN , x, y ∈ Rd,

< αΓT ∗
d x, T ∗

d y >H= Cov(< T ∗
d x, V >H, < T ∗

d y, V >H) = aV (T ∗
d x, T ∗

d y).

Given u, v ∈ H, define ud = Pdu, vd = Pdv, x = Tdu = Tdud and y = Tdv = Tdvd. We have that
limd→∞ ‖u − ud‖ = 0 and limd→∞ ‖v − vd‖ = 0. Then, using that ud = T ∗

d x, vd = T ∗
d y we get

< αΓud, vd >H=< αΓT ∗
d x, T ∗

d y >H= aV (T ∗
d x, T ∗

d y) = aV (ud, vd).

The continuity of aV entails that limd→∞ aV (ud, vd) = aV (u, v). On the other hand, using that
Γ is a self–adjoint, compact operator, we obtain that limd→∞ < Γud, vd >H=< Γu, v >H, which
concludes the proof.

Proof of Theorem 2.2. The proof of a) follows inmediately since λd > 0.
b) It is enough to show that E(|f(V2|W1)|) < ∞ and E(f(V2)|W1) = f(µ2 +ΓV2,W1Σ

−1
W1

(W1−µ1)),
for any f ∈ H∗. Let W = (W1, f(V2)) = TV . Using that with T is a bounded and linear operator,
we get that W is elliptical of parameters (µ1, f(µ2))t and

TΓT ∗ =
(

ΣW1 Cov(W1, f(V2))
Cov(W1, f(V2))t fΓf∗

)
.

Using Theorem 2.1, we get that f(V2)|W1 has also an elliptical distribution with expectation given
by µf = f(µ2) + Cov(f(V2),W1)Σ−1

W1
(W1 − µ1). On the other hand, Cov(f(V2),W1) = fΓV2,W1

which implies that

E(f(V2)|W1) = f(µ2) + Cov(f(V2),W1)Σ−1
W1

(W1 − µ1)

= f(µ2) + fΓV2,W1Σ
−1
W1

(W1 − µ1) = f(µ2 + ΓV2,W1Σ
−1
W1

(W1 − µ1))
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and so, we conclude the proof.

Proof of Lemma 3.2. a) Using that W is self-consistent for V , we get that E(V |V ∈ Dj) = yj.
Let us notice that, since U is a unitary operator, V ∈ Dj if and only if V2 = ν + ρ UV ∈ D̃j .
Therefore, D̃j is the domain of attraction of ν + ρ Uyj which implies that ν + ρ UDj ⊂ D̃j . Hence,

E(V2|V2 ∈ D̃j) = E(ν + ρUV |V2 ∈ D̃j) = ν + ρUE(V |ν + ρUV ∈ ν + ρUDj)
= ν + ρUE(V |V ∈ Dj) = ν + ρUyj.

b) Let ξ1, . . . , ξk be any set of points in H and denote by A1, . . . ,Ak their respective domains of
attraction. We have to prove that E(d2(V2,W2)) ≤ E(d2(V2, {ξ1, . . . , ξk})).

Let zj such that ξj = ν + ρ Uzj, then

E(d2(V2, {ξ1, . . . , ξk})) = E( min
1≤j≤k

‖V2 − ξj‖2) = E( min
1≤j≤k

‖ν + ρ UV − ξj‖2)

= E( min
1≤j≤k

‖ν + ρ UV − ν − ρ Uzj‖2) = E( min
1≤j≤k

‖ρ UV − ρ Uzj‖2)

= ρ2E( min
1≤j≤k

‖UV − Uzj‖2) = ρ2E( min
1≤j≤k

‖V − zj‖2)

where the last inequality holds from the fact that U is an isometry. On the other hand, using that
W is a set of principal points of V , we get that {y1, . . . , yk} = argminz1,...,zk

E(min1≤j≤k ‖V −zj‖2).
Threfore, we have that

E(d2(V2, {ξ1, . . . , ξk})) = ρ2E( min
1≤j≤k

‖V − zj‖2) ≥ ρ2E( min
1≤j≤k

‖V − yj‖2) = E( min
1≤j≤k

‖V2 − ξ0,j‖2)

where ξ0,j = ν + ρUyj, which means W2 are principal points of V2. Besides, we also obtain that
E(d2(V2,W2)) = ρ2E(d2(V,W)).

Proof of Lemma 3.3. Let us define A : H → Rq as A(v) = v = (v1, . . . , vq)t with vi =<
ei, v >. We want to show that X = AV ∈ Rq has as a self-consistent set W = {w1, . . . ,wk} =
{Ay1, . . . , Ayk}. Denote by D̃j the domain of attraction of Ayj and by Dj that of yj. Then, by
extending the orthonormal basis {e1, . . . , eq} of M to an orthonormal basis {e`, ` ≥ 1} of H, and
using that < yj, e` >= 0 for ` > q, it is easy to see that V ∈ Dj if and only if AV ∈ D̃j, which
implies that

E(AV |AV ∈ D̃j) = AE(V |AV ∈ D̃j) = AE(V |V ∈ Dj) = Ayj = wj ,

concluding the proof.

Proof of Lemma 3.4. a) We will always suppose that the probability of V being found in the
frontier of two domains of attractions (Di ∩ Dj) is 0.
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Let us suppose that the result is false and denote by Ω the common probability space. That is,
let us assume that the set A = {ω : V (ω) ∈ Dj} ∩ {W (ω) = yr} has probability strictly positive,
with r 6= j and define a new element Z(ω) that is equal to W (ω) if ω /∈ A and is equal to yi if
ω ∈ A. We will show that Z is a better approximation of V than W .

E(‖V − Z‖2) = E(‖V − Z‖2IAc) + E(‖V − Z‖2IA)
= E(‖V − W‖2IAc) + E(‖V − yj‖2IA)

However, since for any ω ∈ A, we have that V (ω) ∈ Dj, we get that ‖V − yj‖2IA < ‖V −
yr‖2IA = ‖V − W‖2IA. Therefore, using that A is a set with positive probability, we obtain that
E(‖V − yj‖2IA) < E(‖V − W‖2IA) and so

E(‖V − W‖2IAc) + E(‖V − yj‖2IA) < E(‖V − W‖2IAc) + E(‖V − W‖2IA) = E(‖V − W‖2) ,

which entails that E(‖V −Z‖2) < E(‖V −W‖2) implying that Z is a better k−point approximation
than W , concluding the proof of a).
b) If V (ω) ∈ Dj then, using a) we get that, except for a zero probability set, W (ω) = yj. Then,
‖V − W‖(ω) = ‖V (ω) − yj‖ ≤ ‖V (ω) − yi‖ for any yi since V (ω) ∈ Dj .
c) E(V |W ) is a measurable function g(W ) that minimizes the expected squared distance between
V and any measurable function h(W ). Using a) we have that, any function h(W ) has a support
containing at most k points. Then, by the definition of best approximation, we have that W is a
better approximation than h(W ) for any measurable function h, with the expected squared distance
criteria. Then, the function g(W ) = E(V |W ) equals W .

In order to prove Theorem 3.2 we will need some technical Lemmas. In particular, these lemmas
will allow to derive that the matrix ΓW1,W1 defined therein is not singular, which is a fundamental
step in order to get the desired conclusion.

Lemma A.1. Let V be a random element in a separable Hilbert space H, with finite second moment
and assume that E(V ) = 0.

a) If h ∈ Ker(ΓV ) then < h, V >≡ 0 ∈ R a.s.

b) Denote by H1 = Ker(ΓV ), the kernel of the covariance operator and H2 = Ker(ΓV )⊥ its
orthogonal. Then, P (PH1V = 0) = 1 and P (PH2V = V ) = 1, i.e, P

(
V ∈ Ker(ΓV )⊥

)
= 1.

Proof. The proof of a) follows easily noticing that E(< h, V >) =< h,E(V ) >= 0 and V ar(<
h, V >) = Cov(< h, V >,< h, V >) =< ΓV h, h >= 0, since h ∈ Ker(ΓV ).

b) Note that the separability of H entails that V = PH1V + PH2V , since Ker(ΓV ) is a closed
subspace. Thus, it will be enough to show that PH1V = 0 with probability 1. For the sake
of simplicity, we will assume that both H1 and H2 are infinite dimensional spaces. Otherwise,
the same calculations hold but using a finite index set as the only significant change. Denote by

12



{e1, e2, . . .} an orthonormal basis of H1 and extend it to a basis of H so that, {f1, f2, . . .} will
denote the orthonormal basis of H2. Then, V ar(PH1V ) = E

(
‖PH1V − E (PH1V ) ‖2

)
=

∑∞
i=1 <

ΓPH1
V ei, ei >=

∑∞
i=1 < ΓV ei, ei > and each summand equals zero since ei ∈ Ker(ΓV ). On the

other hand, E(PH1V ) = PH1E(V ) = 0, therefore E
(
‖PH1V ‖2

)
= 0, which implies that PH1V = 0

a.s., concluding the proof.

Corollary A.1. If A ∩ Ker(ΓV )⊥ = ∅ then P (V ∈ A) = 0.

The proof is inmediately since P (V ∈ Ker(ΓV )⊥ = 1.

Proof of Theorem 3.1. Note that Ker(ΓV )⊥ is a closed subspace and therefore a convex set.
For each point yj, its domain of attraction Dj is also a convex set, therefore, Ker(ΓV )⊥ ∩ Dj is
also convex. By Lemma A.1, the support of the random element V is included in Ker(ΓV )⊥, thus

yj = E(V |V ∈ Dj) = E(V |V ∈ Dj, V ∈ Ker(ΓV )⊥) = E(V |V ∈ Dj ∩ Ker(ΓV )⊥).

Now the proof follows easily by noticing that the expectation of a random element taking values in
a convex set C will also be in C, i.e., yj ∈ Dj ∩ Ker(ΓV )⊥ ⊂ Ker(ΓV )⊥.

Proof of Corollary 3.1. a) follows immediately from Theorem 3.1. We have only to prove b).
Let z ∈ ΓV (W) ∩W⊥, then z = ΓV w with w ∈ W. We want to show that z = 0. Let {φj}j∈N be
an orthonormal base of eigenfunctions of ΓV related to the eigenvalues µ1 ≥ . . . ≥ µj ≥ . . . Then,
w =

∑∞
j=1 < w,φj > φj which entails that z =

∑∞
j=1 < w,φj > µjφj . Using that z ∈ W⊥, we get

that < z,w >= 0 and so 0 =< z,w >=
∑∞

j=1 µj < w,φj >2. The fact that µj are non-negative,
implies that < w,φj >= 0 if µj > 0 and so ΓV w = 0, which entails that w ∈ Ker(ΓV ) and z = 0
concluding the proof.

Proof of Theorem 3.2. For the sake of simplicity, we will avoid the index V in ΓV and will
denote Γ the covariance operator.

Let q be the dimension of W and {v1, . . . , vq} an orthonormal basis of W. Let us denote by
{v1, . . . , vq, vq+1, . . . , } the extension to an orthonormal basis of H. Define A1 : H → Rq as A1(h) =∑q

i=1 < vi, h > ei, with ei the canonical basis of Rq. Then, A∗
1 : Rq → H, equals A∗

1x =
∑q

i=1 xivi

with x = (x1, . . . , xq)t, that is, the image of A∗
1 is W. We also define A2 : H → H∞ ⊂ RN as

A2(h) =




< vq+1, h >
< vq+2, h >

...


 .

To ensure the continuity of the second operator, we consider as norm in H∞ the norm given by
the square root of the sum of squares of the elements of the sequence and as inner product, the
one generating this norm. Using Parseval’s identity we have that for any h ∈ H, ‖h‖2 =

∑∞
k=1 <
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h, vk >2 which implies that A2 is continuous and with norm equal to 1 since

‖A2(h)‖2 =
∞∑

k=q+1

< h, vk >2≤
∞∑

k=1

< h, vk >2= ‖h‖2 ,

with equality for any h ∈ W⊥. Moreover, define A : H → H∞, as A(h) =
(
A1(h)t, A2(h)t

)t and

W = A(V ) =
(
A1(V )t, A2(V )t

)t =
(
Wt

1 ,Wt
2

)t with W1 finite–dimensional. Notice that W is
an elliptical element in H∞ with null expectation and covariance operator ΓAV = AΓV A∗. Thus,
if ΓW1,W1 is non–singular, using Theorem 2.2, we get that

E(A2(V )|A1(V )) = E(W2|W1) = ΓW2,W1(ΓW1,W1)
−1A1(V ) (A.2)

where ΓW2,W1 = A2ΓA∗
1 and ΓW1,W1 = A1ΓA∗

1.
Using that Ker(ΓV )∩W = {0} and that ΓV W ∩W⊥ = {0}, we will show that ΓW1,W1 is non–

singular. Since ΓW1,W1 is an endomorphism between finite dimensional vector spaces, we only have
to prove that it is a monomorphism and we will automatically have that it is an isomorphism. Let us
see the injectivity of this operator. Let us assume that for some h ∈ Rq, we have that A1ΓA∗

1h = 0.
We want to show that h = 0. Using that A1ΓA∗

1h = 0, we get that ΓA∗
1h ∈ Ker(A1) = W⊥. On

the other hand, A∗
1h ∈ W and so, ΓA∗

1h ∈ Γ(W) ∩W⊥ which implies ΓA∗
1h = 0 by Corollary 3.1.

Hence, A∗
1h ∈ Ker(Γ) ∩W = {0} by Corollary 3.1 and so, A∗

1h = 0. The fact that A∗
1 is injective,

lead to h = 0 and therefore, ΓW1,W1 is non–singular and (A.2) holds.
Define now a random element Y such that P (Y = yj) = P (V ∈ Dj), with Dj the domain of

attraction of yj, that is, Y =
∑k

i=1 yiIV ∈Di . Using that A2 is linear and continuous, and that yj is
an element on the self–consistent set, we get that

E(A2V |Y = yj) = E(A2V |V ∈ Dj) = A2E(V |V ∈ Dj) = A2yj = 0

where the last equality holds since yj ∈ W, that is the kernel of A2. Therefore, P (E(A2V |Y ) =
0) = 1 and so, 0 = E(A2V |Y ) = E(E(A2V |A1V )|Y ) with probability 1. Then, using (A.2), we get

0 = E(A2V |Y ) = E(ΓW2,W1(ΓW1,W1)
−1A1(V )|Y ) = ΓW2,W1(ΓW1,W1)

−1A1 E(V |Y )
= A2ΓA∗

1(A1ΓA∗
1)

−1A1 Y a.s.

where the last equality follows using Lemma 3.4.
Using that the support of Y spans W, we get that the support of A1Y spans Rq. Then, using

that (A1ΓA∗
1)

−1 is non–singular, the fact that P
(
A2ΓA∗

1(A1ΓA∗
1)

−1A1Y = 0
)

= 1 implies that
A2ΓA∗

1(A1ΓA∗
1)

−1A1 yj = 0, for 1 ≤ j ≤ k, and so, ΓW ∩ W⊥ = {0}. Therefore, ∀x ∈ Rq,
A2ΓA∗

1x = 0, or equivalently, A2ΓA∗
1 : Rq → H∞ is the null operator and the same will be true for

A1ΓA∗
2 : H∞ → Rq.

Define the projection operators PW = A∗
1A1 : H → W (the projection over W) and PW⊥ =

A∗
2A2 : H → W⊥ (the projection over W⊥). Then, PW⊥ΓPW = 0 and PWΓPW⊥ = 0 and so,
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ΓW ⊂ W and ΓW⊥) ⊂ W⊥ which implies that W and W⊥ are Γ−invariant, i.e., W decomposes
Γ.

Then, the restriction of the covariance operator Γ|W : W → W will be well defined. Γ is
compact and self-adjoint and so, diagonalizable. Besides, Γ restricted to W will also be compact
and self-adjoint and thus, it will be diagonalizable with the same eigenfunctions. We will then have
that W, the domain of Γ|W is spanned by a set of eigenfunctions of Γ. Using that W has dimension
q, we get that W is spanned by q eigenfunctions of Γ concluding the proof.

Proof of Theorem 3.3. As in the proof of Theorem 3.2, we will avoid the index V in ΓV .
Let λ1 ≥ λ2 . . . the ordered eigenvalues of Γ, with its corresponding eigenfunctions φ1, φ2, . . .. Let
{y1, . . . , yk} be a set of k principal points that span W. Theorem 3.2 entails that W is spanned by
q eigenfunctions of Γ. Let r be an integer such that {φ1, . . . , φr} contains the q eigenfunctions that
generate W.

Denote, for each principal point yj, aji =< φi, yj >, so that, aji = 0 for j > r and yj =∑r
i=1 ajiφi. Define aj = (aj1, . . . , ajr)t and X = (< φ1, V >, . . . , < φr, V >)t.
The eigenfunctions will conform an orthonormal basis, then, we have that

‖V − yj‖2 = ‖
r∑

i=1

(< φi, V > −aji)φi‖2 + ‖
∞∑

i=r+1

< φi, V > φi‖2

=
r∑

i=1

(< φi, V > −aji)2 +
∞∑

i=r+1

< φi, V >2= ‖X − aj‖2
r +

∞∑

i=r+1

< φi, V >2 ,

where ‖ · ‖r is the euclidean norm in Rr. Note that the k principal points are the k points that
minimize MSE(V, {ξ1, . . . , xik})E(min1≤j≤k ‖V − ξj‖2) over the sets of k points. Besides,

MSE(V, {y1, . . . , yk}) = E( min
1≤j≤k

‖V − yj‖2) = E( min
1≤j≤k

‖X− aj‖2
r) +

∞∑

i=r+1

λi.

and so, MSE(X, {a1, . . . ,ak}) = MSE(V, {y1, . . . , yk}) −
∑∞

i=r+1 λi.
Using that {y1, . . . , yk} minimize MSE(V, ·), it is easy to obtain that {a1, . . . ,ak} minimize

MSE(X, {b1, . . . ,bk}), over the sets of k points in Rr which entails that {a1, . . . ,ak}) is a set of k
principal points for X. On the other hand, X has an elliptical distribution since V has an elliptical
distribution. Thus, using the result in Tarpey, Li and Flury [20], we obtain that the k principal
points of X lie in the linear space related to the q largest eigenvalues of the covariance, ΣX, of X.

Define A : H → Rr as A(v) = (< φ1, v >, . . . , < φr, v >)t. A is a linear and bounded operator.
Denote by A∗ : Rr → H the adjoint operator, i.e., A∗(x) =

∑r
i=1 xiφi. Noticing that X = AV and

that aj = Ayj, we get easily that ΣX = AΓA∗. Therefore, the q largest eigenvalues of ΣX will be
equal to the q largest eigenvalues of Γ. Moreover, the eigenvectors of ΣX can be written as Aφi.

In conclusion, {a1, . . . ,ak} = {Ay1, . . . , Ayk} are the k principal points of X = AV and that
the linear space spanned by them is spanned by Aφi with i = 1, . . . , q. By restricting A to the
space linear space M spanned by {φ1, . . . , φr} we have a surjective isometry and so, if we define
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Ã : M → Rr as the restriction of A to the subspace M, its inverse will be given by Ã∗ : Rr → M
which is essentially equal to A∗ except for the codomain. The proof follows now easily by noticing
that since yj ∈ M, {Ay1, . . . , Ayk} = {Ãy1, . . . , Ãyk} ⊂ M̃ with M̃ the linear space spanned by
{Ãφ1, . . . , Ãφq}. Hence, spplying Ã−1 = Ã∗, we get that {y1, . . . , yk} is included in the linear space
spanned by {φ1, . . . , φq}.

Proof of Theorem 3.4. Without loss of generality we can assume that V has mean µ = 0.
Let c1, . . . , ck ∈ H be arbitrary elements and define bi = ci−ck, 1 ≤ i ≤ k−1. Denote by m ≤ k−1
the dimension of the linear space M1 spanned by b1, . . . , bk−1 and by M2 = M⊥

1 . Let a1, . . . , am

be an orthonormal basis of M1 so that, M2 will be spanned by am+1, am+2, . . ., being {ai}i≥1 an
orthonormal basis of H.

As in (2), define A1 : H → H∞ ⊂ RN as

A1(ai) =
{

(ei)RN i = 1, 2, . . . ,m
0 i > m

and A2 : H → H∞ ⊂ RN as

A2(ai) =
{

0 i = 1, 2, . . . ,m
(ei)RN i > m

Furthermore, let A : H → H∞ ⊂ RN be A(h) = A1(h) + A2(h). Notice that A(ai) = ei so that A
is a surjective isometry and so, since it is an unitary application, its inverse will be its adjoint, the
A∗ : H∞ → H such that A∗(ei) = ai. Define di = Aci = A1ci + A2ci = d

(1)
i + d

(2)
i . Then, using

that ci − cj = bi − bj ∈ M1, we get that d
(2)
i − d

(2)
j = A2ci − A2cj = A2(ci − cj) = 0, that is, all

the values d
(2)
i , 1 ≤ i ≤ k, are equal to a value that we will denote by d(2). Moreover, we have that

di = d
(1)
i + d(2), with both terms orthogonal between themselves.

Define W1 = A1V , W2 = A2V , W = W1 + W2 = AV and W1 and W2 are orthogonal. Using
that A is unitary, we get that

E(d2(V, {c1, . . . , ck})) = E(d2(AV, {Ac1, . . . , Ack})) = E(d2(W, {d1, . . . , dk})). (A.3)

Then, ‖W − di‖2 = ‖W1 − d
(1)
i ‖2 + ‖W2 − d(2)‖2, and so that (A.3) can be written as

E(d2(V, {c1, . . . , ck})) = E(d2(W1, {d(1)
1 , . . . , d

(1)
k })) + E(d2(W2, {d(2), . . . , d(2)})).

The second term on the right hand side equals E(d2(W2, {d(2)})) which is minimized when d(2) =
E(W2) = A2µ = 0. Therefore,

E(d2(V, {c1, . . . , ck})) ≥ E(d2(W1, {d(1)
1 , . . . , d

(1)
k })) + E(d2(W2, {0, . . . , 0})),
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reaching the equality when d(2) = 0. Define c∗i = A∗
1d

(1)
i = A∗

1A1ci = PM1ci, V1 = A∗
1W1 and

V2 = A∗
2W2 (V = V1 + V2), then

E(d2(V, {c1, . . . , ck})) ≥ E(d2(W1, {d(1)
1 , . . . , d

(1)
k })) + E(d2(W2, {0, . . . , 0}))

= E(d2(A∗
1W1, {A∗

1d
(1)
1 , . . . , A∗

1d
(1)
k })) + E(d2(A∗

2W1, {0, . . . , 0}))

= E(d2(V1, {A∗
1d

(1)
1 , . . . , A∗

1d
(1)
k })) + E(d2(V2, {0, . . . , 0}))

= E(d2(V1, {A∗
1A1c1, . . . , A

∗
1A1ck})) + E(d2(V2, {0, . . . , 0}))

= E(d2(V, {A∗
1A1c1 + 0, . . . , A∗

1A1ck + 0})) = E(d2(V, {c∗1, . . . , c∗k})) .

where the last equality follows from the orthogonality of the decomposition. Summarizing
E(d2(V, {c∗1, . . . , c∗k})) ≤ E(d2(V, {c1, . . . , ck})), where the equality holds if ci = A∗

1A1ci = PM1ci.
At the principal points we will get the equality since by definition principal points minimize
E(d2(V, {c1, . . . , ck})), hence, if ci correspond to the principal points ξi, then ci ∈ M1. Using
that M1 has dimension lower or equal than k − 1, we obtain the desired result.

The following result, which we state for completeness, can be found in Flury [2].

Lemma A.2. Let Y1 e Y2 be two real random variables such that Y2 has the same distribution as
ρY1 for some value of ρ. Then,

DY1(k)/V ar(Y1) = DY2(k)/V ar(Y2) .

Proof of Theorem 3.5 Without loss of generality, we sill assume that µ = 0. So as to reduce
notation burden, define DV (c1, c2) = E(d2(V, {c1, c2})).

We will first show that DV is minimized if the two elements c1, c2 ∈ H lie on a straight line with
direction c2 − c1. Theorem 3.4 allows us to do this. Effectively, in the proof of Theorem 3.4, we
derived that each principal point (assuming existence) yi belongs to the linear space M1 spanned
by y2 − y1. That is, both elements lie in a straight line with direction a1 = (y2 − y1)/‖y2 − y1‖.

Take c1, c2 ∈ H, c1 6= c2 and let M1 the linear space of dimension 1 spanned by a1 = (c2 −
c1)/‖c2 − c1‖ and M2 = M⊥

1 with orthonormal base {aj : j ≥ 2}. So, using the same notation
as in Theorem 3.4, we consider A1 : H → H∞ defined as A1(aj) = 0 if j ≥ 2 y A1(a1) = e1

with ej the element of H∞ with its j coordinate equal to 1 and all the others equal to 0, and
A2 : H → H∞ defined as A2(a1) = 0, A2(ai) = ei if i > 1. Let W1 = A1V =< a1, V > e1,
W2 = A2V , W = W1 + W2. Using that M1 is a one dimensional subspace, we get that W1 has
the same distribution as the random variable Y1 =< a1, V >, which is elliptic and so symmetric
around 0, since V is elliptic. Let us remember that if di = Aci = A1ci + A2ci = d

(1)
i + d

(2)
i , then

d
(2)
1 = d

(2)
2 = d(2) and

E(d2(V, {c1, c2})) = E(d2(W, {d1, d2})) = E(d2(W1, {d(1)
1 , d

(1)
2 })) + E(d2(W2, {d(2), d(2)}))

≥ E(d2(W1, {d(1)
1 , d

(1)
2 })) + E(d2(W2, {0, 0})).
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Then, for fixed c1 y c2, E(d2(W1, {d(1)
1 , d

(1)
2 })) can be minimized taking d

(1)
1 y d

(1)
2 as the principal

points of Y1 =< a1, V >. Let ξ1 and ξ2 be the principal points of Y1. Define d∗1 = ξ1e1, d∗2 = ξ2e1.
It follows that E(d2(W, {d∗1, d∗2})) ≤ E(d2(W, {d1, d2})), with equality if d1 = d∗1 y d2 = d∗2.

Using thta W = AV , we get V = A∗W and so,

c∗1 = A∗d∗1 = A∗ξ1e1 = ξ1A
∗
1e1 = ξ1a1 = ξ1(c2 − c1)/‖c2 − c1‖.

Analogously, c∗2 = ξ2(c2 − c1)/‖c2 − c1‖. Hence,

E(d2(V, {ξ1a1, ξ2a1})) = E(d2(V, {c∗1, c∗2})) ≤ E(d2(V, {c1, c2})) .

Given a ∈ H such that ‖a‖ = 1, for each pair c1, c2 such that c2 − c1 is proportional to the element
a, we will have that E(d2(V, {ξ1a, ξ2a})) = E(d2(V, {c∗1, c∗2})) ≤ E(d2(V, {c1, c2})), therefore it is
possible to determine the principal points of V by considering those of W1 = A1V , defining c∗1 = ξ1a
and c∗2 = ξ2a and then minimizing over a.

Therefore, it only remains to obtain a ∈ H. Remember that the operator A1 depends on that
element a, since it is defined using the normalization of c2−c1 which is equal to a. To make explicit
the dependence, we will denote it as A

(a)
1 , and also W

(a)
1 = A

(a)
1 V =< a, V > e1 = Y

(a)
1 e1. Note

that Σ
Y

(a)
1

= V ar(< a, V >) =< a,Γa >. Since the principal points will lie in a straight line with
normalized direction a, which we are trying to find, they can be written as λa, with λ ∈ R.

Using Lemma A.2, we get that D
Y

(a)
1

(2) =< a,Γa > D
λY

(a)
1

(2)/V ar(λY
(a)
1 ). On the other

hand, we have that

D
λY

(a)
1

(2) = min
η1,η2∈R

E

(
min
i=1,2

{
|λY

(a)
1 − η1|2, |λY

(a)
1 − η2|2

})
≤ E(|λY

(a)
1 |2) = V ar

(
λY

(a)
1

)

which implies that D
λY

(a)
1

(2)/V ar(λY
(a)
1 ) < 1. Note that by Lemma A.2 we have that

D
λY

(a)
1

(2)

V ar(λY
(a)
1 )

=
D

Y
(a)
1

(2)

V ar(Y (a)
1 )

and so the ratio does not depend on λ. Furthermore, we will show that it does not depend on a.
Using that V is elliptic, we get that for any linear and bounded operator B : H → Rp, Y = BV

has an elliptical distribution with parameters Bµ = 0 and Σ = BΓB∗. So, its characteristic function
can be written as ϕY(y) = φ(ytΣy) with φ independent of B. In particular, for any a ∈ H, we

have that ϕ
Y

(a)
1

(b) = φ(b2 < a,Γa >) = φ(b2V ar(Y (a)
1 )) which implies that Za = Y

(a)
1 /

√
V ar(Y (a)

1 )
has the same distribution for any element a ∈ H. Therefore,

D
Y

(a)
1

(2)

V ar(Y (a)
1 )

=
min

η1,η2∈R
E(min{|Y (a)

1 − η1|2, |Y (a)
1 − η2|2})

V ar(Y (a)
1 )
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= min
η1,η2∈R

E(min






 |Y (a)

1 − η1|√
V ar(Y (a)

1 )




2

,


 |Y (a)

1 − η2|√
V ar(Y (a)

1 )




2
)

= min
η?
1 ,η?

2∈R
E(min{|Za − η?

1 |2, |Za − η?
2 |2})

does not depend on a. Hence, we can write D
λY

(a)
1

(2)/V ar(λY
(a)
1 ) = g < 1 with g independent of

a and so D
Y

(a)
1

(2) = g < a,Γa >.

Note that V = Y
(a)
1 a + (V − Y

(a)
1 a) = P<a>V + P<a>⊥V . Then, denoting by ξa

i the principal
points of Y

(a)
1 and using that that ‖a‖ = 1, we obtain

‖V −ξ
(a)
i a‖2 = ‖Y (a)

1 a−ξ
(a)
i a+(V −Y

(a)
1 a)‖2 = ‖a·(Y (a)

1 −ξa
i )+P<a>⊥V ‖2 = (Y (a)

1 −ξa
i )2+‖P<a>⊥V ‖2.

Taking minimum for i = 1, 2 and then applying expectation, we obtain

E(d2(V, {ξ(a)
1 a, ξ

(a)
2 a})) = E(min

i=1,2
‖V − ξ

(a)
i a‖2) = D

Y
(a)
1

(2) + E(‖P<a>⊥V ‖2)

= g < a,Γa > +E(‖P<a>⊥V ‖2).

Denote Z = P<a>⊥V and let φj be the orthonormal base of H obtained by the eigenfunctions of Γ
related to the eigenvalues λ1 ≥ λ2 ≥ . . ., then,

E(‖P<a>⊥V ‖2) = E(‖Z‖2) = E(‖V ‖2) − E(‖P<a>V ‖2) = V ar(V ) − V ar(Y (a)
1 )

=
∞∑

n=1

< Γφn, φn > −V ar(Y (a)
1 ) =

∑

j≥1

λj − V ar(Y (a)
1 )

= tr(Γ) − V ar(Y (a)
1 ) = tr(Γ)− < a,Γa > .

Therefore, we obtain

E(d2(V, {a · ξa
1 , a · ξa

2})) = g < a,Γa > +tr(Γ)− < a,Γa >= tr(Γ) − (1 − g) < a,Γa > .

To minimize the left hand side of the above equality it is enough to maximize < a,Γa > over the
elements a ∈ H with norm equal to 1. Using the compactness of the covariance operator Γ, we
obtain the maximum is reached if we choose a as the eigenfunction related to the largest eigenvalue
of Γ, concluding the proof.
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