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Abstract

In this paper, we introduce a family of robust statistics which allow to decide between a parametric

model and a semiparametric one. More precisely, under a generalized partially linear model, i.e.,

when the observations satisfy yi| (xi, ti) ∼ F (·, µi) with µi = H
(
η(ti) + xt

i β
)

and H a known link

function, we want to test H0 : η(t) = α+γt against H1 : η is a nonlinear smooth function. A general

approach which includes robust estimators based on a robustified deviance or a robustified quasi–

likelihood is considered. The asymptotic behavior of the test statistic under the null hypothesis is

obtained.
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1. Introduction

Semiparametric models contain both a parametric and a nonparametric component. Sometimes
the nonparametric component plays the role of a nuisance parameter. A lot of research has been done
on estimators of the parametric component in a general framework, aiming to obtain asymptotically
efficient estimators. The aim of this paper is to consider semiparametric versions of the generalized
linear models where the response y is to be predicted by covariates (x, t), where x ∈ Rp and t ∈ T ⊂ R
with T a compact set. Without loss of generality we will assume that T = [0, 1]. It will also be
assumed that the conditional distribution of y|(x, t) belongs to the canonical exponential family
exp [yθ(x, t)−B (θ(x, t)) + C(y)], for known functions B and C. Then, µ (x, t) = E (y|(x, t)) =
B′ (θ(x, t)), with B′ as the derivative of B. In generalized linear models (McCullagh and Nelder,
1989), which is a popular technique for modelling a wide variety of data, it is often assumed that
the mean is modelled linearly through a known link function, g, i.e., g(µ (x, t)) = γ + xtβ + αt.
For instance, an ordinary logistic regression model assumes that the observations (yi,xi, ti) are
such that the responses are independent binomial variables yi|(xi, ti) ∼ Bi(1, pi) whose success
probabilities depend on the explanatory variables through the relation g(pi) = γ + xt

i β + αti, with
g(u) = log (u/(1− u)).

In many situations, the linear model is insufficient to explain the relationship between the re-
sponse variable and its associated covariates. A natural generalization, which suffers from the curse
of dimensionality, is to model the mean nonparametrically in the covariates. An alternative strategy
is to allow most predictors to be modeled linearly while one or a small number of predictors enter
in the model nonparametrically. This is the approach we will follow, so that the relationship will be
given by the semiparametric generalized partially linear model

µ (x, t) = H
(
η(t) + xtβ

)
(1)

where H = g−1 is a known link function, β ∈ Rp is an unknown parameter and η is an unknown
smooth function.

In the context of hypothesis testing for regression models, that is, when H(t) = t, Gao (1997)
established a large sample theory for testing H0 : β = 0 and, in addition to this, Härdle et al.
(2000) tested H0,η : η = η0 too, while Härdle and Mammen (1993) considered the lack of fit problem
H0 : η ∈ {ηθ : θ ∈ Θ}. Besides, González–Manteiga and Aneiros–Pérez (2003) studied the case of
dependent errors. These methods are based on a L2 distance comparison between a nonparametric
estimator of the regression function and a smoothed parametric estimator, so they face the problem
of selecting the smoothing parameter. An alternative approach is based on the empirical estimator
of the integrated regression function. Goodness of fit tests based on empirical process for regression
models with non–random design have been studied, for instance, by Koul and Stute (1998) and
Diebolt (1995). On the other hand, under a purely nonparametric regression model with Berkson
measurement errors, Koul and Song (2008) considered a marked empirical process of the calibrated
residuals. Recently, Koul and Song (2010) proposed a test for the partial linear regression model
based on the supremum of a martingale transform of a process of calibrated residuals, when both the
covariates in the parametric and nonparametric components are subject to Berkson measurement
errors.

On the other hand, for generalized partly linear models, hypothesis testing mainly focusses on
comparing kerneal based estimators with smoothed parametric estimators. For instance, Härdle
et al. (1998) considered a test statistic to decide between a linear and a semiparametric model.
Their proposal is based on the estimation procedure considered by Severini and Staniswalis (1994)
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modified to deal with the smoothed and unsmoothed likelihoods. A comparative study of different
procedures was performed by Müller (2001) while a different approach was considered in Rodŕıguez
Campos et al. (1998).

As it is well known, such estimates fail to deal with outlying observations and so does the test
statistic. In a semiparametric setting, outliers can have a devastating effect, since the extreme points
can easily affect the scale and the shape of the function estimate of η, leading to possibly wrong
conclusions. In particular, as mentioned Hampel’s comment on Stone (1977) paper “If we believe in
a smooth model without spikes,. . . , some robustification is possible. In this situation, a clear outlier
will not be attributed to some sudden change in the true model, but to a gross error, and hence it
may be deleted or otherwise made harmless”. Therefore, in this context robust procedures need to
be developed to avoid wrong conclusions on the hypothesis to be tested (see Bianco et al. (2006)
for a discussion).

Robust procedures for generalized linear models have been considered among others by Stefanski
et al. (1986), Künsch et al. (1989), Bianco and Yohai (1995), Cantoni and Ronchetti (2001), Croux
and Haesbroeck (2002) and Bianco et al. (2005). The basic ideas from robust smoothing and from
robust regression estimation have been adapted to deal with the case of independent observations
following a partly linear regression model with H(t) = t; we refer to Gao and Shi (1997), He et al.
(2002) and Bianco and Boente (2004). Moreover, robust tests for a given alternative, under a partly
linear regression model were studied in Bianco et al. (2006). Besides, a robust approach for testing
the parametric form of a regression function versus an omnibus alternative, based on the centered
asymptotic rank transformation, was considered by Wang and Qu (2007) when H(t) = t and β = 0,
i.e., under the nonparametric model yi = η(ti) + εi.

Under a generalized partially linear model (1), Boente et al. (2006) introduced a general profile–
based two–step robust procedure to estimate the parameter β and the function η while Boente
and Rodriguez (2010) (see also, Rodriguez, 2008) developed a three–step method to improve the
computational time of the previous one. Beyond the importance of developing robust estimators in
more general settings, the work on testing also deserves attention. An uptodate review of robust
hypothesis testing results can be found in He (2002). The aim of this paper is to propose a class
of tests for the nonparametric component based on the three–step robust procedure proposed by
Boente and Rodriguez (2010).

The paper is organized as follows. In Section 2, we remind the definition of the general profile–
based two–step estimators as well as the three–step robust estimates and their asymptotic properties.
In Section 3, we present a robust alternative to test hypothesis concerning the nonparametric com-
ponent η. Their asymptotic behavior is studied in Section 4 while a bootstrap procedure is discussed
in Section 5. Section 6 reports the result of a Monte Carlo study conducted to evaluate the per-
formance of the tests under the null hypothesis and under a set of alternatives. Finally, proofs are
relegated to the Appendix.

2. Preliminaries: The estimation procedure

As mentioned in the Introduction, Boente et al. (2006) introduced a highly robust procedure
under model (1) while Boente and Rodriguez (2010) introduced a local approach to improve the
computational time. Let (yi,xi, ti) be independent observations such that yi| (xi, ti) ∼ F (·, µi) with
µi = H

(
η(ti) + xt

i β
)

and Var (yi|(xi, ti)) = V (µi). Let η0(t) and β0 denote the true parameter
values, and E0 the expected value under the true model, so that E0(y1|(x1, t1)) = H

(
η0(t1) + xt

1 β0

)
.
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As in Robinson (1988), we will assume that the vector 1n is not in the space spanned by the
column vectors of (x1, · · · ,xn)t, that is, we do not allow β0 to include an intercept so that the model
is identifiable, i.e., if xt

i β1 + η1(ti) = xt
i β2 + η2(ti) for 1 ≤ i ≤ n, then, β1 = β2 and η1 = η2. Due

to the generality of the semiparametric model (1), identifiability implies that only “slope”coefficients
can be estimated.

Let w1 : Rp → R be a weight function to control leverage points on the carriers x, ρ : R2 → R a
loss function and K : R→ R a kernel function. Define S(β, a, τ) = E0

[
ρ

(
y,xtβ + a

)
w1(x)|t = τ

]

and Sn(β, a, t) =
∑n

i=1 Wi(t)ρ
(
yi,xt

i β + a
)
w1(xi) where Wi(t) are the kernel weights on ti, i.e.

Wi(t) =




n∑

j=1

K((t− tj)/hn)



−1

K((t− ti)/hn) .

Following the ideas of Severini and Staniswalis (1994), Boente et al. (2006) defined, for each fixed
β, the function ηβ(t) as the minimizer of S(β, a, t). Since Sn(β, a, t) provides a consistent estimate
of S(β, a, t), the minimizer in a, η̂β(t), of Sn(β, a, t) estimates ηβ(t). These functions allow the
above mentioned authors to define a two–step robust quasi–likelihood estimators of β0 and η0 as
β̂ = argminβ Sn(β, ηβ, t) and η̂(t) = η̂

β̂
(t), respectively. Boente and Rodriguez (2010) introduced

a new family of estimators of β0 and η0 that improve the computational results. Both proposals
provide robust root-n consistent estimators of the regression parameter β.

If the function ρ(y, u) is continuously differentiable and we denote Ψ (y, u) = ∂ρ(y, u)/∂u, the
functional ηβ(t) and the estimates η̂β(t) will be a solution of the differentiated equations, i.e.,
they will be a solution of S(1)(β, a, t) = 0 and S

(1)
n (β, a, t) = 0 respectively, where S(1)(β, a, τ) =

E0

(
Ψ

(
y,xtβ + a

)
w1(x)|t = τ

)
and S

(1)
n (β, a, t) =

∑n
i=1 Wi(t)Ψ

(
yi,xt

i β + a
)
w1(xi). We refer to

Boente et al. (2006) and Boente and Rodriguez (2010) for a discussion on the choice of the loss
functions, where also conditions to ensure Fisher–consistency of the resulting estimators are stated.
We only point out that, under a generalized linear model, two families of loss functions ρ have been
considered in the literature, the first one bounds the deviances, as in our simulation study, while the
second one introduced by Cantoni and Ronchetti (2001) is based on robustifying the quasi–likelihood
by bounding the Pearson residuals.

3. Test statistics

A robust test statistic to test H0 : η0 ∈ {α+ γ t, α ∈ R, γ ∈ R} can be defined by comparing the
robust semiparametric estimators with the robust estimators obtained under a parametric model.
We will give an approach which robustifies the test statistic defined in Härdle et al. (1998).

Denote β̂ a robust root−n estimator of β0 and η̂(t) = η̂
β̂
(t) the estimates of η0(t) solution of

η̂
β̂
(t) = argmina∈R Sn(β̂, a, t). As in Section 2, let w2 : Rp → R be a weight function that controls

hight leverage points on the covariates x. Denote L(β, α, γ) = E0

[
ρ

(
y,xtβ + α + γt

)
w2(x)

]
and

Ln(β, α, γ) =
1
n

n∑

i=1

ρ
(
yi,xt

i β + α + γti

)
w2(xi) ,

which correspond to the robustified objective functions under a generalized linear regression model.
Then, the robust estimates of the regression parameter under the generalized linear model can be
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defined as the minimizer of Ln

(β̂h0
, α̂h0 , γ̂h0) = argmin

β∈Rp,α∈R,γ∈R
Ln(β, α, γ). (2)

To test H0, a natural approach is to compare the predicted values xt
i β̂ + η̂(ti) with those obtained

under the null hypothesis, xt
i β̂h0

+ α̂h0 + γ̂h0ti. However, as it is well known, in nonparametric and
semiparametric models, due to the bias of the kernel estimator of S(β, a, t), the smoothing bias of
η̂(t) is non-negligible, even under the linear hypothesis H0, see, for instance, Härdle and Mammen
(1993) and Härdle, et al. (1998) for a discussion, when considering the classical estimators. For
that reason, a simple comparison between both estimators may be misleading and conduct wrong
conclusions. To solve this problem, Härdle, et al. (1998) introduced a smoothing bias to α̂h0 + γ̂h0t
to compensate that of η̂(t). It is worth noting that the smoothed estimators obtained under the null
hypothesis may not belong to family of linear functions. However, they provide consistent estimators
under the parametric model.

To define smoothed estimators under the null hypothesis, consider the pseudo–observations ỹi

corresponding to the parametric fit of the conditional expectation under the null hypothesis, that
is, ỹi = H

(
xt

i β̂h0
+ α̂h0 + γ̂h0ti

)
and denote Ψ̃(µ,xtβ + a) = E

(
Ψ

(
y,xtβ + a

) |(x, t)
)

where the
conditional expectation is taken when y|(x, t) ∼ F (·, µ).

The function η̂h0 is defined as follows. Since the pseudo–observations will not have outliers, in
the sense of large Pearson residuals, but only leverage points could appear, it is quite natural to
define η̂h0(t) as the value solving

∑n
i=1 Wi(t)Ψ̃(ỹi,xt

i β̂h0
+ a)w1(xi) = 0, or equivalently as the

value η̂h0(t) = argmina∈R S̃n(β̂h0
, a, t), where S̃n(β, a, t) =

∑n
i=1 Wi(t)ρ̃

(
ỹi,xt

i β + a
)
w1(xi), with

(∂ρ̃(µ, a)) /∂a = Ψ̃(µ, a). Note that under mild conditions ρ̃(µ, a) = E (ρ (y, a) |(x, t)) where the
conditional expectation is taken when y|(x, t) ∼ F (·, µ).

Then, the test statistic is defined using a goodness–of–fit measure, based on the quasi–likelihood
function

T1 = −2
n∑

i=1

Q
(
H

(
xt

i β̂ + η̂(ti)
)

,H
(
xt

i β̂h0
+ η̂h0(ti)

))
w2(xi)w(ti)

where Q(y, µ) =
∫ y

µ
(s− y)V −1(s) ds is the quasi–likelihood. Since the quasi-likelihood is computed

comparing predicted values for the responses based on robust estimators, large deviations of the
predicted responses from its mean will not have large influence in the test statistics. However, outly-
ing points in the explanatory variables may have large influence on the quasi–likelihood expression.
Hence, in order to bound their effect, we introduce a weight function w2(xi) in the test definition.
We have also included a weight function w(t) to avoid boundary effects. The function w has a
compact support T0 ⊂ T = [0, 1], in particular we have that for n large enough I[hn,1−hn](t) ≥ w(t).
This robust version of quasi-likelihood test is different from the robust likelihood ratio–type or score
type tests as defined in Heritier and Ronchetti (1994) which still uses the responses yi and compares
the responses and the fits obtained under the restricted and unrestricted models.

4. Asymptotic behavior

For the sake of simplicity, we denote ρn = h2
n + (nhn)−

1
2 , χ(y, a) = ∂Ψ(y, a)/∂a, χ1(y, a) =

∂2Ψ(y, a)/∂a2, υ̂(β, t) = η̂β(t) − ηβ(t), υ̂0(t) = υ̂(β0, t), υ̂j(β, t) = ∂υ̂(β, t)/∂βj and υ̂j,0(t) =
υ̂j(β0, t).
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We will need the following set of assumptions

A1. The density f of t1 is bounded on T , twice continuously differentiable in the interior of T with
bounded derivatives

A2. inft∈[0,1] f(t) > 0
A3. η0 is twice continuously differentiable in the interior of T with bounded derivatives on T .
A4. r(t, τ) = E0

(
χ

(
y1,xt

1 β0 + η0(t)
)
w1(x1)|t1 = τ

)
is uniformly continuous in the interior of T

and bounded in T .
A5. The functions v0(τ) = E0

(
χ

(
y1,xt

1 β0 + η0(τ)
)
w1(x1)|t1 = τ

)
and v1(τ) =

E0

(
χ

(
y1,xt

1 β0 + η0(τ)
)
x1w1(x1)|t1 = τ

)
are uniformly continuous in the interior of T and

Iv0 = inft∈[0,1] |v0(τ)| > 0.
A6. Ψ, χ, χ1, w, wj and ψj(x) = xwj(x) are bounded functions for j = 1, 2.
A7. K is a function of bounded variation with compact support [0, 1] and it satisfies

∫
K(u)du = 1

and
∫

u K(u)du = 0.
A8. The bandwidth sequence satisfies nh3

n/ log(n) →∞ and n
1
2 h4

n log(n) → 0.

Theorem 4.1. Assume that A1 to A8 hold. Moreover, assume that

a) G = {g(y,x, u) = χ
(
y,xtβ0 + a

)
w1(x) − E0

(
χ

(
y1,xt

1 β0 + a
)
w1(x1)|t1 = u

)
, a ∈ R} , has

covering number N(ε,G, L1(Q)) ≤ Aε−W , for any probability Q and 0 < ε < 1 .

b) ψ1,2(x) = w1(x)‖x‖2 is bounded or supt∈T E0 (ψ1,2(x)|t) < ∞.

Then, under H0 : η ∈ {α + γ t, α ∈ R, γ ∈ R}, we have that v−1
n (T1 −mn) w−→ N(0, 1), with

mn = c1,Ψ h−1
n

∫
K2(u)du and v2

n = 2c2,Ψ h−1
n

∫
(K ∗K(u))2 du, where

c1,Ψ = E

(
w(t1)E

[
w2(xi)

H ′ (xt
1 β0 + α0 + γ0t1

)2

V
(
H

(
xt

1 β0 + α0 + γ0t1
))

∣∣∣t1
]
E

[
w2

1(x1)σ2(x1, t1)
∣∣∣t1

]
v0(t1)−2f(t1)−1

)

c2,Ψ = E




[
E

{
w2(xi)

H ′ (xt
1 β0 + α0 + γ0t1

)2

V
(
H

(
xt

1 β0 + α0 + γ0t1
))

∣∣∣t1
}]2 [

E
{

w2
1(x1)σ2(x1, t1)

∣∣∣t1
}]2 w2(t1)

v0(t1)4f(t1)




σ2(x0, t0) = E
{[

Ψ
(
y1,xt

1 β0 + η0(t1)
)
− E0

(
Ψ

(
y1,xt

1 β0 + η0(t1)
)
|(x1, t1)

)]2

|(x1, t1) = (x0, t0)
}

.

Remark 4.1. When considering the canonical exponential family described in the Introduction
V

(
H

(
xt

1 β0 + η0(t1)
))

= H ′ (xt
1 β0 + η0(t1)

)
and so

c1,Ψ = E
(
w(t1)E

[
w2(x1)H ′

(
xt

1 β0 + α0 + γ0t1

)∣∣∣t1
]
E

[
w2

1(x1)σ2(x1, t1)
∣∣∣t1

]
v0(t1)−2f(t1)−1

)

c2,Ψ = E
(

w2(t1)
[
E

{
w2(x1)H ′

(
xt

1 β0 + α0 + γ0t1

)∣∣∣t1
}]2 [

E
{

w2
1(x1)σ2(x1, t1)

∣∣∣t1
}]2 1

v0(t1)4f(t1)

)
.

5. A Montecarlo test

In this section, we develop a boostrap procedure to implement the goodness–of–fit test for lin-
earity. The need of bootstraping has been studied by several authors such as Härdle and Mammen
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(1993), Härdle et al. (1998). These authors applied a wild bootstrap procedure to construct the
bootstrap samples. However, in the present setting due to the expensive computing time needed to
compute the robust estimators, a linearized Montecarlo as defined in Zhu (2005) provides a better
approach. This approach was also considered in Zhu and Zhang (2004) who propose a resampling
procedure for approximating the p−value when considering a log-likelihood ratio test statistics for
testing homogeneity. Rémillard and Scaillet (2009) and Kojadinovic and Yan (2011) applied this
method to provide fast goodness–of–fit tests for copulas.

As it will be shown in the Appendix, T1 = Rn+Op((n/h)
1
2 ρn log n), under H0 : η0 ∈ {α+γ t, α ∈

R, γ ∈ R}, with

Rn =
n∑

i=1

w(ti)w2(xi)
H ′ (xt

i β0 + α0 + γ0ti
)2

V
(
H

(
xt

i β0 + α0 + γ0ti
))v0(ti)−2f(ti)−2 ×





n∑

j=1

W0,j(ti)w1(xj)
[
Ψ

(
yj ,xt

j β0 + η0(ti)
)
− E0

(
Ψ

(
yj ,xt

j β0 + η0(ti)
)
|(xj , tj ,xi, ti)

)]




2

= n

∫
w(t)w2(x)

H ′ (xtβ0 + α0 + γ0t
)2

V (H (xtβ0 + α0 + γ0t))
v0(t)−2f(t)−2W2

n(t)dFn(x, t) ,

whereWn(t) =
∑n

j=1 W0,j(t)w1(xj)
[
Ψ

(
yj ,xt

j β0 + η0(t)
)− E0

(
Ψ

(
yj ,xt

j β0 + η0(ti)
) |(xj , tj , ti = t)

)]
.

This suggests the following Montecarlo procedure

Step B1 Given a sample {(yi,xi, ti)}1≤i≤n compute the estimators (β̂h0
, α̂h0 , γ̂h0) as in (2).

Define

• v̂0(t) =
∑n

i=1 Wi(t)χ
(
yi,xt

i β̂h0
+ η̂H0(t)

)
w1(xi) with η̂H0(t) = α̂h0 + γ̂h0t.

• ε̂j(t) = Ψ
(
yj ,xt

j β̂h0
+ η̂H0(t)

)
− E0

(
Ψ

(
yj ,xt

j β̂h0
+ η̂H0(t)

)
|(xj , tj)

)

Step B2 Generate n random variables ε?
1 . . . ε?

n, independent of the sample {(yi,xi, ti)}1≤i≤n

and such that E(ε?
i ) = 0, Var(ε?

i ) = 1 and ε?
i are bounded. For instance, we generate n

observations from the two point distribution P ?(ε? = a) = p and P ?(ε? = b) = 1 − p, with
a = (1−√5)/2, b = (1 +

√
5)/2 and p = (5 +

√
5)/10.

Step B3 Define R?
n = R?

n(β̂h0
, v̂0, η̂H0) with

R?
n =

n∑

i=1

w(ti)w2(xi)
H ′

(
xt

i β̂h0
+ η̂H0(ti)

)2

V
(
H

(
xt

i β̂h0
+ η̂H0(ti)

)) v̂0(ti)−2





n∑

j=1

Wj(ti)w1(xj)ε̂j(ti)ε?
j





2

.

Step B4 Repeat Step B2 and Step B3 Nboot times, to get Nboot values of R?
n, say R?

n,i,
1 ≤ i ≤ Nboot.

The (1 − α)−quantiles of the distribution of R (an so of T1) can be approximated by the (1 −
α)−quantiles of the conditional distribution of R?. The p−value can be estimated by p̂ = k/(Nboot +
1) where k is the number of R?

n,i which are larger or equal than T1.
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6. Monte Carlo study

This section contains the results of a simulation study conducted with the aim of comparing the
performance of the proposed testing procedure with the classical one. We consider a logistic partly
linear model. The robust estimators correspond to those controlling large values of the deviance and
they are computed using the score function defined in Croux and Haesbroeck (2002) with tuning
constant c = 0.5. The weight functions w1 and w2 used to control high leverage points are taken as
the Tukey’s biweight function with tuning constant c = 4.685. To be more precise, since xi ∈ R, we

define w2
1(xi) = w2

2(xi) =
(
1− [(xi −Mn)/4.685]2

)2

when |xi −Mn| ≤ 4.685 and 0 otherwise, with
Mn the median of xi. The central model denoted C0 in the figures corresponds to a logistic model
where xi ∼ U(−1, 1) and ti ∼ U(0, 1), independent each other. On the other hand, the responses are
such that yi|(xi, ti) ∼ Bi(1, p(xi, ti)) with log (p(x, t)/ (1− p(x, t))) = β0x + η0(t, ∆), with β0 = 2,
η0(t,∆) = (t − 0.5) + ∆ cos(6π(t − 0.5)), that is, H(u) = exp(u)/(1 + exp(u)). The value ∆ = 0
corresponds to the null hypothesis, H0 : η0 ∈ {α + γ t, α ∈ R, γ ∈ R}, while as alternatives we
choose a grid of 10 equally spaced values of ∆ ∈ [0.2, 2.0]. We performed NR = 1000 replications
of samples of size n = 200 with bandwidth h = 0.1 and Nboot = 5000 bootstrap samples. The
Epanechinikov kernel K(t) = (3/4)(1− t2)I[−1,1](t) was selected for the smoothing procedure.

Figure 1 gives the frequency of rejection both for the classical and robust procedure for the
uncontaminated samples. The nominal level was 0.10. The frequency of rejection of the asymptotic
test is plotted in lines combined with filled diamonds while that of the Montecarlo test corresponds
to the solid line. As expected the Montecarlo test improves the performance of the asymptotic ones,
for the sample size considered.
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Figure 1: Frequency of rejection π of the asymptotic test, plotted with filled diamonds, and the Montecarlo
test plotted with a solid line. a) Classical test b) Robust test.

For each generated sample, we also consider the following contaminations labelled C1 and C2.
We first generate a sample ui ∼ U(0, 1) for 1 ≤ i ≤ n and then, the contaminated sample, denoted
(yi,c, xi,c, ti), is defined as follows for each contamination scheme

• Contamination C1 introduces bad high leverage points in the carriers x, without changing the
responses already generated, i.e., (yi,c, xi,c) = (yi, xi) if ui ≤ 0.90 and (yi,c, xi,c) = (yi, xi,new)
if ui > 0.90, where xi,new is a new observation from a N(10, 1).

• Contamination C2 includes outlying observations in the responses generated according to an
incorrect model. Let η̃(t,∆) = ∆ cos(6π(t − 0.5)) and pi,new = H(η̃(ti, 20(1 − ∆))), define
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yi,new ∼ Bi(1, pi,new). Then, (yi,c, xi,c) = (yi, xi) if ui ≤ 0.90 and (yi,c, xi,c) = (yi,new, xi) if
ui > 0.90.

Figures 2 and 3 give the frequency of rejection both for the classical and robust procedure for the
contaminated samples. Figure 2 reports the frequencies of rejection for both the asymptotic and
Montecarlo procedure, on the other hand, only the results for the Montecarlo test are reported for
C2 since the asymptotic ones behave similarly. The results show that the classical test seem to be
quite insensitive to high leverage points if the model is adequate, while its power is sensitive to a
misleading model.
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Asymptotic test
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Montecarlo test
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Figure 2: Frequency of rejection π of the asymptotic and Montecarlo test, under C0 in solid lines and under
C1 in lines with diamonds. a) Classical test b) Robust test
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Figure 3: Frequency of rejection π of the Montecarlo test, under C0 in solid lines and under C2 in lines with
diamonds. a) Classical test b) Robust test
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P. Appendix. Proofs

In this section we will give the proof of Theorem 4.1. From now on, let S
(0,1)
n (β, a, t) =∑n

i=1 W0,i(t)Ψ
(
yi,xt

i β + a
)
w1(xi) where W0,i(t) = 1/(nh)K ((ti − t)/hn). Besides, define the fam-

ily of functions G = {g(y,x, u) = χ
(
y,xtβ0 + a

)
w1(x)− E0

(
χ

(
y1,xt

1 β0 + a
)
w1(x1)|t1 = u

)
, a ∈

R} and let N(ε,G, L1(Q)) stand for its L1−covering number. Denote also by Kn = {(t, β) : t ∈
[2hn, 1− 2hn], ‖β−β0‖ ≤ ρn}. We will need the following lemmas available in Boente et al. (2012).

Lemma P.1. Assume that A1 to A4, A6 and A7 hold and that nh3
n/ log(n) →∞. Then, we have

that sup(t,β)∈Kn

∣∣∣S(0,1)
n (β, η0(t), t)

∣∣∣ = Op

(
ρn

√
log n

)
.

Proof. Using that χ and ψ1 are bounded functions it is easy to see that

sup
t∈[2hn,1−2hn]
‖β−β0‖≤ρn

∣∣∣S(0,1)
n (β, η0(t), t)− S(0,1)

n (β0, η0(t), t)
∣∣∣ ≤ ‖χ‖∞ ‖ψ1‖∞ ρn sup

t∈[2hn,1−2hn]

n∑

i=1

|W0,i(t)| = Op (ρn) .

Note that E0

(
Ψ

(
yi,xt

i β0 + η0(ti)
)
w1(xi)|ti

)
= 0. Denote

v1
0,n(t) =

n∑

i=1

W0,i(t)
[
Ψ

(
yi,xt

i β0 + η0(t)
)

w1(xi)− E0

(
Ψ

(
yi,xt

i β0 + η0(t)
)

w1(xi)|ti
)]

A1
n(t) =

n∑

i=1

W0,i(t)E0

(
Ψ

(
yi,xt

i β0 + η0(t)
)

w1(xi)|ti
)

with W0,i(t) defined in (??). It will be enough to show that

sup
t∈[2hn,1−2hn]

∣∣v1
0,n(t)

∣∣ = Op(h2
n) = Op

(
ρn

√
log n

)
(P.1)

sup
t∈[2hn,1−2hn]

∣∣A1
n(t)

∣∣ = Op(h2
n) = Op

(
ρn

√
log n

)
(P.2)

We begin by proving (P.2). Define m(τ) = E0

(
Ψ

(
y1,xt

1 β + η0(t)
)
w1(x1)|t1 = τ

)
and g(u) =

m(u)f(u). Then, we have that m(t) = 0 and we can write A1
n(t) =

∑n
i=1 W0,i(t)m(ti). On the other

hand, using that K has bounded support,
∫

uK(u)du = 0 and t ∈ [2hn, 1− 2hn], we get that

E(A1
n(t)) =

1
hn

∫
K

(
u− t

hn

)
g(u)du = g(t)

∫
K (u) du+hng′(t)

∫
K (u) udu+h2

n

∫
K (u)u2g′′(ξn)du ,

which implies that supt∈[2hn,1−2hn] |E(A1
n(t))| = O(h2

n). Now, since K is a bounded variation kernel
and f and r are bounded, Theorem 37 in Pollard (1984) with Fn = {ft,hn(u) = K ((u− t)/hn) m(u), t ∈
[2hn, 1−2hn]} , δ2

n = hn, αn = hn and the fact that nh3
n/ log(n) →∞, entails that supt∈[2hn,1−2hn] |A1

n(t)−
E(A1

n(t))| = op(h2
n)

Let us prove (P.1). Note that E0

(
v1
0,n(t)

)
= 0. Denote

F̃n = {ft,hn(y,x, u) = (2‖K‖∞‖Ψ‖∞‖w1‖∞)−1
K

(
u− t

hn

) [
Ψ

(
y,xtβ0 + η0(t)

)
w1(x)

− E0

(
Ψ

(
y1,xt

1 β0 + η0(t)
)

w1(x1)|t1 = u
)]

, t ∈ [2hn, 1− 2hn]} .
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Using that χ and η0 are bounded, we obtain that the family of functions

Gn = {gt(y,x, u) = Ψ
(
y,xtβ0 + η0(t)

)
w1(x)−E0

(
Ψ

(
y1,xt

1 β0 + η0(t)
)

w1(x1)|t1 = u
)

, t ∈ [2hn, 1−2hn]} ,

has covering number N(ε,Gn, L1(Q)) ≤ Aε−W , for any probability Q and 0 < ε < 1 which together
with the fact that K has bounded variation and Problem 27 in Pollard (1984) allow to conclude
that N(ε, F̃n, L1(Q)) ≤ Bε−C , for some constants B and C not depending on n. On the other hand,
|ft,hn

(y,x, u)| ≤ 1 and Var(ft,hn
(y1,x1, t1)) ≤ hn‖K‖−2

∞ ‖f‖∞
∫

K2(u)du. Therefore, Theorem 37
in Pollard (1984) with δ2

n = hn, αn = hn and the fact that nh3
n/ log(n) → ∞, concludes the proof

of (P.1).

Lemma P.2. Assume that A1 to A7 hold and that nh3
n/ log(n) →∞. If N(ε,G, L1(Q)) ≤ Aε−W ,

for any probability Q and 0 < ε < 1, we have that sup(t,β)∈Kn

∣∣η̂β(t)− η0(t)
∣∣ = Op

(
ρn

√
log n

)
.

Proof. Using that S
(0,1)
n (β, η̂β(t), t) = 0, a Taylor’s expansion of order one, leads to

η̂β(t)− η0(t) = −S(0,1)
n (β, η0(t), t)

[
∂

∂a
S(0,1)

n (β, a, t)
∣∣∣
a=ξ(t)

]−1

with ξ(t) an intermediate point between η̂β(t) and η0(t). Note that

∂

∂a
S(0,1)

n (β, a, t) =
n∑

i=1

W0,i(t)χ
(
yi,xt

i β + a
)

w1(xi).

Using that χ1 and ψ1 are bounded functions analogous arguments to those given in Lemma P.1,
allow to show that

sup
t∈[2hn,1−2hn],a∈R
‖β−β0‖≤ρn

∣∣∣∣∣
n∑

i=1

W0,i(t)
[
χ

(
yi,xt

i β + a
)
− χ

(
yi,xt

i β0 + a
)]

w1(xi)

∣∣∣∣∣ = Op(ρn)

and

sup
t∈[2hn,1−2hn]

a∈R

∣∣∣∣∣
n∑

i=1

W0,i(t)
[
χ

(
yi,xt

i β0 + a
)

w1(xi)− E0

(
χ

(
y1,xt

1 β0 + a
)

w1(x1)|t1 = ti

)]∣∣∣∣∣ = op(1)

sup
t∈[2hn,1−2hn]

a∈R

∣∣∣∣∣
n∑

i=1

Wi(t)E0

(
χ

(
y1,xt

1 β0 + a
)

w1(x1)|t1 = ti

)
− E0

(
χ

(
y1,xt

1 β0 + a
)

w1(x1)|t1 = t
)∣∣∣∣∣ = op(1)

which together with A2 and A5 entail that

inf
t∈[2hn,1−2hn],a∈R
‖β−β0‖≤ρn

∣∣∣∣
∂

∂a
S(0,1)

n (β, a, t)
∣∣∣
a=ξ(t)

∣∣∣∣ > inf
t∈[0,1]

f(t) Iv0/2 ,

with probability converging to 1. The conclusion follows now from Lemma P.1.

Lemma P.3. Assume that A1 to A7 hold and that nh3
n/ log(n) → ∞. If, in addition, ψ1,2(x) =

w1(x)‖x‖2 is bounded or supt∈T E0 (ψ1,2(x)|t) < ∞ and N(ε,G, L1(Q)) ≤ Aε−W , for any probability
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Q and 0 < ε < 1, we have that sup(t,β)∈Kn

∣∣∣η̂β(t)− ̂̂η(t)− R̂(β, t)
∣∣∣ = Op(ρ2

nlog n), with

̂̂η(t) = η0(t)− {v0(t)f(t)}−1
n∑

i=1

W0,i(t)w1(xi)Ψ
(
yi,xt

i β0 + η0(t)
)

(P.3)

R̂(β, t) = v0(t)−1v1(t)t (β − β0) . (P.4)

Proof. η̂β(t) satisfies S
(0,1)
n (β, η̂β(t), t) = 0 and so, using a Taylor expansion, we get

0 =
n∑

i=1

W0,i(t)Ψ
(
yi,xt

i β + η̂β(t)
)

w1(xi) =
n∑

i=1

W0,i(t)Ψ
(
yi,xt

i β0 + η0(t)
)

w1(xi)

+
n∑

i=1

W0,i(t)χ
(
yi,xt

i β0 + η0(t)
)

w1(xi)
[
xt

i (β − β0) + η̂β(t)− η0(t)
]

+
1
2

n∑

i=1

W0,i(t)χ1

(
yi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i (β − β0) + η̂β(t)− η0(t)
]2

with β∗ and η∗(t) intermediate points. Then, we have that

v0,n(t)fn(t)
(
η̂β(t)− η0(t)

)
= −

n∑

i=1

W0,i(t)Ψ
(
yi,xt

i β0 + η0(t)
)

w1(xi)− fn(t) v1,n(t)t (β − β0)

− 1
2

n∑

i=1

W0,i(t)χ1

(
yi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i (β − β0) + η̂β(t)− η0(t)
]2

with v0,n(t) =
∑n

i=1 Wi(t)χ
(
yi,xt

i β0 + η0(t)
)
w1(xi), v1,n(t) =

∑n
i=1 Wi(t)χ

(
yi,xt

i β0 + η0(t)
)
w1(xi)xi

and fn(t) =
∑n

i=1 W0,i(t), which implies that

η̂β(t)− η0(t) = −v0,n(t)−1

[
fn(t)−1

n∑

i=1

W0,i(t)Ψ
(
yi,xt

i β0 + η0(t)
)

+ v1,n(t)t (β − β0)w1(xi)

]

− 1
2

v0,n(t)−1
n∑

i=1

Wi(t)χ1

(
yi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i (β − β0) + η̂β(t)− η0(t)
]2

.

Using that χ1 is bounded, ψ1,2(x) = w1(x)‖x‖2 is bounded or supt∈T E0 (ψ1,2(x)|t) < ∞, Lemma
P.2 entails that

sup
t∈[2hn,1−2hn]
‖β−β0‖≤ρn

∣∣∣∣∣
n∑

i=1

Wi(t)χ1

(
yi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i (β − β0) + η̂β(t)− η0(t)
]2

∣∣∣∣∣

≤ 2‖χ1‖∞ sup
t∈[2hn,1−2hn]
‖β−β0‖≤ρn

[
n∑

i=1

|Wi(t)|w1(xi)‖xi‖2‖β − β0‖2 + ‖w1‖∞
n∑

i=1

|Wi(t)|
[
η̂β(t)− η0(t)

]2
]

= Op(ρ2
nlog n).

Then, using that A2 holds and the fact that

inf
t∈[2hn,1−2hn]

|fn(t)| ≥ inf
t∈[2hn,1−2hn]

f(t) + sup
t∈[2hn,1−2hn]

|fn(t)− f(t)|
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it will be enough to show that

sup
t∈[2hn,1−2hn]

|v0,n(t)− v0(t)| = Op(ρn

√
log n) (P.5)

sup
t∈[2hn,1−2hn]

|v1,n(t)− v1(t)| = Op(ρn

√
log n) (P.6)

sup
t∈[2hn,1−2hn]

|
n∑

i=1

W0,i(t)w1(xi)Ψ
(
yi,xt

i β0 + η0(t)
)
| = Op(ρn

√
log n) (P.7)

sup
t∈[2hn,1−2hn]

|fn(t)− f(t)| = Op(h2
n) = Op(ρn

√
log n) (P.8)

where v0(t) is defined in A5. Equation (P.7) follows from Lemma P.1. On the other hand, (P.5),
(P.6) and (P.8) follow using analogous arguments to those considered to prove (P.1) and (P.2)
together with A5 and the fact that

∫
uK(u)du = 0 and

∫
K(u)du = 1. Therefore, we have that

(??) holds concluding the proof.

The following lemma follows using similar arguments as those considered in Lemma P.3, however,
we give its proof for the sake of completeness.

Lemma P.4. Assume that H0 holds, i.e., η0(t) = α0 + γ0t. Denote ỹi,0 = H
(
xt

i β0 + α0 + γ0ti
)

and ν(τ) = E
(
w1(x1)ζ̃

(
ỹ1,0,xt

1 β0 + η0(τ)
)
H ′ (H−1 (ỹ1,0)

) |t1 = τ
)

where ζ̃(y, a) = ∂Ψ̃ (y, a) /∂y.

Under A1 to A7 if in addition nh3
n/ log(n) →∞, we have that

sup
t∈[2hn,1−2hn]

∣∣∣η̂h0(t)− (α̂h0 + γ̂h0t− α0 − γ0t) v0(t)−1ν(t)− η0(t)

+ v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,0,xt

i β0 + η0(t)
)∣∣∣∣∣ = Op(ρ2

nlog n) .

Proof. η̂h0(t) is the solution of
∑n

i=1 Wi(t)Ψ̃(ỹi,xt
i β̂h0

+ a)w1(xi) = 0 or equivalently, it satisfies∑n
i=1 W0,i(t)Ψ̃(ỹi,xt

i β̂h0
+ η̂h0(t))w1(xi) = 0 and so, using a Taylor expansion, we get

0 =
n∑

i=1

W0,i(t)Ψ̃
(
ỹi,xt

i β̂h0
+ η̂h0(t)

)
w1(xi) =

n∑

i=1

W0,i(t)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)

w1(xi)

+
n∑

i=1

W0,i(t)χ̃
(
ỹi,xt

i β0 + η0(t)
)

w1(xi)
[
xt

i

(
β̂h0

− β0

)
+ η̂h0(t)− η0(t)

]

+
1
2

n∑

i=1

W0,i(t)χ̃1

(
ỹi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i

(
β̂h0

− β0

)
+ η̂h0(t)− η0(t)

]2

with χ̃(µ,xtβ + a) = E
(
χ

(
y,xtβ + a

) |(x, t)
)
, χ̃1(µ,xtβ + a) = E

(
χ1

(
y,xtβ + a

) |(x, t)
)
, where

the conditional expectation are taken when y|(x, t) ∼ F (·, µ), and β∗ and η∗(t) intermediate points.
Then,

ṽ0,n(t)fn(t) (η̂h0(t)− η0(t)) = −
n∑

i=1

W0,i(t)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)

w1(xi)− fn(t) ṽ1,n(t)t
(
β̂h0

− β0

)

− 1
2

n∑

i=1

W0,i(t)χ̃1

(
ỹi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i

(
β̂h0

− β0

)
+ η̂h0(t)− η0(t)

]2
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with ṽ0,n(t) =
∑n

i=1 Wi(t)χ̃
(
ỹi,xt

i β0 + η0(t)
)
w1(xi), ṽ1,n(t) =

∑n
i=1 Wi(t)χ̃

(
ỹi,xt

i β0 + η0(t)
)
w1(xi)xi

and fn(t) =
∑n

i=1 W0,i(t), which implies that

η̂h0(t)− η0(t) = −ṽ0,n(t)−1

[
fn(t)−1

n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)

+ ṽ1,n(t)t
(
β̂h0

− β0

)]

− 1
2

ṽ0,n(t)−1
n∑

i=1

Wi(t)χ̃1

(
ỹi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i

(
β̂h0

− β0

)
+ η̂h0(t)− η0(t)

]2

.

Using that χ1 is bounded, ψ1,2(x) = w1(x)‖x‖2 is bounded or supt∈T E0 (ψ1,2(x)|t) < ∞, and that
‖β̂h0

− β0‖ ≤ ρn, similar arguments to those considered in Lemma P.2 allow to show that
supt∈[2hn,1−2hn] |η̂h0(t)− η0(t)| = Op

(
ρn

√
log n

)
which entails that

sup
t∈[2hn,1−2hn]

∣∣∣∣∣
n∑

i=1

Wi(t)χ̃1

(
ỹi,xt

i β∗ + η∗(t)
)

w1(xi)
[
xt

i

(
β̂h0

− β0

)
+ η̂h0(t)− η0(t)

]2
∣∣∣∣∣

≤ 2‖χ1‖∞ sup
t∈[2hn,1−2hn]

[
n∑

i=1

|Wi(t)|w1(xi)‖xi‖2‖β̂h0
− β0‖2 + ‖w1‖∞

n∑

i=1

|Wi(t)| [η̂h0(t)− η0(t)]
2

]

= Op(ρ2
nlog n).

Then, using A2, the fact that inft∈[2hn,1−2hn] |fn(t)| ≥ inft∈[2hn,1−2hn] f(t)+supt∈[2hn,1−2hn] |fn(t)−
f(t)| and (P.8) it will be enough to show that

sup
t∈[2hn,1−2hn]

|ṽ0,n(t)− v0(t)| = Op(ρn

√
log n) (P.9)

sup
t∈[2hn,1−2hn]

|ṽ1,n(t)− v1(t)| = Op(ρn

√
log n) (P.10)

sup
t∈[2hn,1−2hn]

|
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)
| = Op(ρn

√
log n) (P.11)

where v0(t) is defined in A5. Equation (P.11) follows from Lemma P.1. On the other hand, (P.9),
(P.10) and (P.8) follow using similar arguments to those considered to prove (P.1) to (P.2) together
with the fact that

∫
uK(u)du = 0 and

∫
K(u)du = 1. Therefore, we have that

sup
t∈[2hn,1−2hn]

|η̂h0(t)− η(t)| = Op(ρ2
nlog n)

where

η(t) = η0(t)− v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)

Using that H is twice continuously differentiable and Ψ̃(y, a) is twice continuously differentiable with
respect to y with derivatives ζ̃(y, a) = ∂Ψ̃ (y, a) /∂y and ζ̃1(y, a) = ∂2Ψ̃ (y, a) /∂y2 we get that

η(t) = η0(t)− v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,xt

i β0 + η0(t)
)

= η0(t)− v0(t)−1f(t)−1

[
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,0,xt

i β0 + η0(t)
)
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−
n∑

i=1

W0,i(t)w1(xi)ζ̃
(
ỹi,0,xt

i β0 + η0(t)
)

H ′ (H−1 (ỹi,0)
) (

xt
i

(
β̂h0

− β0

)
+ α̂h0 − α0 + (γ̂h0 − γ0) ti

)

− 1
2

n∑

i=1

W0,i(t)w1(xi)
{

ζ̃
(
ỹ∗i ,xt

i β0 + η0(t)
)

H ′′ (H−1 (ỹ∗i )
)

+ ζ̃1

(
ỹ∗i ,xt

i β0 + η0(t)
) [

H ′′ (H−1 (ỹ∗i )
)]2}(

xt
i

(
β̂h0

− β0

)
+ α̂h0 − α0 + (γ̂h0 − γ0) ti

)2
]

with ỹ∗i = H
(
xt

i β∗ + α∗ + γ∗ti
)

concluding the proof.

Proof of Theorem 4.1. In order to derive an expansion for the test statistic note that, uniformly
on t ∈ [2hn, 1− 2hn] we have

η̂(t)− η̂h0(t) = ̂̂η(t) + R̂(β̂, t)− (α̂h0 + γ̂h0t− α0 − γ0t) v0(t)−1ν(t)− η0(t)

+ v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)Ψ̃
(
ỹi,0,xt

i β0 + η0(t)
)

+ Op(ρ2
nlog n)

with ̂̂η(t) and R̂(β, t) defined in (P.3) and (P.4), respectively. Hence,

η̂(t)− η̂h0(t) = −v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)
[
Ψ

(
yi,xt

i β0 + η0(t)
)
− Ψ̃

(
ỹi,0,xt

i β0 + η0(t)
)]

+ R̂(β̂, t)− (α̂h0 + γ̂h0t− α0 − γ0t) v0(t)−1ν(t) + Op(ρ2
nlog n)

= −v0(t)−1f(t)−1
n∑

i=1

W0,i(t)w1(xi)
[
Ψ

(
yi,xt

i β0 + η0(t)
)
− E0

(
Ψ

(
yi,xt

i β0 + η0(t)
)
|(xi, ti)

)]

+ Op(
√

n) + Op(ρ2
nlog n).

Therefore, we have the following expression for the test statistic T1 = R + Op((n/h)
1
2 ρn log n) with

R =
n∑

i=1

H ′ (xt
i β0 + α0 + γ0ti

)2

V
(
H

(
xt

i β0 + α0 + γ0ti
))

[̂̂η(ti)− E
(̂̂η(ti)|x1, t1, . . . ,xn, tn

)]2

w(ti)

=
n∑

i=1

w(ti)w2(xi)
H ′ (xt

i β0 + α0 + γ0ti
)2

V
(
H

(
xt

i β0 + α0 + γ0ti
))v0(ti)−2f(ti)−2W2

n(ti)

Wn(ti) =
n∑

j=1

W0,j(ti)w1(xj)
[
Ψ

(
yj ,xt

j β0 + η0(ti)
)
− E0

(
Ψ

(
yj ,xt

j β0 + η0(ti)
)
|(xj , tj ,xi, ti)

)]

which is a U−statistic. Therefore, using standard arguments as in Härdle and Mammen (1993) it fol-
lows that v−1

n (T1 −mn) w−→ N(0, 1), with v2
n = 2c2,Ψ h−1

n

∫
(K ∗K(u))2 du and mn = c1,Ψ h−1

n

∫
K2(u)du

where c1(Ψ), c2(Ψ) and σ2(x0, t0) are given in Theorem 4.1.

Let us verify the expressions for mn and vn. Denote Vj,i = w1(xj)[Ψ(yj ,xt
j β0 + η0(ti)) −

E0(Ψ(yj ,xt
j β0 + η0(ti))|(xj , tj ,xi, ti))], then

R =
1
n2

n∑

i=1

w(ti)v−2
0 (ti)f−2(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

n∑

j=1

n∑

`=1

Khn(tj − ti)Khn(t` − ti)Vj,iV`,i
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R =
K2(0)
n2h2

n

n∑

i=1

w(ti)v−2
0 (ti)f−2(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

V 2
i,i

+
2K(0)
n2hn

n∑

i=1

w(ti)v−2
0 (ti)f−2(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

Vi,i

∑

6̀=i

Khn
(t` − ti)V`,i

+
1
n2

n∑

i=1

∑

j 6=ij 6=`

∑

6̀=i

w(ti)v−2
0 (ti)f−2(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

Khn(tj − ti)Khn(t` − ti)Vj,iV`,i

+
1
n2

n∑

i=1

w(ti)v−2
0 (ti)f−2(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

∑

j 6=i

K2
hn

(tj − ti)V 2
j,i

= R1 + R2 + R3 + R4.

Using that nh2
n →∞ and that

1
n

n∑

i=1

w(ti)w2(xi)v−2
0 (ti)f−2(ti)

H ′(xt
i β0 + η0(ti))2

V (H(xt
i β0 + η0(ti)))

V 2
i,i

p−→ E0

(
w(t1)w2(x1)
v2
0(t1)f2(t1)

H ′(xt
1 β0 + η0(t1))2

V (H(xt
1 β0 + η0(t1)))

V 2
1,1

)

we get that R1
p−→ 0 and so, h

1/2
n R1

p−→ 0.

On the other hand, using that E(V`,i|(x`, t`,xi, ti)) = 0 and E(Vi,i|(xi, ti)) = 0 and that V`,i and
Vi,i are conditionally independent, for ` 6= i, we get that E(R2) = 0.

On the other hand, let Zi = w(ti)v−2
0 (ti)f−2(ti)w2(xi)Vi,i(H ′(xt

i β0 + η0(ti))2)/V (H(xt
i β0 + η0(ti))),

then, we have that R2 = (2K(0))/(n2h)
∑

i 6=` ZiKhn(t` − ti)V`,i, and so,

Var(R2) =
2K2(0)
n4h2

n





n∑

i=1

∑

6̀=i

∑

s 6=i

Cov(ZiKhn(t` − ti)V`,i, ZiKhn(ts − ti)Vs,i)

+
n∑

i=1

∑

6̀=i

∑

j 6=i

Cov(ZiKhn(t` − ti)V`,i, ZjKhn(ti − tj)Vi,j)





=
2K2(0)
n4h2

n

∑

6̀=1

Cov(Z1Khn(t` − t1)V`,1, Z1Khn(t` − t1)V`,1)

+
2K2(0)
n4h2

n

∑

6̀=1

Cov(Z1Khn(t` − t1)V`,1, Z`Khn(t1 − t`)V1,`)

=
2K2(0)n(n− 1)

n4h2
n

(C1,h + C2,h)

with C1,h = E(Z2
1K2

hn
(t2 − t1)V 2

2,1) and C2,h = Cov(Z1Khn(t2 − t1)V2,1, Z2Khn(t1 − t2)V1,2). Note
that,

C1,h =
1
h2

n

E
(

Z2
1K2

(
t2 − t1

hn

)
V 2

2,1

)
=

1
h2

n

E
(
E(Z2

1V 2
2,1|(t1, t2))K2

(
t2 − t1

hn

))

=
1
h2

n

E
(

R(t1, t2)K2

(
t2 − t1

hn

))
=

1
hn

∫
R(t1, t1 + uhn)K2(u)f(t1)f(t1 + uh)du dt1.

Hence, C1,h = O(1)/hn. In a similar way, we get that C2,h = O(1)/hn, which implies that
hnVar(R2) → 0 as n →∞, therefore, h

1/2
n R2

p−→ 0.
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Write R4 = (1/n2)
∑n

i=1

∑
j 6=i WiK

2
h(tj − ti)Vj,i with

Wi = w(ti)w2(xi) H ′(xt
i β0 + η0(ti))2

{
v2
0(ti)f2(ti) V (H(xt

i β0 + η0(ti)))
}−1

then, E(R4) = (1/n)
∑

j 6=1 E(W1Khn(tj−t1)V 2
j,1) = ((n− 1)/n)E(W1K

2
hn

(t2−t1)E(V 2
2,1|(x1, t1,x2, t2))) .

Using the fact that E(V2,1|(x1, t1,x2, t2)) = 0, we get that

E(V 2
2,1|(x1, t1,x2, t2) = Var(V2,1|(x1, t1,x2, t2) = w2

1(x2)σ2(x2, t2,x1, t1) = w2
1(x2)σ2(x2, t2, t1) .

Let R4,1 = ((n− 1)/n)E(W1K
2
hn

(t2 − t1)w2
1(x2)σ2(x2, t2)) and R4,2 = ((n− 1)/n)E(W1K

2
hn

(t2 −
t1)w2

1(x2)[σ2(x2, t2, t1)−σ2(x2, t2)]), then, E(R4) = R4,1+R4,2. Using that σ2(x2, t2, t1) is Lipschitz,
we obtain that

|σ2(x2, t2, t1)− σ2(x2, t2)| < |t1 − t2| < hn . (P.12)

Now, using that K has compact support in [−1, 1], we get that

|R4,2| ≤ n− 1
nhn

E
(
|W1|K2

(
t2 − t1

hn

))
=

n− 1
n

O(1) ,

and so, h
1/2
n A2 → 0.

Let a(t1) = w(t1)v−2
0 (t1)f−2(t1) and b(t1) = E

(
w2(xi)H ′(xt

i β0 + η0(ti))2
{
V (H(xt

i β0 + η0(ti)))
}−1

∣∣∣ t1

)
,

then

h1/2
n R4,1 =

n− 1
nh2

n

h1/2
n E

(
K2

(
t2 − t1

hn

)
w2

1(x2)σ2(x2, t2)a(t1)b(t1)
)

Denote by c(t2) = E(w2
1(x2)σ2(x2, t2)|t2). Thus,

h1/2
n R4,1 =

n− 1
nh2

n

h1/2
n

∫
K2

(
t2 − t1

hn

)
a(t1)b(t1)c(t2)f(t1)f(t2)dt1dt2

=
n− 1
nhn

h1/2
n

∫
K2(u)du

∫
a(t2)b(t2)c(t2)f2(t2)dt2 + o(1).

Using analogous arguments to those considered previously when studying the convergence of R2,
one can easily obtain that hnVar(R4) → 0. Then,

h1/2
n

[
R4 − 1

hn

∫
K2(u)du E(a(t2)b(t2)c(t2)f(t2))

]
p−→ 0 ,

where

E(a(t2)b(t2)c(t2)f(t2)) = E
(
E(w2

1(x)σ2(x, t)|t)w(t)v−2
0 (t)f−1(t)E

(
w2(x)

H ′(xtβ0 + η0(t))2

V (H(xtβ0 + η0(t)))

∣∣∣∣ t

))
.

Finally, we will study the asymptotic behavior of R3. The expected value of R3 is equal 0, and
so it is enough to study its variance.

Var(R3) =
1
n4

∑

1≤i,s≤n

∑
j 6=i,j 6=`, 6̀=i

m 6=s,m 6=r,r 6=i

Cov

(
a(ti)w2(xi)

H ′(xt
i β0 + η0(ti))2

V (H(xtβ0 + η0(ti)))
Khn(tj − ti)Khn(t` − ti) Vj,iV`,i,

17



a(ts)w2(xi)
H ′(xt

s β0 + η0(ts))2

V (H(xtβ0 + η0(ts)))
Khn

(tm − ts)Khn
(tr − ts)Vm,sVr,s

)

=
n

n4

n∑
s=1

∑
j 6=1,j 6=`, 6̀=1

m 6=s,m 6=r,r 6=1

E
(

a(t1)w2(xi)
H ′(xt

1 β0 + η0(t1))2

V (H(xtβ0 + η0(t1)))
Khn(tj − t1)Khn(t` − t1) Vj,1V`,1 ×

a(ts)w2(xi)
H ′(xt

s β0 + η0(ts))2

V (H(xtβ0 + η0(ts)))
Khn

(tm − ts)Khn
(tr − ts)Vm,sVr,s

)

=
1
n3

∑

j 6=1,j 6=`,` 6=1

E
(

a2(t1)w2
2(x1)

H ′(xt
1 β0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))
K2

hn
(tj − t1)K2

hn
(t` − t1)×

w2
1(xj)w2

1(x`)σ2(xj , tj , t1)σ2(x`, t`, t1)
)

+
n− 1
n3

∑
j 6=1,j 6=`, 6̀=1

m6=1,m6=r,r 6=2

E
(

a(t1)a(t2)w2(x1)w2(x2)
H ′(xt

1 β0 + η0(t1))2

V (H(xtβ0 + η0(t1)))
H ′(xt

2 β0 + η0(t2))2

V (H(xtβ0 + η0(t2)))
×

Khn
(tj − t1)Khn

(t` − t1)Khn
(tm − t2)Khn

(tr − t2)×
E(Vj,1V`,1Vm,2Vr,2|(xj , tj ,x`, t`,xm, tm,xr, tr,x1, t1,x2, t2))

)

=
(n− 1)(n− 2)

n3
E

(
a2(t1)w2

2(x1)
H ′(xt

1 β0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))
K2

hn
(t2 − t1)K2

hn
(t3 − t1)×

w2
1(x3)w2

1(x2)σ2(x2, t2, t1)σ2(x3, t3, t1)
)

+ 2
(n− 1)2(n− 2)

n3
E

(
a(t1)a(t2)

H ′(xt
1 β0 + η0(t1))2

V (H(xtβ0 + η0(t1)))
w2(x1)w2(x2)

H ′(xt
2 β0 + η0(t2))2

V (H(xtβ0 + η0(t2)))
×

Khn(t3 − t1)Khn(t4 − t1)Khn(t3 − t2)Khn(t4 − t2)E(V3,1V3,2|(x3, t3, t2, t1))E(V4,1V4,2|(x4, t4, t2, t1))
)
.

Hence, Var(R3) = A1 + A2 + A3 where

A1 =
(n− 1)(n− 2)

n3
E

(
a2(t1)w2

2(x1)
H ′(xt

1 β0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))
K2

hn
(t2 − t1)K2

hn
(t3 − t1)×

w2
1(x3)w2

1(x2)σ2(x2, t2)σ2(x3, t3)
)

A2 =
(n− 1)(n− 2)

n3
E

(
a2(t1)w2

2(x1)
H ′(xt

1 β0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))
K2

hn
(t2 − t1)K2

hn
(t3 − t1)

w2
1(x3)w2

1(x2)[σ2(x2, t2, t1)σ2(x3, t3, t1)− σ2(x2, t2)σ2(x3, t3)]
)

A3 = 2
(n− 1)2(n− 2)

n3
E

(
a(t1)a(t2)w2(x1)w2(x2)

H ′(xt
1 β0 + η0(t1))2

V (H(xtβ0 + η0(t1)))
H ′(xt

2 β0 + η0(t2))2

V (H(xtβ0 + η0(t2)))
×

Khn(t3 − t1)Khn(t4 − t1)Khn(t3 − t2)Khn(t4 − t2)E(V3,1V3,2|(x3, t3, t2, t1))E(V4,1V4,2|(x4, t4, t2, t1))
)

.

Let bH(t1) = E
(

w2
2(x1)

H′4(xt1 β0+η0(t1))

V 2(H(xt1 β0+η0(t1)))
|t1

)
and σ2(t1) = E(w2

1(x1)σ2(x1, t1)|t1) thus

hnA1 =
hn

n
E

(
a2(t1)bH(t1)σ2(t2)σ2(t3)K2

hn
(t2 − t1)K2

hn
(t3 − t1)

)
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=
hn

nh2
n

∫
a2(t1)bH(t1)σ2(t1 + uhn)σ2(vhn + t1)K2(u)K2(v)du dv dt1 =

1
nhn

O(1)

then, we have that hnA1 → 0. On the other hand, using (P.12), we get the following bound

|A2| ≤ 2
nh4

n

E
(

a2(t1)
H ′(xt

1 β0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))
K2((t2 − t1)/hn)K2((t3 − t1)/hn)hn

)

≤ 2
nh3

n

∫
a2(t1)b(t1)K2((t2 − t1)/hn)K2((t3 − t1)/hn)f(t1)f(t2)f(t3)dt1dt2dt3

≤ 2
nhn

∫
a2(t1)b(t1)K2(u)K2(v)f(t1)f(uhn + t1)f(vhn + t1)dt1 du dv =

1
nhn

O(1)

which implies that hnA2 → 0. Finally, straightforward calculations lead to

hnA3 = 2hnE (a(t1)a(t2)b(t1)b(t2)c(t1, t2, t3)c(t1, t2, t4)Khn(t3 − t1)Khn(t4 − t1)Khn(t3 − t2)Khn(t4 − t2))

=
2
h3

n

∫
a(t1)a(t2)b(t1)b(t2)c(t1, t2, t3)c(t1, t2, t4)K((t3 − t1)/hn)

K((t4 − t1)/hn)K((t3 − t2)/hn)K((t4 − t2)/hn)f(t1)f(t2)f(t3)f(t4)dt1 dt2 dt3 dt4

=
2
hn

∫
a(t1)a(t2)b(t1)b(t2)c(t1, t2, uhn + t1)c(t1, t2, vhn + t1)K(u)K(v)K((uhn + t1 − t2)/hn)

K((v + hn + t1 − t2)/hn)f(t1)f(t2)f(uhn + t1)f(uhn + t1)dt1 dt2 du dv

=
2
hn

∫
a(hnz + t2)a(t2)b(hnz + t2)b(t2)c(hnz + t2, t2, uhn + hnz + t2)c(hnz + t2, t2, vhn + hnz + t2)

× K(u)K(v)K((uhn + hnz + t2)/hn)K((v + hn + hnz + t2)/hn)f(hnz + t2)
× f(t2)f(uhn + t1)f(uhn + t1)dz dt2 du dv

and so, hnA3 converges to 2
∫

a2(t2)b2(t2)c2(t2, t2, t2)K(u)K(v)K(u+z)K(v+z)f4(t2)dt2du dv dz =
2E(a2(t)b2(t)c2(t, t, t)f3(t))

∫
[K ∗K(u)]2du.

Using that c2(t2, t2, t2) = E(E(V 2
2,2|(x2, t2))|t2) = E(w2

1(x2)σ2(x2, t2)|t2), we get that

E(a2(t2)b2(t2)c2(t2, t2, t2)f3(t2)) = E(a2(t2)b2(t2)E(w2
1(x2)σ2(x2, t2)|t2)f3(t2))

= E

(
w2(t1)

v4
0(t1)f(t1)

[
E

(
w2(x1)

H ′(xt
1 β0 + η0(t1))

V (H(xt
1 β0 + η0(t1)))

|t1
)]2

E(w2
1(x1)σ2(x1, t1)|t1)

)
= c2,Ψ ,

concluding the proof.
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