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1 Introduction

Consider the heteroscedastic nonparametric regression model

Yi = g(xi) + Uiσ(xi), 1 ≤ i ≤ n, (1)

where 0 ≤ x1 ≤ . . . ≤ xn ≤ 1 are fixed design points in [0, 1] and the errors {Ui}i≥1 are i.i.d. random
variables with common distribution F0. Both functions g and σ are continuous functions defined on
[0, 1] and they are assumed to be unknown.

In most situations, nonparametric regression research has focused on the estimation of the func-
tion g and the variance function σ is treated as a nuisance parameter. There are reasons why this
approach is often not completely satisfactory. To begin with, the homoscedasticity assumption usu-
ally assumed by many authors may not be a viable option. Besides, this approach fails to take
into account that confidence intervals or prediction intervals require to have precise enough local
variance estimators. Mainly, two general reasons explain why the estimation of scale function has
become an important problem. One reason is that the performance of the estimation procedures of
the regression function relies on the behavior of the scale estimators. Another reason appears when,
in direct applications, the scale is the main parameter of the phenomena under study. Discussions
and applications of scale estimations can be found, for example, in Carroll and Ruppert (1988), Hall
and Marron (1990), Dette et al. (1998) and Levine (2003).

Hall et al. (1990), for homoscedatic nonparametric regression models, proposed preliminary scale
estimators based on differences, generalizing the initial proposals of Rice (1984) and Gasser et al.
(1986). Considering local estimators based on kernel weights Müller and Stadtmüller (1987), Brown
and Levine (2007), among others, extend this class to heteroscedastic nonparametric models.

In both types of models, homoscedastic and heterocedastic, these scale estimators are not robust
under departures of the central distribution F0 of the errors {Ui}i≥1. There exists a wide literature
discussing the necessity of the introduction of robust procedures of the scale function. For instance,
Boente et al. (1997), Cantoni and Ronchetti (2001), Leung et al. (1993) and Leung (2005) show
how, in the estimation of the regression function, robust scale estimators improve the accuracy of
bandwidth selectors. Also, Härdle and Gasser (1984), Härdle and Tsybakov (1988) and Boente and
Fraiman (1989) provide robust procedures for g using robust estimators of the scale σ that involve
the estimation of the regression function.

For homoscedastic nonparametric regression models, i.e., when σ(x) ≡ σ0 and based on the ideas
relying behind the scale estimators considered by Rice (1984), Boente et al. (1997) proposed, as a
robust estimator, the median of the absolute differences |Yi+1 − Yi|, 1 ≤ i ≤ n − 1. Subsequently,
Ghement et al. (2008) introduced a more general robust class, known as the M−estimator based on
differences. Finally, Boente et al. (2010) consider the situation in which the scale function does not
need to be constant and define local M−estimates of scale based on differences.

As in nonparametric regression estimation, all these estimators depend on a smoothing param-
eter that needs to be choosen by the practitioner. As it is well known, large bandwidths produce
estimators with small variance but high bias, while small values produce more wiggly curves. This
trade–off between bias and variance lead to several proposals to select the smoothing parameter,
such as cross-validation procedures and plug–in methods when estimating the regression function
g. However, when estimating the variance function, less development has been obtained until now.
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Levine (2003) derived an expression for the optimal bandwidth that leads to the plug–in approach
discussed in Levine (2006). Therein, also a K−fold cross–validation procedure was recommended.
All these procedures are based on square differences and thus, are very sensitive to outliers, as it is
the case when estimating the regression function. The aim of this paper is to propose bandwidth
selectors resistant to atypical observations that combined with the estimators defined in Boente et
al. (2010) lead to robust data–driven scale estimators.

The rest of the paper is organized as follows. In Section 2, we briefly remind the definition of the
robust local M−estimates of the scale function used in subsequent sections. In Section 3, we discuss
several robust procedures in order to select the smoothing parameter when using kernel weights. The
asymptotic properties of the robust localM−estimates based on random bandwidths are investigated
in Section 4. The results of a Monte Carlo study designed to compare the behavior of the different
bandwidth selectors are described in Section 5. Finally, Section 6 provides some concluding remarks.
Proofs can be found in the Appendix.

2 The estimators

In this section, we remind the robust estimators of the scale function σ(x), i.e., the localM−estimates
of scale based on differences, defined by Boente et al. (2010). Throughout this paper, we consider
observations satisfying model (1) with errors {Ui}i≥1 having common distribution G from the gross
error neighbourhood Pε(F0) defined as Pε(F0) = {G : G(y) = (1− ε)F0(y) + εH(y); H ∈ D, y ∈ R},
where D denotes the set of all distribution functions, F0 is the central model, generally the normal
distribution, and H is any arbitrary distribution function modelling the contamination. The amount
of contamination ε ∈ [0, 1/2) represents the fraction of outliers that we expect be present in the
sample.

For x ∈ (0, 1), the local M−estimator of the scale function σ(x) based on successive differences

of the responses variables is defined as σ̂M,n(x) = inf
{
s > 0 :

∑n−1
i=1 wn,i(x)χ

(
Yi+1−Yi

as

)
≤ b
}
, where

wn,i(x) = wn,i(x, hn), i = 1, . . . , n − 1, are kernel weights, such as the Nadaraya–Watson or the
Rosenblatt weights, defined respectively as wn,i(x, h) = K ((x− xi)/h) {

∑n
j=1K ((x− xj)/h)}−1

and wn,i(x, h) = (nh)−1K ((x− xi)/h). The non–negative parameter hn is the bandwidth parameter
that regulates the trade–off between bias and variance of the estimator. Moreover, χ is a score
function, a ∈ (0,∞) is chosen to attain Fisher–consistency at the central model and b ∈ (0, 1)
gives the robustness level of the estimator, and both tunning constants satisfy E[χ(Z1)] = b and
E [χ ((Z2 − Z1)/a)] = b, with {Zi}i=1,2 i.i.d. random variables with Z1 ∼ F0. Note that, when χ is a
smooth function, σ̂M,n(x) satisfies

n−1∑

i=1

wn,i(x)χ

(
Yi+1 − Yi
aσ̂M,n(x)

)
= b. (2)

Remark 2.1. The family of estimators defined through (2), include among others the classical local
Rice estimator taking χ(x) = x2, a =

√
2 and b = 1. Two other estimators will also be considered in

the simulation study, the local mad estimator and the local M−estimador with BT function. The
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local mad estimator, denoted σ̂MAD,n(x), corresponds to χ(y) = I{u: |u|>Φ−1(3/4)}(y), a =
√
2 and

b = 1/2. On the other hand, the localM−estimador with BT function, denote by σ̂BT,n(x), is related
to the score function χc introduced by Beaton and Tukey (1974) with tuning constant c = 0.70417,
a =

√
2 and b = 3/4 where the Beaton–Tukey function is defined as

χc(y) =

{
3 (y/c)2 − 3 (y/c)4 + (y/c)6 if |y| ≤ c
1 if |y| > c .

3 Robust bandwidth selectors.

As mentioned in the introduction, an important issue regarding kernel weights is the selection of
the smoothing parameter hn, that should be chosen by the practitioner. As it is well known, when
the accuracy of the estimators of the regression function is measured, a trade–off between bias and
variance occurs, leading to different alternatives to select the smoothing parameter, such as cross-
validation procedures and plug–in methods. A detailed exposition on these alternatives can be found
in Härdle (1990) and Härdle et al. (2004).

However, these procedures may not be robust and their sensitivity to anomalous data was dis-
cussed by several authors, including Leung et al. (1993), Wang and Scott (1994), Boente et al.

(1997), Cantoni and Ronchetti (2001) and Leung (2005). Wang and Scott (1994) note that, when
estimating the regression function, in the presence of outliers, the least squares cross–validation
function is nearly constant on its whole domain and thus, essentially worthless for the purpose of
choosing a bandwidth.

The study of data–driven bandwidth selectors for the scale function is less developed. When
considering scale estimators based on squared differences, Levine (2003) obtained an expression for
the optimal bandwidth. This expression leads to the plug–in approach discussed in Levine (2006),
who also mentioned its disadvantages and recommended a version of K−fold cross–validation for
selecting the smoothing parameter. This method produces a variance estimator that, in typical
cases, is not very sensitive to the choice of the mean function.

For the sake of completeness, we remind theK−fold cross–validation method considered in Levine
(2006). Partition the data set {(xi, yi)} at random into K approximately equal and disjoint subsets,

the j−th subset having size nj ≥ 2,
∑K

j=1 nj = n. Let {(x̃(j)i , ỹ
(j)
i )}1≤i≤nj

be the pairs of the j−th
subset with the values of x̃

(j)
i arranged in ascending order. Similarly, let {(x(j)i , y

(j)
i )}1≤i≤n−nj

denote

the pairs in the complement of the j−th subset, again with the x
(j)
i arranged in ascending order. The

set {(x(j)i , y
(j)
i )}1≤i≤n−nj

will be the training set and {(x̃(j)i , ỹ
(j)
i )}1≤i≤nj

the validation set. Moreover,

denote ∆
(j)
i = (y

(j)
i+1 − y

(j)
i )/

√
2 and ∆̃

(j)
i = (ỹ

(j)
i+1 − ỹ

(j)
i )/

√
2 the successive differences within each

subset. Let σ̂
(j)
Rice,n(x, h) and σ̂

(j)
M,n(x, h) be the classical and robust scale estimators computed using a

bandwidth h and the j−th training subset {(x(j)i , y
(j)
i )}1≤i≤n−nj

, i.e., using the successive differences

∆
(j)
i , respectively. The classical K−fold cross–validation criterion as described in Levine (2006) is

defined as

CVLS,KCV(h) =
1

n

K∑

j=1

nj−1∑

i=1

[(
∆̃
(j)
i

)2
−
(
σ̂
(j)
Rice,n(x̃i, h)

)2]2
.
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The K−fold cross–validation bandwidth is defined as ĥLS,KCV = argminh∈HCVLS,KCV(h), where H is
the grid of possible values in [0, 1] over which we perform the search.

An alternative K−fold cross–validation procedure can be considered by measuring the deviances
in log scale, i.e., we consider as measure

CV logLS,KCV(h) =
1

n

K∑

j=1

nj−1∑

i=1

[
log
(
∆̃
(j)
i

)
− log

(
σ̂
(j)
Rice,n(x̃i, h)

)]2

and defining ĥlogL,LS,KCV
= argminh∈H LCVLS,KCV(h).

Even if robust scale estimators are considered, i.e., even if we perform the cross–validation with

σ̂
(j)
M,n(x, h) instead of σ̂

(j)
Rice,n(x, h), the K−fold cross–validation bandwidth will be sensitive to out-

liers, since high residuals corresponding to an atypical observation are not downweighted. For that
reason, when using a robust estimator, one needs to define robust scale–based procedures as a robust
alternative to the classical K−th fold cross–validation criterion. This can be done by defining

CVROB,KCV(h) =
1

n

K∑

j=1

s2j (h)

nj−1∑

i=1

ψ2

(
e
(j)
i

sj(h)

)
,

where e
(j)
i =

(
∆̃
(j)
i

)2
−
(
σ̂
(j)
M,n(x̃i, h)

)2
, sj(h) = median |e(j)i | and ψ is a bounded score function

such as the Huber function. The robust cross–validation bandwidth is then defined as ĥROB,KCV =
argminh∈HCVROB,KCV(h).

As above, a robust log–scale cross–validation procedure can be considered as

CV logROB,KCV(h) =
1

n

K∑

j=1

s2j (h)

nj−1∑

i=1

ψ2

(
e
(j)
i

sj(h)

)
;

where now e
(j)
i = log

(
∆̃
(j)
i

)
− log

(
σ̂
(j)
M,n(x̃i, h)

)
, sj(h) = median |e(j)i |. Related to this criterion, the

robust selector is defined as ĥlogROB,KCV = argminh∈HCVROB,KCV(h).

As a particular case of the K−fold method, the classical leave–one–out cross–validation produces
an asymptotically optimal data–driven bandwidth, ĥLS,CV, by minimizing

CVLS,CV(h) =
1

n− 1

n−1∑

i=1

[
D2i − (σ̂

(−i)
Rice,n(xi, h))

2
]2

(3)

where Di = |Yi+1 − Yi| /
√
2 and σ

(−i)
Rice,n(xi, h) is the classical estimator of σ(xi) computed with a

bandwidth h and based on all the observations except (xi, Yi) and (xi+1, Yi+1), i.e., on the sam-
ple (x1, Y1), . . . , (xi−1, Yi−1), (xi+2, Yi+2), . . . , (xn, Yn). The cross–validation method in log–scale is
obtained by using

CV logLS,CV(h) =
1

n− 1

n−1∑

i=1

[
log(Di)− log(σ̂

(−i)
Rice,n(xi, h))

]2
(4)
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with ĥlogLS,CV denoting the optimal bandwidth.

On the other hand, the robust alternatives to the classical cross-validation procedures can be
defined as follows. The robust bandwidth selector, ĥROB,CV, minimizes

CVROB,CV(h) =
s2n(h)

n− 1

n−1∑

i=1

ψ2
(

ui
sn(h)

)
(5)

where ui = (Di)
2 − (σ̂

(−i)
M,n (xi, h))

2 with σ
(−i)
M,n (xi, h) a robust scale estimator computed with a band-

width h and based on all the observations except (xi, Yi) and (xi+1, Yi+1) and sn(h) = median |ui|.
Besides, ĥlogROB,CV minimizes the related robustified criterion on log–scale, i.e., ĥlogROB,CV =

argminh∈HCV
log

ROB,CV(h) where

CV logROB,CV(h) =
s2n(h)

n− 1

n−1∑

i=1

ψ2
(

ui
sn(h)

)

where now ui = log(Di)− log(σ̂
(−i)
M,n (xi, h)).

A robust cross-validation criterion similar to that considered by Bianco and Boente (2007) for
partly linear autoregression models and by Boente and Rodriguez (2008) in partly linear regression
models can be defined. This approach splits the cross-validation error into two components, one
related to the bias and the other one to the variance. Taking into account this fact, a robust
alternative to the classical K−th fold cross–validation criterion, the split K−th fold, can be defined
as

CVROB,SKCV(h) =
K∑

j=1

µ2nj
(e
(j)
1 , . . . , e(j)nj

) + τ2nj
(e
(j)
1 , . . . , e(j)nj

) ,

where e
(j)
i =

(
∆̃
(j)
i

)2
−
(
σ̂
(j)
M,n(x̃i, h)

)2
, τn(z1, . . . , zn) and µn(z1, . . . , zn) are robust scale and location

estimators of the sample z1, . . . , zn, such as a tau-scale and the median. The robust split K−fold
cross–validation bandwidth is then defined as ĥROB,SKCV = argminh∈HCVROB,SKCV(h).

In an analogous way, the log-version split K−fold cross–validation criterion can be defined as

CV logROB,SKCV(h) =
K∑

j=1

µ2nj
(e
(j)
1 , . . . , e(j)nj

) + τ2nj
(e
(j)
1 , . . . , e(j)nj

) ,

where now e
(j)
i = log

(
∆̃
(j)
i

)
− log

(
σ̂
(j)
M,n(x̃i, h)

)
; so, ĥlogROB,SKCV = argminh∈HCV

log
ROB,SKCV(h).

Also, one may define the leave–one–out split versions as a particular case of the two last criteria
by considering K = n. The cross–validation errors will be denoted as CVROB,SCV and CV logROB,SCV,

leading to bandwidths ĥROB,SCV and ĥlogROB,SCV, respectively.

4 Asymptotic behaviour of data–driven local scale M−estimates

Based on deterministic bandwidths sequences, Boente et al. (2010) derived the asymptotic behavior
of the local scale M−estimators based on differences. Under mild conditions, the estimators turn
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out to be strongly consistent and asymptotically normal distributed. However, in many situations
as those described above, the bandwidth parameter is not fixed but random. The aim of this section
is to extend the results regarding the asymptotic behavior of the local scale M−estimators when
the smoothing parameter is random. To be more precise, if we denote by σ̂M,n(x, hn) the robust
local M−estimates computed using a sequence of bandwidths hn, we are interested on deriving the
asymptotic properties of the robust local M−estimates σ̂M,n(x, ĥn) where ĥn = ĥn(Y1, ..., Yn) stands
for a random bandwidth. Our results are related to the results obtained for the regression function
by Boente and Fraiman (1995).

Throughout this section, we will assume that the score function χ is continuous, even, bounded,
strictly increasing on the set Cχ = {x : χ(x) < ‖χ‖∞} with χ(0) = 0 and, without loss of generality,
that ‖χ‖∞ = 1.

For simplicity, we will only consider the Rosenblatt’ s weights function defined as wn,i(x, h) =
(nh)−1K ((x− xi)/h).

In order to derive the consistency of the estimators, we will need the following conditions.

C1. (i) K : R −→ R is even, bounded and such that

∫
|K(u)|du < ∞,

∫
K2(u)du < ∞ and

lim
u→∞

u2K(u) = 0.

(ii)

∫
K(u)du = 1.

(iii) K is continuously differentiable with derivative K ′ and the function K1(u) = uK ′(u) is
such that K1 and K2

1 satisfy (i).

C2. χ is Lipschitz continuous.

C3. The design points satisfy Mn = max
1≤i≤n−1

|xi+1 − xi| = O(n−1).

C4. There exists a sequence {hn}n≥1 of real numbers such that

(i) ĥn/hn
p−→ 1

(ii) lim
n→∞

nhn = +∞ and lim
n→∞

hn = 0.

It is worth noticing that C1 are standard conditions when dealing with kernel weights. Assump-
tions C3 and C4 were also considered in Boente and Fraiman (1995). The following result establishes
the consistency of the data–driven estimators.

Theorem 4.1. Let U1 and U2 be i.i.d. random variables with distribution G and Gx the distribution

of σ(x)(U2 − U1). Assume that C1 to C4 hold, and, moreover, that limn→∞ nhn/ log(n) = ∞ and

ĥn/hn
a.s.−→ 1. Then, for every x ∈ (0, 1),

σ̂M,n(x, ĥn)
a.s.−→ S(Gx)

where S(Gx), the solution of E [χ (σ(x) (U2 − U1)/(aS(Gx)))] = b, is the Huber scale functional.
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In order to obtain the asymptotic distribution of the data–driven estimators we will need some
additional assumptions.

N1. g and σ are Lipschitz continuous functions.

N2. The score function χ is twice continuously differentiable with first and second derivatives χ ′

and χ ′′ such that

i) χ1(u) = uχ ′(u) and χ2(u) = u2χ ′′(u) are bounded.

ii) for any u 6= 0, v 6= 0, ν(u, v) = E |χ ′(uU2 + vU1)U2| < ∞, where {Ui}i=1,2 are i.i.d,
U1 ∼ G.

N3. For any x ∈ (0, 1), the following limits exist

(i) lim
n→∞

(nhn)
−1/2

n−1∑

i=1

K

(
x− xi
hn

)
(σ(x)− σ(xi)) = β1

(ii) lim
n→∞

(nhn)
−1/2

n−1∑

i=1

K

(
x− xi
hn

)
(σ(xi)− σ(x))2 = 0.

Remark 4.1. The hypothesis N1 is usual in non-parametric setting. Note also that N2 does
not necessarily impose the existence of moments of the distribution of the errors; for instance this
hypothesis is fulfilled if the errors {Ui}i≥1 have Cauchy distribution and χ belongs to the Beaton–

Tukey family. N3 is related to the asymptotic bias. Assume that

∫
u2K(u)du < ∞. If nh3n → γ2,

where γ is some finite constant, and the scale function is continuously differentiable then β1 = 0
(since the kernel is an even function). Therefore, there is no asymptotic bias when the order of the
bandwidth is n−1/3. On the other hand, if nh5n → γ2 and σ(x) is twice continuously differentiable,

then β1 = γσ′′(x)

∫
u2K(u)du

(∫
K2(u)du

)1/2
.

Theorem 4.2. Assume C3, C4 and N1 to N3 hold. Then

(nhn)
1/2
[
σ̂M,n(x, ĥn)− S(Gx)

]
D−→ N

(
S(Gx)

σ(x)
β1, v

∫
K2(u)du

)

where v = v(Gx) = v1/v
2
2, with

v1 = v1(Gx) = var

[
χ

(
σ(x)(U2 − U1)

aS(Gx)

)]
+ 2β cov

[
χ

(
σ(x)(U2 − U1)

aS(Gx)

)
, χ

(
σ(x)(U4 − U3)

aS(Gx)

)]

v2 = v2(Gx) = E

[
χ ′
(
σ(x)(U2 − U1)

aS(Gx)

)(
σ(x)(U2 − U1)
a(S(Gx))2

)]
,

β =
∫
K2(u)du and {Ui}i≥1 are i.i.d. random variables with distribution G.
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5 Monte Carlo Study

In this section, a simulation study is carried out to compare, for moderate sample sizes, the per-
formance of the classical estimator, σ̂Rice,n(x, ĥn), with that of two robust local M−estimators of

the scale function, σ̂MAD,n(xĥn) and σ̂BT,n(xĥn), introduced in Section 2 when the bandwidth ĥn is
selected using the procedures described in Section 3.

In all cases, due to the expensive computing time when using cross–validation to select the
smoothing parameter, we only performed N = 500 replications generating independent samples of
size n = 100. Two different models for the regression and variance components have been consid-
ered. Theses models have been considered previously in Dette and Hetzler (2008), for homoscedastic
testing. They will be labeled as model M1 and M2 and they are defined as follows

• Model M1. This model considers as regression function g(x) = 2sen(4πx) while the scale
function is σ(x) = exp(x)

• Model M2. In this model the regression function is linear g(x) = 1 + x and the scale is
σ(x) = 1 + [1 + sen(10x)]2

In all cases, the design points were taken as xi = i/(n+ 1), 1 ≤ i ≤ n. The error’s distribution was
G(y) = (1 − ε)Φ(y) + ε H, with Φ the standard normal distribution and H modeling two types of
contamination,

a) a symmetric outlier contamination where H(y) = C(0, σ2) is the Cauchy distribution centered
at 0 with scale σ = 4 and

b) an asymmetric contamination where H = N(10, 0.1) is the normal distribution with mean 10
and variance 0.1.

In the first contamination scenario, we have a heavy–tailed distribution while, in the second one,
there is a sub–population in data (see Maronna et al., 2006). The amounts of contamination were
ε = 0, 0.1, 0.2 and 0.3. For both, the classical and robust smoothing procedures, we have used weights
with a standard gaussian kernel.

The bandwidth were selected using the cross–validation methods introduced in Section 3. More
precisely, we will compare the following criteria.

C.1) The classical K−fold cross–validation criterion CVLS,KCV for Rice, and the robust K−fold
CVROB,KCV and split robust K−fold CVROB,SKCV for theM−estimates. We will group this criteria
under the denomination of KCV−criteria.

C.2) The corresponding to the previous criteria on log scale CV logLS,KCV (for Rice), CV logROB,KCV, CV
log

ROB,SKCV

(for the M−estimates), under the denomination of KCV log−criteria.

C.3) The classical leave–one–out criterion CVLS,CV for Rice, and the robust CVROB,CV and split leave–
one–out CVROB,SCV for the M−estimates. This procedures will be grouped under the name of
CV−criteria.
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C.4) The corresponding to the previous criteria on log scale CV logLS,CV for Rice, and the robust CV logROB,CV

and split leave–one–out CV logROB,SCV for Rice and M−estimates, respectively. All of them under
the denomination of CV log−criteria.

For the K−fold cross–validation methods, we choose K = 2 while the score function ψ used for
the robust criteria was the Huber function with tuning constant 1.345. The minimization of the
cross–validation functions was carried out by inspection over the grid i/(n/2), 0 ≤ i ≤ n/2, where n
is the sample size.

To asses the behaviour of the selected bandwidth and the performance of each estimator, Tables
1 to 15 report, as summary measures, the mean and the standard deviation, between brackets, of
the resulting bandwidths ĥn and the estimated integrated square error in logarithmic scale of the
estimators, îsel, defined as

îselj(σ̂n(·, ĥn)) =
1

n

n∑

i=1

[
log

(
σ̂
(j)
n (xi, ĥn)

σ(xi)

)]2

where σ̂
(j)
n (xi, h) denotes the scale estimator, classical or robust, obtained at the j−th replication

with the bandwidth h. Figures 1, 2, 3 and 4 show the density estimators of the ratio between the
îsel of the robust estimators and that of the non–robust estimators, under the different criteria. The
density estimates were evaluated using the normal kernel with bandwidth 0.1 in all cases.

As shown in Tables 1 to 4 and 9 to 12, when data are not contaminated (i.e., the distribution
of the errors is F0), the robust estimators exhibit a loss of efficiency compared with the classical
local Rice. That is, the mean of the integrated squared errors of σ̂Rice,n is smaller than the means of
îsel(σ̂MAD,n) and îsel(σ̂BT,n).

The behavior of îsel(σ̂Rice,n) show the poor resistance of σ̂Rice,n to the presence of atypical data.
As the percentage of contamination increases, Figures 1 and 4 clarify the phenomena observed in
Tables 1 to 16 with respect to the better performance of the robust estimators, since the density
functions move toward the left of the point 1. Notice that, in most cases, the behavior of îsel is
much smaller than 1 for ε > 0.

Under symmetric contamination, σ̂MAD,n and σ̂BT,n have a similar behavior, although for high
contamination proportions (30%) and specially for the model M1, the local M−estimate σ̂BT,n is
slightly better than σ̂MAD,n. On the other hand, under asymmetric contaminations σ̂BT,n is clearly
more robust than σ̂MAD,n.

Note that, in general, the largest mean values of îsel appear under the model M2 where we
also obtain the smallest mean values for the selected bandwidths. This situation indicates that the
oscillating behavior of the scale function (presence of several critical points) increases the difficulties
in the estimation and less smoothing is needed. But, when the scale curve is a monotone function,
as it occurs under model M1, the mean values of the selected bandwidths tend to be larger. This
implies that more smoothing is needed and the mean values of îsel are smaller, compared with those
obtained under model M2.

It is also important to remark that all the bandwidth selection methods give the same conclusions
regarding the performance of the estimators in both models. But we also note that, in general, the
smaller values of the integrated square errors occur in SCV or in SCV log− criteria.
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Finally, we recommend the local M−estimator based on the Beaton–Tukey score function,
σ̂BT,n(x), since it is more stable than σ̂MAD,n(x) even for asymmetric outliers.

kiki

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥCV ĥSCV σ̂n(·, ĥCV) σ̂n(·, ĥSCV)

ε = 0 σ̂Rice,n 0.190 (0.096) 0.190 (0.096) 0.032 (0.026) 0.032 (0.026)
σ̂MAD,n 0.181 (0.130) 0.435 (0.078) 0.066 (0.058) 0.055 (0.033)
σ̂BT,n 0.235 (0.131) 0.431 (0.088) 0.065 (0.061) 0.067 (0.072)

ε = 0.10 σ̂Rice,n 0.430 (0.134) 0.430 (0.134) 4.280 (5.764) 4.280 (5.764)
σ̂MAD,n 0.239 (0.146) 0.442 (0.076) 0.098 (0.097) 0.085 (0.059)
σ̂BT,n 0.286 (0.138) 0.442 (0.082) 0.087 (0.076) 0.085 (0.064)

ε = 0.20 σ̂Rice,n 0.435 (0.132) 0.435 (0.132) 7.121 (7.401) 7.121 (7.401)
σ̂MAD,n 0.301 (0.152) 0.453 (0.069) 0.220 (0.158) 0.207 (0.138)
σ̂BT,n 0.354 (0.130) 0.453 (0.072) 0.174 (0.122) 0.172 (0.115)

ε = 0.30 σ̂Rice,n 0.433 (0.134) 0.433 (0.134) 9.362 (7.989) 9.362 (7.989)
σ̂MAD,n 0.360 (0.140) 0.459 (0.062) 0.466 (0.276) 0.458 (0.258)
σ̂BT,n 0.403 (0.120) 0.457 (0.069) 0.351 (0.205) 0.347 (0.204)

Table 1: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with symmetric contamination. CV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
CV

ĥlog
SCV

σ̂n(·, ĥ
log
CV
) σ̂n(·, ĥ

log
SCV

)

ε = 0 σ̂Rice,n 0.077 (0.071) 0.077 (0.071) 0.056 (0.040) 0.056 (0.040)
σ̂MAD,n 0.225 (0.137) 0.216 (0.131) 0.056 (0.043) 0.061 (0.054)
σ̂BT,n 0.243 (0.138) 0.256 (0.130) 0.067 (0.065) 0.062 (0.056)

ε = 0.10 σ̂Rice,n 0.040 (0.056) 0.040 (0.056) 1.830 (1.829) 1.830 (1.829)
σ̂MAD,n 0.232 (0.142) 0.242 (0.134) 0.100 (0.102) 0.099 (0.086)
σ̂BT,n 0.260 (0.146) 0.258 (0.134) 0.097 (0.084) 0.093 (0.083)

ε = 0.20 σ̂Rice,n 0.035 (0.039) 0.035 (0.039) 3.351 (2.373) 3.351 (2.373)
σ̂MAD,n 0.249 (0.155) 0.252 (0.138) 0.245 (0.180) 0.233 (0.170)
σ̂BT,n 0.254 (0.150) 0.268 (0.141) 0.204 (0.148) 0.199 (0.142)

ε = 0.30 σ̂Rice,n 0.038 (0.053) 0.038 (0.053) 4.723 (2.668) 4.723 (2.668)
σ̂MAD,n 0.228 (0.158) 0.263 (0.150) 0.571 (0.369) 0.531 (0.340)
σ̂BT,n 0.251 (0.159) 0.279 (0.150) 0.414 (0.250) 0.398 (0.243)

Table 2: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with symmetric contamination. CV log−criteria.
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Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥKCV ĥSKCV σ̂n(·, ĥKCV) σ̂n(·, ĥSKCV)

ε = 0 σ̂Rice,n 0.283 (0.132) 0.283 (0.132) 0.036 (0.024) 0.036 (0.024)
σ̂MAD,n 0.087 (0.124) 0.384 (0.124) 0.133 (0.078) 0.052 (0.031)
σ̂BT,n 0.144 (0.169) 0.411 (0.112) 0.164 (0.122) 0.063 (0.043)

ε = 0.10 σ̂Rice,n 0.422 (0.140) 0.422 (0.1405) 4.269 (5.731) 4.269 (5.731)
σ̂MAD,n 0.110 (0.143) 0.397 (0.119) 0.205 (0.165) 0.085 (0.060)
σ̂BT,n 0.169 (0.180) 0.432 (0.097) 0.199 (0.151) 0.085 (0.065)

ε = 0.20 σ̂Rice,n 0.440 (0.190) 0.440 (0.190) 7.104 (7.326) 7.104 (7.326)
σ̂MAD,n 0.133 (0.160) 0.414 (0.109) 0.408 (0.286) 0.210 (0.145)
σ̂BT,n 0.182 (0.185) 0.424 (0.108) 0.317 (0.211) 0.173 (0.116)

ε = 0.30 σ̂Rice,n 0.439 (0.121) 0.439 (0.121) 9.289 (7.872) 9.289 (7.872)
σ̂MAD,n 0.136 (0.159) 0.410 (0.119) 0.774 (0.462) 0.463 (0.265)
σ̂BT,n 0.190 (0.190) 0.428 (0.112) 0.544 (0.3201) 0.351 (0.205)

Table 3: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with symmetric contamination. KCV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
KCV

ĥlog
SKCV

σ̂n(·, ĥ
log
KCV

) σ̂n(·, ĥ
log
SKCV

)

ε = 0 σ̂Rice,n 0.081 (0.083) 0.081 (0.083) 0.054 (0.038) 0.054 (0.038)
σ̂MAD,n 0.140 (0.159) 0.269 (0.150) 0.118 (0.082) 0.055 (0.040)
σ̂BT,n 0.160 (0.173) 0.303 (0.148) 0.158 (0.123) 0.062 (0.048)

ε = 0.10 σ̂Rice,n 0.038 (0.049) 0.038 (0.049) 1.831 (1.832) 1.831 (1.832)
σ̂MAD,n 0.143 (0.155) 0.273 (0.147) 0.180 (0.162) 0.092 (0.071)
σ̂BT,n 0.175 (0.179) 0.311 (0.146) 0.196 (0.151) 0.091 (0.075)

ε = 0.20 σ̂Rice,n 0.037 (0.053) 0.037 (0.053) 3.350 (2.370) 3.350 (2.370)
σ̂MAD,n 0.143 (0.157) 0.290 (0.146) 0.388 (0.284) 0.218 (0.148)
σ̂BT,n 0.174 (0.181) 0.310 (0.146) 0.320 (0.214) 0.184 (0.121)

ε = 0.30 σ̂Rice,n 0.033 (0.033) 0.033 (0.033) 4.718 (2.671) 4.718 (2.671)
σ̂MAD,n 0.132 (0.145) 0.293 (0.146) 0.754 (0.462) 0.489 (0.290)
σ̂BT,n 0.165 (0.170) 0.308 (0.143) 0.552 (0.320) 0.367 (0.212)

Table 4: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with symmetric contamination. KCV log−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥCV ĥSCV σ̂n(·, ĥCV) σ̂n(·, ĥSCV)

ε = 0.10 σ̂Rice,n 0.267 (0.169) 0.267 (0.169) 1.313 (0.352) 1.313 (0.352)
σ̂MAD,n 0.292 (0.146) 0.446 (0.074) 0.121 (0.116) 0.115 (0.084)
σ̂BT,n 0.338 (0.131) 0.443 (0.079) 0.099 (0.086) 0.101 (0.081)

ε = 0.20 σ̂Rice,n 0.206 (0.131) 0.206 (0.131) 2.029 (0.270) 2.029 (0.270)
σ̂MAD,n 0.407 (0.118) 0.459 (0.063) 0.359 (0.342) 0.354 (0.329)
σ̂BT,n 0.441 (0.091) 0.458 (0.070) 0.194 (0.137) 0.196 (0.142)

ε = 0.30 σ̂Rice,n 0.164 (0.099) 0.164 (0.099) 2.407 (0.227) 2.407 (0.227)
σ̂MAD,n 0.401 (0.135) 0.459 (0.064) 0.996 (0.861) 0.353 (0.329)
σ̂BT,n 0.472 (0.069) 0.458 (0.070) 0.310 (0.243) 0.196 (0.142)

Table 5: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with asymmetric contamination. CV−criteria.
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Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
CV

ĥlog
SCV

σ̂n(·, ĥ
log
CV
) σ̂n(·, ĥ

log
SCV

)

ε = 0.10 σ̂Rice,n 0.058 (0.079) 0.058 (0.079) 1.152 (0.321) 1.152 (0.321)
σ̂MAD,n 0.213 (0.148) 0.246 (0.138) 0.183 (0.221) 0.148 (0.156)
σ̂BT,n 0.248 (0.151) 0.266 (0.141) 0.136 (0.143) 0.123 (0.124)

ε = 0.20 σ̂Rice,n 0.059 (0.059) 0.059 (0.059) 1.892 (0.278) 1.892 (0.278)
σ̂MAD,n 0.219 (0.184) 0.270 (0.151) 0.657 (0.523) 0.490 (0.482)
σ̂BT,n 0.171 (0.179) 0.273 (0.161) 0.400 (0.259) 0.262 (0.205)

ε = 0.30 σ̂Rice,n 0.058 (0.062) 0.058 (0.062) 2.309 (0.229) 2.309 (0.229)
σ̂MAD,n 0.274 (0.177) 0.316 (0.162) 1.270 (0.853) 1.130 (0.884)
σ̂BT,n 0.150 (0.163) 0.271 (0.161) 0.611 (0.368) 0.340 (0.298)

Table 6: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with asymmetric contamination CV log−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥKCV ĥSKCV σ̂n(·, ĥKCV) σ̂n(·, ĥSKCV)

ε = 0.10 σ̂MAD,n 0.118 (0.148) 0.403 (0.113) 0.320 (0.287) 0.116 (0.096)
σ̂BT,n 0.161 (0.175) 0.424 (0.108) 0.242 (0.178) 0.102 (0.085)

ε = 0.20 σ̂Rice,n 0.301 (0.141) 0.301 (0.141) 2.105 (0.276) 2.105 (0.276)
σ̂MAD,n 0.131 (0.158) 0.396 (0.130) 0.811 (0.597) 0.387 (0.367)
σ̂BT,n 0.179 (0.184) 0.432 (0.109) 0.417 (0.300) 0.201 (0.149)

ε = 0.30 σ̂Rice,n 0.279 (0.121) 0.279 (0.121) 2.494 (0.235) 2.494 (0.235)
σ̂MAD,n 0.134 (0.191) 0.344 (0.172) 1.342 (0.905) 1.103 (0.879)
σ̂BT,n 0.238 (0.224) 0.398 (0.150) 0.631 (0.452) 0.344 (0.281)

Table 7: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with asymmetric contamination. KCV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
KCV

ĥlog
SKCV

σ̂n(·, ĥ
log
KCV

) σ̂n(·, ĥ
log
SKCV

)

ε = 0.10 σ̂Rice,n 0.043 (0.059) 0.043 (0.059) 1.140 (0.317) 1.140 (0.317)
σ̂MAD,n 0.142 (0.162) 0.269 (0.143) 0.308 (0.286) 0.129 (0.121)
σ̂BT,n 0.164 (0.179) 0.296 (0.144) 0.244 (0.179) 0.110 (0.097)

ε = 0.20 σ̂Rice,n 0.051 (0.056) 0.051 (0.056) 1.887 (0.283) 1.887 (0.283)
σ̂MAD,n 0.138 (0.162) 0.305 (0.149) 0.790 (0.592) 0.419 (0.381)
σ̂BT,n 0.152 (0.174) 0.303 (0.151) 0.436 (0.297) 0.217 (0.154)

ε = 0.30 σ̂Rice,n 0.054 (0.061) 0.293 (0.164) 2.308 (0.234) 2.308 (0.234)
σ̂MAD,n 0.154 (0.176) 0.293 (0.164) 1.370 (0.891) 1.152 (0.885)
σ̂BT,n 0.130 (0.158) 0.322 (0.154) 0.680 (0.447) 0.341 (0.257)

Table 8: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x). Errors with asymmetric contamination. KCV log−criteria.
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Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥCV ĥSCV σ̂n(·, ĥCV) σ̂n(·, ĥSCV)

ε = 0 σ̂Rice,n 0.069 (0.044) 0.069 (0.044) 0.097 (0.056) 0.097 (0.056)
σ̂MAD,n 0.174 (0.086) 0.339 (0.087) 0.223 (0.093) 0.330 (0.062)
σ̂BT,n 0.195 (0.076) 0.325 (0.084) 0.267 (0.107) 0.349 (0.081)

ε = 0.10 σ̂Rice,n 0.421 (0.147) 0.421 (0.147) 4.877 (6.087) 4.877 (6.087)
σ̂MAD,n 0.219 (0.098) 0.354 (0.082) 0.271 (0.085) 0.345 (0.064)
σ̂BT,n 0.244 (0.087) 0.336 (0.091) 0.290 (0.074) 0.330 (0.057)

ε = 0.20 σ̂Rice,n 0.434 (0.138) 7.781 (7.43) 0.434 (0.138) 7.781 (7.43)
σ̂MAD,n 0.264 (0.105) 0.384 (0.089) 0.422 (0.166) 0.476 (0.161)
σ̂BT,n 0.293 (0.098) 0.349 (0.089) 0.361 (0.107) 0.380 (0.098)

ε = 0.30 σ̂Rice,n 0.439 (0.129) 0.439 (0.129) 10.063 (7.988) 10.063 (7.988)
σ̂MAD,n 0.297 (0.109) 0.407 (0.081) 0.722 (0.305) 0.752 (0.294)
σ̂BT,n 0.327 (0.097) 0.369 (0.090) 0.516 (0.186) 0.525 (0.183)

Table 9: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with symmetric contamination. CV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
CV

ĥlog
SCV

σ̂n(·, ĥ
log
CV
) σ̂n(·, ĥ

log
SCV

)

ε = 0 σ̂Rice,n 0.031 (0.004) 0.031 (0.004) 0.076 (0.033) 0.076 (0.033)
σ̂MAD,n 0.087 (0.063) 0.080 (0.045) 0.141 (0.076) 0.140 (0.074)
σ̂BT,n 0.099 (0.071) 0.098 (0.057) 0.171 (0.090) 0.168 (0.089)

ε = 0.10 σ̂Rice,n 0.031 (0.014) 0.031 (0.014) 1.869 (1.848) 1.869 (1.848)
σ̂MAD,n 0.111 (0.087) 0.098 (0.057) 0.207 (0.108) 0.198 (0.109)
σ̂BT,n 0.125 (0.094) 0.117 (0.084) 0.206 (0.094) 0.199 (0.094)

ε = 0.20 σ̂Rice,n 0.031 (0.021) 0.031 (0.021) 3.417 (2.397) 3.417 (2.397)
σ̂MAD,n 0.155 (0.132) 0.141 (0.117) 0.410 (0.239) 0.384 (0.212)
σ̂BT,n 0.168 (0.128) 0.145 (0.114) 0.322 (0.151) 0.310 (0.150)

ε = 0.30 σ̂Rice,n 0.033 (0.034) 0.033 (0.034) 4.811 (2.705) 4.811 (2.705)
σ̂MAD,n 0.174 (0.144) 0.168 (0.134) 0.753 (0.367) 0.730 (0.359)
σ̂BT,n 0.174 (0.138) 0.166 (0.132) 0.529 (0.239) 0.517 (0.232)

Table 10: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with symmetric contamination. CV log−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥKCV ĥSKCV σ̂n(·, ĥKCV) σ̂n(·, ĥSKCV)

ε = 0 σ̂Rice,n 0.218 (0.172) 0.218 (0.172) 0.239 (0.139) 0.239 (0.139)
σ̂MAD,n 0.109 (0.126) 0.328 (0.109) 0.208 (0.095) 0.318 (0.075)
σ̂BT,n 0.133 (0.136) 0.340 (0.108) 0.267 (0.105) 0.347 (0.086)

ε = 0.10 σ̂Rice,n 0.435 (0.128) 0.435 (0.128) 4.872 (6.018) 4.872 (6.018)
σ̂MAD,n 0.127 (0.142) 0.344 (0.115) 0.285 (0.151) 0.333 (0.081)
σ̂BT,n 0.158 (0.153) 0.348 (0.111) 0.301 (0.108) 0.328 (0.065)

ε = 0.20 σ̂Rice,n 0.442 (0.122) 0.442 (0.122) 7.779 (7.354) 7.779 (7.354)
σ̂MAD,n 0.138 (0.148) 0.355 (0.120) 0.500 (0.263) 0.468 (0.169)
σ̂BT,n 0.162 (0.153) 0.353 (0.119) 0.405 (0.168) 0.377 (0.108)

ε = 0.30 σ̂Rice,n 0.435 (0.129) 0.435 (0.129) 9.972 (7.909) 9.972 (7.909)
σ̂MAD,n 0.136 (0.148) 0.372 (0.121) 0.891 (0.434) 0.749 (0.304)
σ̂BT,n 0.165 (0.157) 0.372 (0.123) 0.616 (0.279) 0.528 (0.195)

Table 11: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with symmetric contamination. KCV−criteria.
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Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
KCV

ĥlog
SKCV

σ̂n(·, ĥ
log
KCV

) σ̂n(·, ĥ
log
SKCV

)

ε = 0 σ̂Rice,n 0.032 (0.007) 0.032 (0.007) 0.076 (0.033) 0.076 (0.033)
σ̂MAD,n 0.010 (0.117) 0.080 (0.045) 0.193 (0.093) 0.139 (0.074)
σ̂BT,n 0.117 (0.130) 0.098 (0.057) 0.250 (0.111) 0.168 (0.088)

ε = 0.10 σ̂Rice,n 0.031 (0.005) 0.031 (0.005) 1.872 (1.851) 1.872 (1.851)
σ̂MAD,n 0.123 (0.140) 0.097 (0.074) 0.273 (0.155) 0.199 (0.109)
σ̂BT,n 0.150 (0.152) 0.117 (0.084) 0.296 (0.112) 0.199 (0.094)

ε = 0.20 σ̂Rice,n 0.031 (0.005) 0.031 (0.005) 3.416 (2.396) 3.416 (2.396)
σ̂MAD,n 0.133 (0.152) 0.141 (0.117) 0.490 (0.265) 0.384 (0.213)
σ̂BT,n 0.158 (0.163) 0.145 (0.114) 0.404 (0.172) 0.310 (0.150)

ε = 0.30 σ̂Rice,n 0.030 (0.004) 0.030 (0.004) 4.803 (2.670) 4.803 (2.670)
σ̂MAD,n 0.127 (0.144) 0.168 (0.134) 0.867 (0.434) 0.730 (0.359)
σ̂BT,n 0.148 (0.153) 0.166 (0.132) 0.614 (0.282) 0.517 (0.232)

Table 12: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with symmetric contamination. KCV log−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥCV ĥSCV σ̂n(·, ĥCV) σ̂n(·, ĥSCV)

ε = 0.10 σ̂Rice,n 0.232 (0.207) 0.232 (0.207) 1.711 (0.513) 1.711 (0.513)
σ̂MAD,n 0.261 (0.103) 0.376 (0.089) 0.338 (0.128) 0.390 (0.111)
σ̂BT,n 0.281 (0.091) 0.344 (0.090) 0.317 (0.079) 0.341 (0.066)

ε = 0.20 σ̂Rice,n 0.096 (0.116) 0.096 (0.116) 2.303 (0.367) 2.303 (0.367)
σ̂MAD,n 0.355 (0.113) 0.423 (0.079) 0.705 (0.373) 0.724 (0.365)
σ̂BT,n 0.370 (0.093) 0.376 (0.092) 0.437 (0.142) 0.440 (0.140)

ε = 0.30 σ̂Rice,n 0.059 (0.042) 0.059 (0.042) 2.636 (0.290) 2.636 (0.290)
σ̂MAD,n 0.364 (0.139) 0.449 (0.070) 1.331 (0.621) 1.337 (0.593)
σ̂BT,n 0.439 (0.070) 0.404 (0.094) 0.617 (0.244) 0.612 (0.248)

Table 13: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with asymmetric contamination. CV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
CV

ĥlog
SCV

σ̂n(·, ĥ
log
CV
) σ̂n(·, ĥ

log
SCV

)

ε = 0.10 σ̂Rice,n 0.034 (0.031) 0.034 (0.031) 1.190 (0.325) 1.190 (0.325)
σ̂MAD,n 0.178 (0.150) 0.126 (0.108) 0.320 (0.196) 0.280 (0.186)
σ̂BT,n 0.181 (0.147) 0.129 (0.101) 0.264 (0.138) 0.237 (0.123)

ε = 0.20 σ̂Rice,n 0.032 (0.014) 0.032 (0.014) 1.955 (0.285) 1.955 (0.285)
σ̂MAD,n 0.229 (0.160) 0.213 (0.163) 0.795 (0.429) 0.756 (0.429)
σ̂BT,n 0.270 (0.169) 0.189 (0.152) 0.479 (0.202) 0.420 (0.204)

ε = 0.30 σ̂Rice,n 0.031 (0.003) 0.031 (0.003) 2.384 (0.233) 2.384 (0.233)
σ̂MAD,n 0.183 (0.146) 0.222 (0.163) 1.468 (0.645) 1.413 (0.615)
σ̂BT,n 0.200 (0.162) 0.178 (0.143) 0.732 (0.347) 0.625 (0.294)

Table 14: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with asymmetric contamination. CV log−criteria.
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Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥKCV ĥSKCV σ̂n(·, ĥKCV) σ̂n(·, ĥSKCV)

ε = 0.10 σ̂Rice,n 0.322 (0.181) 0.322 (0.181) 1.979 (0.543) 1.979 (0.543)
σ̂MAD,n 0.116 (0.134) 0.351 (0.114) 0.397 (0.209) 0.379 (0.121)
σ̂BT,n 0.152 ( 0.155) 0.356 (0.116) 0.337 (0.128) 0.339 (0.076)

ε = 0.20 σ̂Rice,n 0.245 (0.176) 0.245 (0.176) 2.750 (0.488) 2.750 (0.488)
σ̂MAD,n 0.135 (0.157) 0.373 (0.130) 0.922 (0.476) 0.718 (0.368)
σ̂BT,n 0.166 (0.168) 0.372 (0.121) 0.523 (0.247) 0.436 (0.147)

ε = 0.30 σ̂Rice,n 0.207 (0.170) 0.207 (0.170) 3.118 (0.444) 3.118 (0.444)
σ̂MAD,n 0.127 (0.160) 0.392 (0.120) 1.584 (0.690) 1.349 (0.601)
σ̂BT,n 0.185 (0.182) 0.403 (0.118) 0.787 (0.378) 0.610 (0.250)

Table 15: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with asymmetric contamination. KCV−criteria.

Local Selected Bandwidth îsel

M−estimates mean (standard deviation) mean (standard deviation)

ĥlog
KCV

ĥlog
SKCV

σ̂n(·, ĥ
log
KCV

) σ̂n(·, ĥ
log
SKCV

)

ε = 0.10 σ̂Rice,n 0.031 (0.005) 0.031 (0.005) 1.187 (0.322) 1.187 (0.322)
σ̂MAD,n 0.122 (0.143) 0.202 (0.141) 0.390 (0.206) 0.298 (0.159)
σ̂BT,n 0.149 (0.161) 0.224 (0.143) 0.336 (0.133) 0.272 (0.106)

ε = 0.20 σ̂Rice,n 0.031 (0.006) 0.031 (0.006) 1.954 (0.294) 1.954 (0.294)
σ̂MAD,n 0.127 (0.147) 0.241 (0.152) 0.914 (0.471) 0.710 (0.393)
σ̂BT,n 0.156 (0.170) 0.253 (0.147) 0.527 (0.249) 0.403 (0.177)

ε = 0.30 σ̂Rice,n 0.031 (0.004) 0.031 (0.004) 2.387 (0.237) 2.387 (0.237)
σ̂MAD,n 0.124 (0.144) 0.251 (0.152) 1.557 (0.664) 1.378 (0.613)
σ̂BT,n 0.148 (0.162) 0.265 (0.151) 0.791 (0.379) 0.594 (0.274)

Table 16: Mean and standard deviation (between brackets) of the selected bandwidths and of the îsel for the local scale–

estimates. Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2. Errors with asymmetric contamination. KCV log−criteria.
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Figure 1: Density estimator of the ratio between the îsel of the robust estimators and that of the non–robust estimator σ̂Rice,n(x). The solid line

corresponds to σ̂MAD,n(x) and the broken (- -) lines correspond to σ̂BT,n(x). Model M1 : g(x) = 2sen(4πx), σ(x) = exp(x) with symmetric contamination.

a) CV (left) and SCV (right). b) KCV (left) and SKCV (right). c) CV log (left) and SCV log (right). d) KCV log (left) and SKCV log (right)
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Figure 2: Density estimator of the ratio between the îsel of the robust estimators and that of the non–robust estimator σ̂Rice,n(x). The solid line

corresponds to σ̂MAD,n(x) and the broken (- -) lines correspond to σ̂BT,n(x). ModelM1 : g(x) = 2sen(4πx), σ(x) = exp(x) with asymmetric contamination.

a) CV (left) and SCV (right). b) KCV (left) and SKCV (right). c) CV log (left) and SCV log (right). d) KCV log (left) and SKCV log (right)
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ε = 0.10 ε = 0.30 ε = 0.10 ε = 0.30
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Figure 3: Density estimator of the ratio between the îsel of the robust estimators and that of the non–robust estimator σ̂Rice,n(x). The solid line

corresponds to σ̂MAD,n(x) and the broken (- -) lines correspond to σ̂BT,n(x). Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2 with symmetric

contamination. a) CV (left) and SCV (right). b) KCV (left) and SKCV (right). c) CV log (left) and SCV log (right). d) KCV log (left) and SKCV log

(right)
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ε = 0.10 ε = 0.30 ε = 0.10 ε = 0.30
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Figure 4: Density estimator of the ratio between the îsel of the robust estimators and that of the non–robust estimator σ̂Rice,n(x). The solid line

corresponds to σ̂MAD,n(x) and the broken (- -) lines correspond to σ̂BT,n(x). Model M2 : g(x) = 1 + x, σ(x) = 1 + [1 + sen(10x)]2 with asymmetric

contamination. a) CV (left) and SCV (right). b) KCV (left) and SKCV (right). c) CV log (left) and SCV log (right). d) KCV log (left) and SKCV log

(right)
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6 Concluding Remarks

Robust estimation of the scale function has become an important research problem. Although
classical and robust proposals, based on differences of the responses variables, have been introduced
to deal with the scale function estimation, the robust bandwidth selection problem has been less
studied.

In this paper, the asymptotic behaviour of the local robust data–driven M−estimators for the
scale function based on successive differences was studied. To be more precise, under regularity
conditions, the data–driven robust kernel–based scale estimators based on differences turn out to be
strong consistent and asymptotically normally distributed.

As in regression, the selection of the smoothing parameter is an important issue when considering
robust estimators of the scale function. In order to select the smoothing parameter, we proposed
several robust cross–validation procedures. The performance of the classical and robust bandwidth
selection methods as well as the behaviour of robust and non-robust estimators based on these
selected bandwidths was compared under the central model and under different contaminations.

Independently of the robust data–driven bandwidth selected, M−estimators based on smooth
and bounded score functions have the best performance for the models and contaminations studied.
Moreover, the robust approaches obtained splitting the cross-validation error into two components
one related to bias and the other to the variance tends to perform better.

A Appendix

Proof of Theorem 4.1. For the sake of simplicity, we will begin by fixing some notation. For any
i = 1, . . . , n− 1, let Y ∗i = Yi+1 − Yi , U∗i = Ui+1 − Ui, Sx = S(Gx) and

λn,b(x, s, h) = (nh)−1
n∑

i=1

K

(
x− xi
h

)
χ

(
Y ∗i
as

)
− b

λ(x, s) = E

[
χ

(
σ(x)U∗1
as

)]
− b.

Theorem 4.1 in Boente et al. (2010) implies that λn(x, s, hn)
a.s.−→ λ(x, s). Hence, if we assume that

λn(x, s, ĥn)− λn(x, s, hn) a.s.−→ 0 (A.1)

holds, we have that λn(x, s, ĥn)
a.s.−→ λ(x, s). Using that λ(x, Sx) = 0 and that χ is strictly increasing

on [0, ‖χ‖∞), we have that, for any ε > 0, λ(x, Sx − ε) < 0 < λ(x, Sx + ε). Therefore, for n

large enough, we have that λn(x, Sx − ε, ĥn) < 0 < λn(x, Sx + ε, ĥn), a.s., which implies that
σ̂M,n(x, ĥn)

a.s.−→ S(Gx).

It remains to show that (A.1) holds. Define Zi = χ (σ(x)Y ∗i /(as)) and write λn(x, s, ĥn) −
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λn(x, s, hn) = S1,n + S2,n with

S1,n = (nhn)
−1

n∑

i=1

K

(
x− xi
hn

)
Zi

[
hn/ĥn − 1

]

S2,n = (nĥn)
−1

n∑

i=1

{
K

(
x− xi
ĥn

)
−K

(
x− xi
hn

)}
Zi

In order to derive (A.1) it is enough to show that

S1,n
a.s.−→ 0 (A.2)

S2,n
a.s.−→ 0. (A.3)

Using that ĥn/h
a.s.−→ 1, |Zi| ≤ ‖χ‖∞ and that (nhn)

−1
∑n

i=1 |K ((x− xi)/hn)| →
∫
|K(u)| du, (A.2)

follows easily. To obtain (A.3), write

S2,n = (nhn)
−1

n∑

i=1

K1

(
x− xi
ξn

)[
hn
ξn

] [
hn

ĥn
− 1

]
Zi ,

where K1(u) = uK ′(u) and ξn is an intermediate point between min(hn, ĥn) and max(hn, ĥn). Since
ĥn/hn

a.s.−→ 1, there exists a set N such that P(N ) = 0 and for all ω /∈ N , (1/2) < ĥn/hn < 2 holds,
which implies that ξn ∈ [h(m), h(M)] with h(m) = hn/2 and h(M) = 2hn. From now on, we restrict
our attention to those points ω /∈ N . Noting that

|S2,n| ≤ 2

∣∣∣∣
hn

ĥn
− 1

∣∣∣∣ ‖χ‖∞ (nhn)
−1

n∑

i=1

∣∣∣∣K1
(
x− xi
ξn

)∣∣∣∣ ,

it is enough to show that lim sup |An| < ∞ where An = (ξn/hn)Cn and Cn =
(nξn)

−1
∑n

i=1 |K1 ((x− xi)/ξn)|. Using that ξn ∈ [h(m), h(M)], we get (ξn/hn) ∈ [1/2, 2] and so,

ξn → 0 and nξn →∞ implying that Cn →
∫
|K(u)| du which concludes the proof.

Proof of Theorem 4.2. Let {Y ∗i }i≥1, {U∗i }i≥1 and Sx = S(Gx) be as in the proof of Theorem
4.1. Also, let Sn(h) = (nhn)

1/2λn,b(x, Sx, h) with

λn,b(x, s, h) = (nh)−1
n∑

i=1

K

(
x− xi
h

)
χ

(
Y ∗i
as

)
− b

and

λ̃1n(x, s, h) = (nh)−1S−1x

n∑

i=1

K

(
x− xi
h

)
χ1

(
Y ∗i
as

)
.

Using a second order Taylor’s expansion, we obtain

0 = (nhn)
1/2λn,b(x, σ̂M,n(x, ĥn), ĥn) = Sn(ĥn)− (nhn)

1/2
(
σ̂M,n(x, ĥn)− Sx

)
An(ĥn)
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where

An(ĥn) = λ̃1n(x, Sx, ĥn)−
(
σ̂M,n(x, ĥn)− Sx

)
Bn(ĥn)

Bn(ĥn) = ξ−2n (nĥn)
−1

n∑

i=1

K

(
x− xi
ĥn

)
χ3

(
Y ∗i
aξn

)
,

with χ3(u) = χ1(u) + χ2(u) and ξn = ξn(x, ĥn) an intermediate point between σ̂M,n(x, ĥn) and Sx.
Hence, we have that

(nhn)
1/2
(
σ̂M,n(x, ĥn)− Sx

)
= Sn(ĥn)/An(ĥn).

In the proof of Theorem 4.2 in Boente et al. (2010), it is shown that

Sn(hn)
D−→ N

(
S(Gx)

σ(x)
β1

(∫
K2(u)du

) 1
2

, v

∫
K2(u)du

)
,

hence, to conclude the proof, it will be enough to prove that

An(ĥn)
p−→ v2 (A.4)

Sn(ĥn)− Sn(hn) p−→ 0. (A.5)

Since σ̂M,n(x, ĥn) − Sx
p−→ 0 and considering that (A.12) in Boente et al. (2010) implies that

λ̃1n(x, Sx, hn)
p−→ v2, (A.4) follows if we show that

λ̃1n (x, Sx, hn)− λ̃1n
(
x, Sx, ĥn

)
p−→ 0 (A.6)

Bn(ĥn) = Op(1). (A.7)

The same arguments considered to derive (A.1) can be used to obtain (A.6). Using that ξn =

ξn(x ĥn)
p−→ Sx, the bound

∣∣∣∣∣(nĥn)
−1

n∑

i=1

K

(
x− xi
ĥn

)
χ3

(
Y ∗i
aξn

)∣∣∣∣∣ ≤ ‖χ3‖∞ (nĥn)
−1

n∑

i=1

∣∣∣∣K
(
x− xi
ĥn

)∣∣∣∣ ,

and that analogous arguments to those considered above lead to

(nĥn)
−1

n∑

i=1

∣∣∣∣K
(
x− xi
ĥn

)∣∣∣∣− (nhn)
−1

n∑

i=1

∣∣∣∣K
(
x− xi
hn

)∣∣∣∣
p−→ 0 ,

(A.7) follows from fact that (nhn)
−1

n∑

i=1

∣∣∣∣K
(
x− xi
hn

)∣∣∣∣→
∫
|K(u)| du.

We now prove (A.5). The fact that τ̂n = ĥn/hn
p−→ 1, implies that P (τ̂n ∈ [r, s]) → 1, with

r and s constants satisfying 0 < r < 1 < s. We now define the stochastic process Vn(τ) =
(nhn)

1/2λn,b(x, Sx, τhn) with τ ∈ [r, s], and note that Vn(τ̂n) = Sn(ĥn) and Vn(1) = Sn(hn).
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Assume that there exists an stochastic process V belongs to C[r, s], the space of continuous
functions on [r, s], such that

Vn
D−→ V . (A.8)

Using that τ̂n
p−→ 1, we have that for any η > 0, there exists δ > 0 and n0 ∈ N such that

P (|τ̂n − 1| > δ) < η/2, ∀n ≥ n0.

On the other hand, (A.8) implies that there exists n1 ∈ N such that

P

(
sup

|τ−1|<δ
|Vn(τ)− Vn(1)| > ε

)
≤ η/2, ∀n ≥ n1.

These inequalities imply that ∀n ≥ max(n0, n1)

P (|Vn(τ̂n)− Vn(1)| > ε) ≤ P (|τ̂n − 1| > δ) + P

(
sup

|τ−1|<δ
|Vn(τ)− Vn(1)| > ε

)
≤ η ,

and (A.5) follows. To prove (A.8), define Un(τ) = (nhn)
1/2 {λn,b(x, Sx, τhn)− E [λn,b(x, Sx, τhn)]}.

Then, Vn(τ) = Un(τ) + (nhn)
1/2

E [λn,b(x, Sx, τhn)] = Un(τ) + γn(τ). Using analogous arguments to
those considered to prove Lemma A.2 in Boente et al. (2010), it is easy to show that

sup
τ∈[r,s]

∣∣∣∣(nhn)1/2E [λn,b(x, Sx, τhn)]− β1
Sx
σ(x)

v2

τ1/2

∣∣∣∣→ 0,

i.e., γn(τ) → γ(τ) = β1Sxv2(σ(x)τ
1/2)−1 uniformly on [r, s]. Hence (A.8) follows if we show that

Un
D−→ U , where U is a gaussian stochastic process on C[r, s]. Therefore, it remains to show that

(i) For any τ1, . . . τk ∈ [r, s], (Uτ1 , . . . Uτk) converge to a multivariate normal distribution N(0,Σ).

(ii) The sequence {Un(r)}n≥1 is tight.

(iii) There exists a constant c such that E [Un(τ2)− Un(τ1)]2 ≤ c (τ2 − τ1)2, for 0 < r < τ1 < τ2 <
s < 1.

As it is well known, to derive (i) it is enough to show that, for any vector a = (a1, . . . , ak)
t ∈ R

k,
Wn =

∑k
j=1 ajUn(τj) converge to a normal distribution. Note that

Un(τ) = (nhn)
1/2 1

nτhn

n∑

i=1

K

(
x− xi
τhn

)
Zi

Wn = (nhn)
−1/2

n∑

i=1

K∗

(
x− xi
hn

)
Zi

with Zi = χ (Y ∗i /(aSx)) − Eχ (Y ∗i /(aSx)) and K∗(u) =
∑k

j=1(aj/τj)K (u/τj). The convergence of
{Wn}n≥1 to the normal distribution is now an immediate consequence of Theorem 4.2. in Boente et
al. (2010).
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The proof of (ii) follows immediately from the fact that Un(r) converges in distribution.

We now prove (iii). Since χ is bounded, there exists a constant k1 such that var (Zi) ≤ k1 and
cov (Zi, Zi+1) ≤ k1 for any i ≥ 1. Hence E [Un(τ2)− Un(τ1)]2 ≤ H1,n +H2,n, where

H1,n = k1
1

nhn

n∑

i=1

(
1

τ2
K

(
x− xi
τ2hn

)
− 1

τ1
K

(
x− xi
τ1hn

))2

H2,n = 2k1
1

nhn

n−1∑

i=1

(
1

τ2
K

(
x− xi
τ2hn

)
− 1

τ1
K

(
x− xi
τ1hn

))
×
(

1

τ2
K

(
x− xi+1
τ2hn

)
− 1

τ1
K

(
x− xi+1
τ1hn

))
.

The Lipschitz continuity of K implies that H1,n ≤ T1,n + T2,n, where

T1,n = 2k1
1

τ22

(
1

τ2
− 1

τ1

)2 1

nhn

n∑

i=1

(
K ′

(
x− xi
ξihn

))2(x− xi
hn

)2
= 2k1

1

τ22

(
1

τ2
− 1

τ1

)2
R1,n

T2,n = 2k1τ1

(
1

τ2
− 1

τ1

)2 1

nτ1hn

n∑

i=1

K2

(
x− xi
τ1hn

)
= 2k1τ1

(
1

τ2
− 1

τ1

)2
R2,n

and ξi ∈ (τ1, τ2). Using that τ1, τ2 ∈ [r, s] and the assumptions on the design points and proceeding
as in Theorem 3.1 of Boente et al. (1997), it is easy to show that, for all n ≥ 1 , R1,n ≤ B, with
B a fixed constant. If we note that for any n ≥ 1, R2,n ≤ C with C a fixed constant, we get easily
that, T1,n ≤ 2k1(s

2/(r4B)) (τ2 − τ1)2 and T2,n ≤ 2k1(s/(r
2C)) (τ2 − τ1)2. So, H1,n ≤ c1 (τ2 − τ1)2

with c1 = 2k1
(
s2B/r4 + sC/r2

)
. Using analogous arguments, it can be shown that there exists a

constant c2 such that H2,n ≤ c2 (τ2 − τ1)2. Hence (iii) follows with c = c1 + c2.
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